
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011
2557

LETTER

A Storage-Efficient Suffix Tree Construction Algorithm for Human
Genome Sequences∗∗

Woong-Kee LOH† and Heejune AHN††∗a), Members

SUMMARY The suffix tree is one of most widely adopted indexes in
the application of genome sequence alignment. Although it supports very
fast alignment, it has a couple of shortcomings, such as a very long con-
struction time and a very large volume size. Loh et al. [7] proposed a suf-
fix tree construction algorithm with dramatically improved performance;
however, the size still remains as a challenging problem. We propose an
algorithm by extending the one by Loh et al. to reduce the suffix tree size.
As a result of our experiments, our algorithm constructed a suffix tree of
approximately 60% of the size within almost the same time period.
key words: storage-efficient suffix tree, human genome sequences, divide-
and-conquer

1. Introduction

Since human DNA sequences were announced as the prod-
uct of the Human Genome Project (HGP), a lot of research
activities are under way for practical application of the se-
quences. One of them is aligning short genome subse-
quences of 100 ∼ 1000 length to the human genome se-
quences [3]–[5]. This application is getting more attention
along with the recent advances in DNA sequencing tech-
nology∗∗∗. For fast alignment, it is essential to use efficient
indexes; the suffix tree, suffix array, and compressed suffix
array are the most widely adopted [1]–[5].

The suffix tree supports very fast alignment and can
also be used in many other applications such as finding fre-
quent subsequences, common subsequences, and maximal
palindromes [3], [8], [9]. However, it has a couple of short-
comings; it requires a very long time to construct and also
occupies a large volume size [6], [8]. Loh et al. [7] pro-
posed a suffix tree construction algorithm to cope with the
first shortcoming. The algorithm dramatically reduced the
construction time by making the most of recent multi-core
CPUs and minimizing disk access costs.

In this paper, we propose a suffix tree construction al-
gorithm, which is an extension of the one by Loh et al. [7],
for coping with the second shortcoming of the suffix tree.

Manuscript received July 26, 2011.
†The author is with the Department of Multimedia, Sungkyul

University, Korea.
††The author is with the Department of Control & Instrumenta-

tion Engineering, Seoul National University of Science and Tech-
nology, Korea.

∗Corresponding author
∗∗This research was supported by Basic Science Research Pro-

gram through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
(grant number: 2010-0025001).

a) E-mail: heejune@seoultech.ac.jp
DOI: 10.1587/transinf.E94.D.2557

Fig. 1 Suffix tree for a sequence X = ATAGCTAGATCG$ [7].

Since it is impossible to reduce the number of nodes in the
suffix tree for a given sequence, our approach reduces the
storage size of the suffix tree nodes. As a result of our ex-
periments, compared with the one by Loh et al. [7], our al-
gorithm constructed a suffix tree of approximately 60% of
the size within almost the same time period.

Figure 1 shows the suffix tree for a genome sequence X
=ATAGCTAGATCG$ [7]. The symbol ‘$’ is attached at the
end of X to prevent any suffix from being the prefix of any
other suffixes and hence to enable the efficient processing of
suffixes. A genome sequence X = x0x1 . . . xn−1$ of length n
contains n suffixes S i = xi . . . xn−1$ (0 ≤ i < n). The suffix
tree for X should have n terminal nodes; they have one-to-
one correspondence with the suffixes and contain the posi-
tions of the corresponding suffixes. For instance, by search-
ing for a suffix S =AGATCG$ using the suffix tree in Fig. 1,
we go through internal nodes N1 and N11 and then reach the
terminal node 6, which indicates that the suffix S is located
at position 6 in X.

2. Related Work

In this section, we first briefly introduce the suffix tree con-
struction algorithm by Loh et al. [7], which we call the FAST
algorithm in this paper. FAST is based on a ‘divide-and-
conquer’ strategy and divides all the suffixes in the genome
sequences into multiple partitions. For a pre-specified prefix
∗∗∗DNA sequencing is determining the sequence of chemical

base pairs in a DNA molecule.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



2558
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

Fig. 2 Node data structure of the FAST algorithm: Information on the
inbound edge is contained together [7].

length p, each partition is composed of the suffixes with the
same prefix of length p, and hence there are 4p partitions.

FAST constructs the suffix subtree for each partition.
Since the suffixes with different prefixes cannot be inserted
in the same suffix subtree, the construction of a suffix sub-
tree for each partition can be performed separately from the
others. FAST assigns the construction of different suffix
subtrees to different processes. The recent design trend of
CPUs not only raises their clock speeds but also builds mul-
tiple independent cores in a single CPU to enable intra-CPU
parallel processing. By using a multi-core CPU, the pro-
cesses launched by FAST are executed in parallel by differ-
ent cores, and therefore the performance of suffix tree con-
struction is significantly improved.

Moreover, FAST almost eliminates random disk ac-
cesses, which were the major cause of performance degra-
dation of the previous disk-based suffix tree construction al-
gorithms [1], [3], [8], [9]. In general, even when accessing
the same amount of disk volume, the performance greatly
depends on disk access patterns; sequential access can im-
prove the performance more than hundred times compared
to random access. FAST constructs the suffix subtree for
each partition in a contiguous memory chunk and then stores
the chunk sequentially in disk†. This helps to minimize the
disk access costs and hence the performance is dramatically
improved.

Figure 2 shows the node data structure of the suffix tree
constructed by FAST. Fields a and b (a ≤ b) indicate the
start and end positions of the inbound edge label. For in-
stance, the inbound edge label of terminal node 6 in Fig. 1
is found at position (8, 12) in X, and hence the field values
are a = 8 and b = 12. The field right stores the pointer to
the next sibling node; the pointer is not a physical memory
address but a relative offset from the start of the memory
chunk in which the suffix subtree is constructed. By using
such pointers, even when the suffix subtree is saved on disk
and then reloaded into a different position in memory, there
is no need to adjust the pointers. The field foo indicates
a pointer to the leftmost child node in an internal node or
the position of the corresponding suffix in a terminal node.
The field sub indicates the number of the chromosome ref-
erenced for processing the node. The human genome se-
quences are composed of 22 chromosome pairs (numbered
1 ∼ 22) and x/y (sex) chromosomes (46 in total). Chromo-
some 1, which is the largest, spans about 247 million base
pairs.

Hunt et al. [3] proposed the first algorithm to construct
the suffix tree for human genome sequences. Since then, a
few more algorithms with improved performance were pro-
posed [1], [8], [9]. Since the suffix tree for human genome

sequences has a very large volume size, these algorithms
construct disk-based suffix trees. The common shortcom-
ings of these algorithms are that they cannot fully utilize
the recent multi-core CPUs and incur random disk accesses.
FAST tackled these shortcomings and achieved a dramatic
performance improvement; however, there was no improve-
ment in the storage size of the suffix tree by FAST.

3. Suffix Tree Construction Algorithm

Our algorithm proposed in this paper is an extension of
FAST [7] and constructs the suffix subtree of a much smaller
size than FAST. In general, given a set of suffixes, any dif-
ferent algorithms should construct the same suffix subtree
regardless of the order of suffix insertion. That is, it is im-
possible to reduce the number of nodes in the suffix subtree
by any means, and therefore our algorithm reduces the stor-
age size of the nodes.

The methods to reduce the node size in our algorithm
are (I1) using the correlation between the field values and
(I2) concatenating the chromosomes to form a single, long
sequence. The method (I1) is based on the following obser-
vations between the field values in Fig. 2:

O1 In most of the internal nodes, the field difference (b −
a) (≥ 0), i.e., the length of the inbound edge label is not
larger than 32767 (= 215 − 1).

O2 In most of the terminal nodes, the field difference (a −
foo) (≥ 0) is not larger than 32767.

O3 In terminal nodes, the field b is always n. Hence, the
length of the inbound edge label is readily computable
without storing the field b.

The fields a, b, and foo can have values in the range of 0 ∼
4,294,967,295 (= 232 − 1).

Figure 3 is plotted using chromosome 1 and justifies
the observations above. Figure 3 (a) justifies the observa-
tion O1 and shows the occurrence count of every possible
(b − a) value. Note that both of horizontal and vertical
axes are represented in the log scale. Each horizontal value
xi (1 ≤ xi ≤ 8, 388, 607) in the figure actually represents a
range of values xi−1 ∼ xi. For instance, the occurrence count
for 255 actually represents the sum of occurrence counts for
every (b − a) value in the range of 128 ∼ 255. As shown in
the figure, approximately 99.98% of the internal nodes sat-
isfies the observation O1. Meanwhile, there exist a number
of terminal nodes such that the lengths of their inbound edge
labels are larger than 32767. Figure 3 (b) justifies the obser-
vation O2 and shows the occurrence count of every possi-
ble (a − foo) value. Approximately 99.97% of the terminal
nodes satisfies O2. The observation O2 indicates that the
concatenation L = L1 ⊕ · · · ⊕ Lt−1 of the inbound edge labels
Li (1 ≤ i < t) of (t+ 1) nodes N0, . . . ,Nt (N0 = root,Nt = T )
on the path from the root to a terminal node T has the length
that is not larger than 32767, i.e., Len(L) ≤ 32767.

†The size of the suffix tree can be adjusted by changing p in
accordance with the size of the available memory.



LETTER
2559

(a) Observation O1: the field difference (b − a) is not larger
than 32767 in most of the internal nodes.

(b) Observation O2: the field difference (a − foo) is not larger
than 32767 in most of the terminal nodes.

Fig. 3 Observations on the node fields.

The method (I2) in our algorithm is to concatenate the
chromosomes to form a single, long sequence†. The method
(I2) brings two advantages as follows. First, there is no need
to deal with duplicate suffixes. When each chromosome is
processed separately, there exist the duplicate suffixes from
different chromosomes. It is clear that the complexity of an
algorithm and a data structure increases to deal with such
duplicate suffixes. Second, the information needed to be
stored in a node can be covered by using only the fields a, b,
and foo; there is no need to use the field sub in Fig. 2. It is
because the concatenation of the human genome sequences
has the size of 3 Gbp (< 232) and the four-byte (32-bit) un-
signed int type fields are sufficient to represent any positions
therein. A shortcoming of this method is that it can incur
false positive errors in the result of alignment. However,
these errors can be removed in the post-processing step by
maintaining the size of chromosomes.

Figure 4 shows the node data structure defined in our
algorithm based on the methods (I1) and (I2). The fields a
and right common in both nodes are used in the same man-
ner as in Fig. 2. The most significant bit f in the field bar is
the flag distinguishing the internal and the terminal nodes.
The remaining 15 bits in bar, which can represent a value in
the range of 0 ∼ 32767, stores (b − a) in an internal node or
(a − foo) in a terminal node. The field down in the internal
node indicates a pointer to the leftmost child node. While

(a) Internal node.

(b) Terminal node.

Fig. 4 Data structure of our algorithm: It has a smaller size than the
FAST algorithm.

both the internal and the terminal nodes in Fig. 2 occupy
18 bytes, the new data structure in Fig. 4 requires 14 bytes
for an internal node and 10 bytes for a terminal node.

There is the case with a very small probability that
(b − a) or (a − foo) value is not less than 32767. In such
a case, bar is set as 32767, and actual (b − a) or (a − foo)
value is stored in an additional associative array. This array
is composed of (key, data) pairs, and the pointer to the corre-
sponding node serves as a key. Since a node can be either an
internal or a terminal node, there is no duplication problem
in the key values. There exist a lot of highly efficient imple-
mentations of the associative array such as hash map in C++
Standard Template Library (STL). This array is attached to
the end of the suffix subtree in the memory chunk when the
subtree is stored on disk, and it is recreated by reading the
attached list of pairs when the subtree is reloaded into main
memory.

4. Evaluation

In this section, we evaluate our algorithm through a series
of experiments. We compare (1) the size of the suffix tree
for human genome sequences and (2) the time for suffix tree
construction with the FAST algorithm. We used the same
dataset as those in [1], [7]. We extracted the first 2, 5, 8,
11, 15, and 24 chromosomes and performed a separate ex-
periment for each chromosome set. The size of the (con-
catenated) sequences were 441, 975, 1418, 1784, 2161, and
2701 MB, respectively. We set the prefix length as p = 4 for
partitioning the suffixes.

The hardware platform was a PC equipped with Intel
i7 2600 K 3.40 GHz CPU, 16 GB DDR3 main memory, and
a 500 GB 7200 rpm hard disk. The software platform was
Microsoft Windows 7 64 bit Edition, and Microsoft Visual
C++ 2010 Express Edition was used as a C/C++ compiler.
Although Intel i7 2600 K CPU has four cores, it can run
up to eight parallel processes using Intel’s Hyper-Threading
Technology (HTT).

Figure 5 compares the size of the suffix trees con-
structed by FAST and our algorithm. The horizontal and
vertical axes represent the size of genome sequences and the
corresponding suffix trees, respectively. As a result of the

†The FAST algorithm [7] stored the chromosomes sequentially
in a contiguous space. It was for improving disk access efficiency,
and each chromosome was dealt with separately.



2560
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

Fig. 5 Comparison of the suffix tree size: The suffix trees constructed by
our algorithm occupy only 60% of the size compared to the FAST algo-
rithm.

Fig. 6 Comparison of the construction time: Our algorithm needs only
6% of additional time compared to the FAST algorithm.

experiment, for every size of genome sequences, the suffix
tree constructed by our algorithm occupied only about 60%
of the size compared to FAST.

Figure 6 compares the time for constructing suffix trees
by FAST and our algorithm. The vertical axis represents
elapsed time in seconds. As a result of the experiment, our

algorithm required only about 6% of additional time com-
pared to FAST. The additional time was needed to compute
the field values b or foo in Fig. 2 using the values of the field
bar and the others in Fig. 4.

In conclusion, our algorithm constructed the suffix
trees of a much smaller size for human genome sequences
within almost the same time period as FAST. We believe
that our algorithm should also construct small suffix trees
even for the genome sequences of various organisms other
than human beings.

References

[1] M. Barsky, U. Stege, A. Thomo, and C. Upton, “A new method for in-
dexing genomes using on-disk suffix trees,” Proc. ACM Conference
on Information and knowledge Management (CIKM), pp.649–658,
Napa Valley, California, Oct. 2008.

[2] P. Ferragina and G. Manzini, “Opportunistic data structures with ap-
plications,” Proc. Annual Symp. on Foundations of Computer Science
(FOCS), Redondo Beach, California, pp.390–398, Nov. 2000.

[3] E. Hunt, M.P. Atkinson, and R.W. Irving, “Database indexing for large
DNA and protein sequence collections,” The VLDB Journal, vol.11,
no.3, pp.256–271, 2002.

[4] B. Langmead, C. Trapnell, M. Pop, and S.L. Salzberg, “Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome,” Genome Biology, vol.10, no.3, pp.R25.1-R25.10, March
2009.

[5] H. Li and R. Durbin, “Fast and accurate short read alignment
with Burrows-Wheeler transform,” Bioinformatics, vol.25, no.14,
pp.1754–1760, July 2009.

[6] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J.
Wang, “SOAP2: An improved ultrafast tool for short read alignment,”
Bioinformatics, vol.25, no.15, pp.1966–1967, Aug. 2009.

[7] W.-K. Loh, Y.-S. Moon, and W. Lee, “A fast divide-and-conquer al-
gorithm for indexing human genome sequences,” IEICE Trans. Inf. &
Syst., vol.E94-D, no.7, pp.1369–1377, July 2011.

[8] B. Phoophakdee and M.J. Zaki, “Genome-scale disk-based suffic tree
indexing,” Proc. Int’l Conf. on Management of Data, ACM SIGMOD,
pp.833–844, Beijing, China, June 2007.

[9] Y. Tian, S. Tata, R.A. Hankins, and J.M. Patel, “Practical methods for
constructing suffix trees,” VLDB Journal, vol.14, no.3, pp.281–299,
2005.


