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PAPER

A General Reverse Converter Architecture with Low Complexity
and High Performance

Keivan NAVI†a), Member, Mohammad ESMAEILDOUST†,
and Amir SABBAGH MOLAHOSSEINI††, Nonmembers

SUMMARY This paper presents a general architecture for designing
efficient reverse converters based on the moduli set {2α, 22β+1-1, 2β-1},
where β ≺ α � 2β, by using a parallel implementation of mixed-radix
conversion (MRC) algorithm. The moduli set {2α, 22β+1-1, 2β-1} is free
from modulo (2k+1)-type which can result in an efficient arithmetic unit
for residue number system (RNS). The values of α and β can be selected
to provide the required dynamic range (DR) and also to adjust the desired
equilibrium between moduli bit-width. The simple multiplicative inverses
of the proposed moduli set and also using novel techniques to simplify con-
version equations lead to a low-complexity and high-performance general
reverse converter architecture that can be used to support different DRs.
Moreover, due to the current importance of the 5n-bit DR moduli sets, we
also introduced the moduli set {22n, 22n+1-1, 2n-1} which is a special case
of the general set {2α, 22β+1-1, 2β-1}, where α=2n and β=n. The converter
for this special set is derived from the presented general architecture with
higher speed than the fastest state-of-the-art reverse converter which has
been designed for the 5n-bit DR moduli set {22n, 22n+1-1, 2n-1}. Further-
more, theoretical and FPGA implementation results show that the proposed
reverse converter for moduli set {22n, 22n+1-1, 2n-1} results in considerable
improvement in conversion delay with less hardware requirements com-
pared to other works with similar DR.
key words: residue arithmetic, reverse converter, residue number system
(RNS), VLSI architecture

1. Introduction

One of the most effective ways to achieve parallelism on
arithmetic level in VLSI design is using residue number
system (RNS) [1]. Because, RNS has an inherent property
to perform addition, subtraction and multiplication without
carry-propagation between residue digits, this makes RNS
a high-performance alternative number system that can lead
to reducing power dissipation and considerable speed-up in
digital computing systems [2], [3]. The most important ap-
plications of RNS have been reported in the digital signal
processing (DSP) area including FIR filters, convolutions,
DFT and FFT computations [4]–[7]. Furthermore, the ad-
vantages of using redundant RNS to provide easy error de-
tection and correction are well documented [8], [9]. How-
ever, the difficulties which have existed in implementation
of non-modular RNS operations, as well as the overhead
incurred by forward and reverse converters, were prevent-
ing the usage of RNS in general-purpose processors. But,
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the recent achievements to perform difficult RNS operations
such as sign detection [10], magnitude comparison [11] and
scaling [12] promote the increase in applicability of RNS in
general-purpose computing systems. The most imperative
issue to design efficient RNS systems is appropriate selec-
tion of moduli set since the performance of residue arith-
metic channels as well as the complexity of forward and re-
verse converters depends mainly on the form and the num-
ber of moduli [13]. The moduli set {2n, 2n-1, 2n+1} has at-
tracted a large amount of research for many decades pri-
marily because of simple and balanced moduli. However,
its dynamic range (DR) is not suitable for current high-
performance DSP applications. To overcome this problem,
i.e., having large DR together with the advantages of popu-
lar set {2n, 2n-1, 2n+1}, Hariri et al. [14] proposed the 5n-bit
DR moduli set {2n, 22n-1, 22n+1} with its high-speed and
low-cost reverse converter. Moreover, the moduli set {2α,
2β-1, 2β+1}, where α ≺ β, has been introduced by Molahos-
seini et al. [15] to provide a large dynamic range RNS sys-
tems. The reverse converter of [15] relies on a simple and
efficient architecture; however, with constraint α ≺ β, the
DR will be concentrated on low-performance moduli 2β+1
and this leads to an increase in the total delay of RNS arith-
metic unit. Chavez and Sousa [16] suggested the moduli set
{2α, 2β-1, 2β+1}, where α � β. They have tried to decrease
the inefficiency of modulo 2β+1 by concentrating DR to ef-
ficient modulo 2α; at the expense of a lower-performance
reverse converter than [15]. The moduli sets {2n−1-1, 2n-
1, 2n} [17] and {2n-1, 2n, 2n+1-1} [18] which are free from
modulo 2n+1 have been also introduced to provide fast RNS
arithmetic unit but with more complex reverse converters
than those for set {2n, 2n-1, 2n+1}. Recently, the moduli
sets {22n, 2n-1, 2n±1-1} [19] which are the enhanced versions
of these classical three-moduli sets are introduced to pro-
vide 4n-bit DR with reduced-complexity reverse convert-
ers. The demands for more parallelism than three moduli
persuaded the researchers to investigate additional number
of moduli. Hence, several four and five-moduli sets with
different DRs have been proposed for RNS [20]–[28]. The
researchers have aimed to introduce large DR moduli sets
which can lead to efficient internal RNS arithmetic circuits
as well as high-performance reverse converters. However,
examination of published papers in this area shows that they
have not completely reached this aim. In other words, when
the researchers achieved fast arithmetic units, inefficient re-
verse converter is yield and vice versa. Although, some re-
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cent works have reported better tradeoffs between perfor-
mance of the RNS arithmetic unit and reverse converter,
there is still a need for moduli sets which can provide high-
efficiency in arithmetic unit and reverse converter.

In this paper, we propose the moduli set {2α, 22β+1-1,
2β-1}, where β ≺ α � 2β as a basis to provide large dy-
namic range RNS systems with adjustable DR and to attain
fast RNS arithmetic unit as well as low-complexity reverse
converters. Next, we present a general reverse converter
architecture based on the moduli set {2α, 22β+1-1, 2β-1} to
achieve high-performance converters. The presented design
is obtained using a parallel and adder-based implementation
of the mixed-radix conversion (MRC) algorithm, resulting
in a VLSI efficient architecture. Thus, the moduli set {2α,
22β+1-1, 2β-1} can be regarded as a conversion-friendly as
well as arithmetic-friendly moduli set, due to its potential to
provide efficiency for all parts of RNS. Finally, we present
the reverse converter for the 5n-bit DR special moduli set
{22n, 22n+1-1, 2n-1}, that is obtained from the general ar-
chitecture. This converter results in lower conversion delay
than the converter design for {2n, 22n-1, 22n+1} [14] which
is the fastest known reverse converter in the area of 5n-bit
DR. Moreover, the proposed converter for moduli set {22n,
22n+1-1, 2n-1} outperforms the best state-of-the-art reverse
converters which have been designed for 5n-bit DR mod-
uli sets {2n-1, 2n, 2n+1, 22n+1}, {2n, 2n-1, 2n +1, 2n−2(n+1)/2

+1, 2n+2(n+1)/2+1}, {2n-1, 2n, 2n+1, 2n−1-1, 2n+1-1} and {2n-
1, 2n, 2n+1, 22n+1-1} [25]–[28]. The remaining sections of
the paper are arranged as follows. In Sect. 2, we present
the proposed general reverse conversion algorithm with its
hardware architecture. The derivation of the reverse con-
verter for the moduli set {22n, 22n+1-1, 2n-1} from the general
architecture, evaluation of its performance and comparison
with other works are described in Sect. 3. Finally, Sect. 4
concludes the paper.

2. The General Reverse Converter Architecture

First, we apply a three-modulus version of MRC to the mod-
uli set {2α, 22β+1-1, 2β-1}, where β ≺ α � 2β to obtain the
conversion algorithm. Next, to reduce the hardware com-
plexity, some mathematical properties are utilized to sim-
plify the conversion equations. But, to begin, we provide
a brief introduction to RNS and MRC followed by a theo-
rem which shows the efficient multiplicative inverses of the
proposed set.

2.1 RNS and MRC

The basis of each RNS system is a moduli set {P1, P2,. . . ,
Pn} which involves pairwise relatively prime numbers. The
DR is defined as M=P1P2. . . Pn, so that the regular weighted
number X≺M can be represented as (x1, x2,. . . , xn) where
xi=X mod Pi =

⏐⏐⏐⏐X⏐⏐⏐⏐Pi . The following theorem confirms that
the moduli set {2α, 22β+1-1, 2β-1} can be used for RNS.

Theorem 1: The moduli set {2α, 22β+1-1, 2β-1}, where β ≺
α � 2β consists of pairwise relatively prime numbers.

Proof. Consider Euclid’s theorem, i.e., GCD (a, b) = GCD
(b, a mod b), where the term GCD stands for the greatest
common divisor of a and b. We have

GCD(22β+1 − 1, 2α) = GCD(2α,−1) = 1 (1)

GCD(2α, 2β − 1) = GCD(2β − 1, 2α−β) (2)

= GCD(2α−β,−1) = 1

GCD(22β+1 − 1, 2β − 1) = GCD(2β − 1, 1) = 1 (3)

Since all the greatest common divisors of these moduli are
equal to one, these numbers are pairwise relatively prime.
By MRC [3], [19] the reverse conversion (i.e., translating
the residue represented number into its equivalent weighted
number), can be done using this equation:

X = Z1 + Z2P1 + Z3P1P2 + . . . + P1P1 . . . Pn−1Zn (4)

Where mixed-radix digits can be computed as follows:

Z1 = x1 (5)

Z2 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐(x2 − Z1)
⏐⏐⏐⏐⏐⏐P1

−1
⏐⏐⏐⏐⏐⏐P2

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
P2

(6)

Z3 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐((x3 − Z1)
⏐⏐⏐⏐⏐⏐P1

−1
⏐⏐⏐⏐⏐⏐P3
− Z2)

⏐⏐⏐⏐⏐⏐P2
−1
⏐⏐⏐⏐⏐⏐P3

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
P3

(7)

...

Zn =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐(((xn − Z1)
⏐⏐⏐⏐⏐⏐P1

−1
⏐⏐⏐⏐⏐⏐Pn
− Z2)

⏐⏐⏐⏐⏐⏐P2
−1
⏐⏐⏐⏐⏐⏐Pn

(8)

− . . . − Zn−1)
⏐⏐⏐⏐⏐⏐P−1

n−1

⏐⏐⏐⏐⏐⏐Pn

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
Pn

Where
⏐⏐⏐⏐⏐⏐⏐⏐Pi
−1
⏐⏐⏐⏐⏐⏐⏐⏐Pj

is denoting the multiplicative inverse of Pi

modulo P j.

2.2 Multiplicative Inverses

The multiplicative inverses in the form of powers of two can
lead to reducing the complexity of the reverse converter,
since the required multiplications can be substituted with
shift operations. The following lemma introduces the simple
multiplicative inverses of the proposed set with their proofs.
Lemma 1: The multiplicative inverses for the moduli set
P1, P2, P3 = {2α, 22β+1 − 1, 2β − 1}, where β ≺ α � 2β are⏐⏐⏐⏐⏐⏐⏐⏐P1

−1
⏐⏐⏐⏐⏐⏐⏐⏐P2

= 22β−α+1,
⏐⏐⏐⏐⏐⏐⏐⏐P1

−1
⏐⏐⏐⏐⏐⏐⏐⏐P3

= 22β−αand
⏐⏐⏐⏐⏐⏐⏐⏐P2

−1
⏐⏐⏐⏐⏐⏐⏐⏐P3

= 1.

Proof: We show that
⏐⏐⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐Pi

−1
⏐⏐⏐⏐⏐⏐

Pj

× Pi

⏐⏐⏐⏐⏐⏐⏐⏐
Pj

=1. Hence,

⏐⏐⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐P1

−1
⏐⏐⏐⏐⏐⏐P2
× P1

⏐⏐⏐⏐⏐⏐⏐⏐P2

=

⏐⏐⏐⏐⏐⏐⏐⏐22β−α+1 × 2α
⏐⏐⏐⏐⏐⏐⏐⏐22β+1−1

(9)

=

⏐⏐⏐⏐⏐⏐⏐⏐22β+1
⏐⏐⏐⏐⏐⏐⏐⏐22β+1−1

= 1⏐⏐⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐P1

−1
⏐⏐⏐⏐⏐⏐P3
×P1

⏐⏐⏐⏐⏐⏐⏐⏐P3

=

⏐⏐⏐⏐⏐⏐⏐⏐22β−α ×2α
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

= 1 (10)
⏐⏐⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐P2

−1
⏐⏐⏐⏐⏐⏐P3
× P2

⏐⏐⏐⏐⏐⏐⏐⏐P3

=

⏐⏐⏐⏐⏐⏐⏐⏐22β+1 − 1
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

= 1 (11)
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2.3 Conversion Algorithm

Considering the moduli set {2α, 22β+1-1, 2β-1} with its cor-
responding RNS representation (x1, x2, x3). These residues
can be shown in bit-level as below:

x1 = (x1,α−1 . . . x1,1x1,0︸��������������︷︷��������������︸
αbits

)2 (12)

x2 = (x2,2β . . . x2,1x2,0︸�������������︷︷�������������︸
αbits

)2 (13)

x3 = (x3,β−1 . . . x3,1x3,0︸��������������︷︷��������������︸
αbits

)2 (14)

The following theorem and lemmas present the proposed
conversion algorithm.

Theorem 2: For the moduli set {2α, 22β+1-1, 2β-1}, where
β ≺ α � 2β, the weighted number X can be achieved from
its residues (x1, x2, x3) by

X = x1 + 2αZ2 + 2α(22β+1 − 1)Z3 (15)

Where

Z2 =

⏐⏐⏐⏐⏐⏐⏐⏐(x2 − x1) × 22β−α+1
⏐⏐⏐⏐⏐⏐⏐⏐22β+1−1

(16)

Z3 =

⏐⏐⏐⏐⏐⏐⏐⏐(x3 − x1) × 22β−α − Z2

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
(17)

Proof. By substituting the moduli P1= 2α, P2= 22β+1-1 and
P3= 2β-1, together with the values of multiplicative inverses
from lemma 1 into MRC formulas (4)–(7), the above equa-
tions will be achieved. The following properties can be used
to simplify (16) and (17), resulting in a reduction in hard-
ware complexity.
Property 1: The residue of a negative residue number (-v)
in modulo (2k-1) is the one’s complement of v, where 0 � v
≺ 2k - 1 [14].
Property 2: The multiplication of a residue number v by
2P in modulo (2k-1) is carried out by P bit circular left shift,
where P is a natural number [14].
Lemma 2: Z2 is computed as follows:

Z2 =

⏐⏐⏐⏐⏐⏐⏐⏐L1 + L2

⏐⏐⏐⏐⏐⏐⏐⏐22β+1−1
(18)

Where

L1 = x2,α−1 . . . x2,0︸���������︷︷���������︸
α

x2,2β . . . x2,α︸��������︷︷��������︸
2β−α+1

(19)

L2 = x1,α−1 . . . x1,1x1,0︸��������������︷︷��������������︸
α

0 . . . 00︸��︷︷��︸
2β−α+1

(20)

Proof. The above equations can be obtained by applying
properties 1 and 2 to (16). Thus,

Z2 =

⏐⏐⏐⏐⏐⏐⏐⏐L1 − L2

⏐⏐⏐⏐⏐⏐⏐⏐22β+1−1
=

⏐⏐⏐⏐⏐⏐⏐⏐L1 + L2

⏐⏐⏐⏐⏐⏐⏐⏐22β+1−1
(21)

L1 =

⏐⏐⏐⏐⏐⏐⏐⏐22β−α+1 × x2

⏐⏐⏐⏐⏐⏐⏐⏐22β+1−1

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐22β−α+1(x2,2β . . . x2,1x2,0︸�������������︷︷�������������︸
2β+1

)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
22β+1−1

(22)

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐22β−α+1(x2,2β . . . x2,α︸��������︷︷��������︸
2β−α+1

x2,α−1 . . . x2,0︸���������︷︷���������︸
α

)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
22β+1−1

= x2,α−1 . . . x2,0︸���������︷︷���������︸
α

x2,2β . . . x2,α︸��������︷︷��������︸
2β−α+1

L2 =

⏐⏐⏐⏐⏐⏐⏐⏐22β−α+1 × x1

⏐⏐⏐⏐⏐⏐⏐⏐22β+1−1

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐22β−α+1(x1,α−1 . . . x1,1x1,0)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
22β+1−1

(23)

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐22β−α+1(0 . . . 00︸��︷︷��︸
2β−α+1

x1,α−1 . . . x1,1x1,0︸��������������︷︷��������������︸
α

)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
22β+1−1

= x1,α−1 . . . x1,1︸���������︷︷���������︸
α

0 . . . 00︸��︷︷��︸
2β−α+1

Lemma 3. Z3 is calculated as below:

Z3 =

⏐⏐⏐⏐⏐⏐⏐⏐L3 + L41 + L42 + L51 + L52 + L8

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
(24)

Where

L3 = x3,α−β−1 . . . x3,0︸������������︷︷������������︸
α−β

x3,β−1 . . . x3,α−β︸������������︷︷������������︸
2β−α

(25)

L41 = x1,α−β−1 . . . x1,0︸������������︷︷������������︸
α−β

x1,β−1 . . . x1,α−β︸������������︷︷������������︸
2β−α

(26)

L42 = x1,α−1 . . . x1,β+1x1,β︸�����������������︷︷�����������������︸
α−β

0 . . . 00︸��︷︷��︸
2β−α

(27)

L51 = x2,α−β−2 . . . x2,0︸������������︷︷������������︸
α−β−1

x2,2β . . . x2,α︸��������︷︷��������︸
2β−α+1

(28)

L52 = x2,α−2 . . . x2,α−βx2,α−β−1︸�����������������������︷︷�����������������������︸
β

(29)

L8 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 . . . 11︸��︷︷��︸
β−1

x2,α−1 i f (L1 − L2) � 0

0 . . . 00︸��︷︷��︸
β−2

x2,α−1x2,α−1 i f (L1 − L2) ≺ 0
(30)

Proof. First, (17) can be rewritten as

Z3 =
⏐⏐⏐⏐⏐⏐22β−αx3 − 22β−αx1 − Z2

⏐⏐⏐⏐⏐⏐2β−1
(31)

Where, from (21) we have

Z2 =
⏐⏐⏐⏐⏐⏐L1 − L2

⏐⏐⏐⏐⏐⏐22β+1−1
(32)

The binary vectors L1 and L2 both are (2β+1)-bit numbers,
so the maximum value of each one can be 22β+1-1; How-
ever, L2 has 2β-α+1 bits of zero and also L1 is composed of
the bits of the x2. We know that at least one of the bits of
the x2 is equal to zero, since the maximum value of x2 is
22β+1-2 (due to the fact that x2 is a residue in modulo 22β+1-
1). Therefore, L1 and L2 are always less than 22β+1-1. As
a result, the most positive value of the modular subtraction
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of (32) will be less than 22β+1-1 and consequently the reduc-
tion in modulo 22β+1-1 can be removed. Moreover, the most
negative value of (32) is higher than 22β+1-1. Hence, we only
need one corrective addition. Then, (32) can be calculated
by

Z2 =

{
L1 − L2 i f L1 − L2 � 0
L1 − L2 + (22β+1 − 1) i f L1 − L2 ≺ 0

(33)

Secondly, careful examination of (23) shows that

L2 =
⏐⏐⏐⏐⏐⏐22β−α+1x1

⏐⏐⏐⏐⏐⏐22β+1
= 22β−α+1x1 (34)

Because x1 is a α-bit number, so representing it in 2β+1 bits
where β ≺ α � 2β requires 2β − α + 1 bits of zero before
x1. Thus, (2β-α + 1)-bit circular left shifting of x1 will be-
come the same as (2β-α + 1)-bit regular left shifting. Now,
substituting (34) in (33) yields

Z2 =

{
L1−22β−α+1x1 i f (L1−L2) � 0
L1−22β−α+1x1 + (22β+1−1) i f (L1−L2) ≺ 0

(35)

Next, with considering (35) in case of L1 − L2 � 0, (31) can
be evaluated as

Z3 =
⏐⏐⏐⏐⏐⏐22β−αx3−22β−αx1−(L1−22β−α+1x1)

⏐⏐⏐⏐⏐⏐2β−1

=
⏐⏐⏐⏐⏐⏐22β−αx3 + x1(22β−α+1 − 22β−α) − L1

⏐⏐⏐⏐⏐⏐2β−1
(36)

=
⏐⏐⏐⏐⏐⏐22β−αx3 + 22β−αx1 − L1

⏐⏐⏐⏐⏐⏐2β−1

In a similar way, for L1 − L2 ≺ 0, we obtain the following:

Z3 =
⏐⏐⏐⏐⏐⏐22β−αx3+22β−αx1−L1−(22β+1−1)

⏐⏐⏐⏐⏐⏐2β−1
(37)

Therefore, in general case, we have

Z2=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⏐⏐⏐⏐⏐⏐⏐⏐

H︷���������������������︸︸���������������������︷
22β−αx3+22β−αx1−L1

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
i f L1−L2 � 0⏐⏐⏐⏐⏐⏐⏐⏐H − (22β+1 − 1)

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
i f L1−L2 ≺ 0

(38)

Now, we must simplify (38) using properties 1 and 2.
First: Let’s consider the case L1 − L2 � 0. Equation (38)
can be rewritten as

Z3 =

⏐⏐⏐⏐⏐⏐⏐⏐L3 + L41 + L42 + L51 + L52 + L53

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
(39)

Where

L3 =
⏐⏐⏐⏐⏐⏐22β−αx3

⏐⏐⏐⏐⏐⏐2β−1
=

⏐⏐⏐⏐⏐⏐⏐⏐22β−α(x3,β−1. . .x3,1x3,0︸������������︷︷������������︸
β

)
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

=

⏐⏐⏐⏐⏐⏐⏐⏐22β−α(x3,β−1. . .x3,α−β︸����������︷︷����������︸
2β−α

x3,α−β−1. . .x3,0︸�����������︷︷�����������︸
α−β

)
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

(40)

= x3,α−β−1. . .x3,0︸�����������︷︷�����������︸
α−β

x3,β−1. . .x3,α−β︸�����������︷︷�����������︸
2β−α

L4 =
⏐⏐⏐⏐⏐⏐22β−αx1

⏐⏐⏐⏐⏐⏐2β−1
=

⏐⏐⏐⏐⏐⏐⏐⏐22β−α(x1,α−1. . .x1,1x1,0︸�������������︷︷�������������︸
α

)
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

=

⏐⏐⏐⏐⏐⏐⏐⏐22β−α(x1,α−1. . .x1,β︸��������︷︷��������︸
α−β

x1,β−1. . .x1,0︸��������︷︷��������︸
β

)
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

(41)

=

⏐⏐⏐⏐⏐⏐⏐⏐22β−α(x1,α−1. . .x1,β︸��������︷︷��������︸
α−β

×2β + x1,β−1. . .x1,0︸��������︷︷��������︸
β

)
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

By splitting (41), we have

L41 =

⏐⏐⏐⏐⏐⏐⏐⏐22β−α × 2β 00 . . . 0︸��︷︷��︸
2β−α

x1,α−1 . . . x1,β︸���������︷︷���������︸
α−β

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
(42)

= x1,α−1 . . . x1,β︸���������︷︷���������︸
α−β

00 . . . 0︸��︷︷��︸
2β−α

L42 =

⏐⏐⏐⏐⏐⏐⏐⏐22β−α(x1,β−1 . . . x1,0︸���������︷︷���������︸
β

)
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

=

⏐⏐⏐⏐⏐⏐⏐⏐22β−α(x1,β−1 . . . x1,α−β︸������������︷︷������������︸
2β−α

x1,α−β−1 . . . x1,0︸������������︷︷������������︸
α−β

)
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

(43)

= x1,α−β−1 . . . x1,0︸������������︷︷������������︸
α−β

x1,β−1 . . . x1,α−β︸������������︷︷������������︸
2β−α

Subsequently, the reduction of -L1 in modulo 2β-1 can be
performed by considering (19) as follows

L5 =

⏐⏐⏐⏐⏐⏐⏐⏐− L1

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
=

⏐⏐⏐⏐⏐⏐⏐⏐− (x2,α−1. . .x2,0︸��������︷︷��������︸
α

x2,2β. . .x2,α︸�������︷︷�������︸
2β−α+1

)
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐− (x2,α−1×22β+x2,α−2. . .x2,α−βx2,α−β−1︸���������������������︷︷���������������������︸
β

×2β) (44)

+ x2,α−β−2 . . . x2,0︸������������︷︷������������︸
α−β−1

x2,2β . . . x2,α︸��������︷︷��������︸
2β−α+1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
2β−1

Now, by separating (44) into three parts, we achieve

L51 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐ − (x2,α−β−2 . . . x2,0︸������������︷︷������������︸
α−β−1

x2,2β . . . x2,α︸��������︷︷��������︸
2β−α+1

)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
2β−1

(45)

= x2,α−β−2 . . . x2,0︸������������︷︷������������︸
α−β−1

x2,2β . . . x2,α︸��������︷︷��������︸
2β−α+1

L52 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐ − 2β(x2,α−2 . . . x2,α−βx2,α−β−1︸�����������������������︷︷�����������������������︸
β

)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
2β−1

(46)

= x2,α−2 . . . x2,α−βx2,α−β−1︸�����������������������︷︷�����������������������︸
β

L53 =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐− 22β(0 . . . 00︸��︷︷��︸
β−1

x2,α−1)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
2β−1

=1 . . . 11︸��︷︷��︸
β−1

x2,α−1 (47)

Secondly: Let’s consider the case L1−L2 ≺0. Equation (38)
can be simplified in the same way as before with only one
additional vector to taking into account -(22β+1-1). Thus,

Z3 =

⏐⏐⏐⏐⏐⏐⏐⏐L3 + L41 + L42 + L51 + L52 + L53 + L6

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
(48)

Where
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L6 =

⏐⏐⏐⏐⏐⏐⏐⏐ − (22β+1 − 1)
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

=

⏐⏐⏐⏐⏐⏐⏐⏐− 1
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

=1. . .11︸︷︷︸
β−1

0 (49)

The other binary vectors are previously obtained (40)–(47).
The (47) and (49) both have β-1 bits with constant values.
So, we can merge L53 and L6 to achieve one vector as

L7 =

⏐⏐⏐⏐⏐⏐⏐⏐L53+L6

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐ 1 . . . 11︸��︷︷��︸
β−1

x2,α−1+1 . . . 11︸��︷︷��︸
β−1

0
⏐⏐⏐⏐⏐⏐⏐⏐2β−1

=

⏐⏐⏐⏐⏐⏐⏐⏐10. . .00︸︷︷︸
β−1

x2,α−1

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
=

⏐⏐⏐⏐⏐⏐⏐⏐2β+0. . . 00︸�︷︷�︸
β−1

x2,α−1

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
(50)

=

⏐⏐⏐⏐⏐⏐⏐⏐1+ 0. . . 00︸�︷︷�︸
β−1

x2,α−1

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
=0. . . 00︸︷︷︸

β−2

x2,α−1x2,α−1

Therefore, seven operands of (48) reduced to six as shown
below:

Z3 =

⏐⏐⏐⏐⏐⏐⏐⏐L3 + L41 + L42 + L51 + L52 + L7

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
(51)

Finally, the following equation can be used instead of (39)
and (51) to realize both cases.

Z3 =

⏐⏐⏐⏐⏐⏐⏐⏐L3 + L41 + L42 + L51 + L52 + L8

⏐⏐⏐⏐⏐⏐⏐⏐2β−1
(52)

Where

L8 =

{
L53 i f (L1 − L2) � 0
L7 i f (L1 − L2) ≺ 0

(53)

2.4 Hardware Architecture

The hardware architecture of the proposed general reverse
converter is depicted in Fig. 1 and is based on theorem 2
and lemmas 2 and 3. To implement the main equation, i.e.,
(15), we must first realize the mixed-radix coefficients (16)
and (17). Lemmas 2 and 3 provide simplified versions of
(16) and (17) without direct dependency between Z2 and
Z3. First of all, the required operands (19), (20), (25)–(30)
are prepared by operand preparation unit 1 (OPU 1) with
only some NOT gates and wiring. Next, we need a modulo
2β-1 adder to realize (18). Modular adders can be imple-
mented using different methods; however, this paper consid-
ers the carry-propagate adder (CPA) with end-around carry
(EAC) [29] to realize modulo of the forms 2k-1 addition.
The CPA with EAC has the same hardware complexity and
double delay than the regular CPA. Therefore, realization of
(18) relies on a β-bit CPA with EAC. Also, a six-operand
modulo 22β+1-1 adder [30] is employed to implement (24).
This multi-operand modular adder can be mechanized us-
ing a six inputs carry-save adder (CSA) tree followed by a
(22β+1-1)-bit CPA with EAC. This CSA tree consists of four
(2β+1)-bit CSAs with EACs as shown in Fig. 2. Some of the
full adders (FAs) are reduced to XOR/AND or XNOR/OR
pairs, since some inputs of the CSAs have constant value of
one or zero. One of the main features of lemma 3 is that it
removes the direct dependency to Z2 which exists in (17);

Fig. 1 The proposed general reverse converter architecture.

Fig. 2 The 6-input β-bit CSA tree.

however the carry of the first round addition of CPA1 with
EAC is needed to achieve (30). In other words, the EAC bit
of CPA1 determines the sign of L1−L2. Thus, we used a 2×1
β-bit multiplexer (MUX) with inputs of (47) and (50), where
the select line is connected to the carry-out of CPA1. More-
over, implementation of (15) can be done using simple con-
catenations followed by a regular binary addition. Clearly,
(15) can be rewritten as

X = x1 + 2αY (54)

Where
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Table 1 Details of each part of the proposed general architecture.

Parts FA NOT XOR/AND pairs XNOR/OR pairs MUX 2×1 Delay
OPU1 - 2β + α + 1 - - β DNOT + DMUX

CPA1 α - - 2β + α + 1 - (4β + 2)DFA

CSA1 2 - β − 2 - - DFA

CSA2 α − β - 2β − α - - DFA

CSA3 β - - - - DFA

CSA4 β - - - - DFA

CPA2 β - - - - 2βDFA

OPU2 - β - - - DNOT

CPA3 β - - 2β + 1 - (3β + 1)DFA

Y = Z2 + 22β+1Z3︸���������︷︷���������︸
3β+1bits

−Z3 = Y1 + Y2 + 1 (55)

Preparing the operands of (55) relies on simple concatena-
tions and inversions as shown below

Y1 = Z3,β−1 . . . Z3,1Z3,0︸���������������︷︷���������������︸
β

Z2,2β . . . Z2,1Z2,0︸�������������︷︷�������������︸
2β+1

(56)

Y2 = 1 . . . 11︸��︷︷��︸
2β+1

Z3,β−1 . . .Z3,1Z3,0︸���������������︷︷���������������︸
β

(57)

Therefore, a (3β+1)-bit regular CPA with ‘1’ carry-in is
needed to add (56) and (57), where OPU 2 prepares Y1 and
Y2. Note that, 2β+1 FAs of CPA3 are reduced to 2β+1
XNOR/OR pairs, since (57) has 2β+1 constant bits with
value of one. Finally, due to the fact that x1 is a α-bit num-
ber, (54) can be achieved by a simple concatenation without
using any computational hardware. Table 1 describes area
and delay specifications for different parts of the converter.
It should be mentioned that the numbers of FAs and logic
gates in CSA1 depends on (30). If L1 − L2 �0 then one
FA and (β-1) XNOR/OR pairs will be used in CSA1. Oth-
erwise if L1 − L2 ≺0, two FAs and (β-2) XOR/AND pairs
will be needed. In Table 1, we consider the second case
to derive area details of CSA1; however it may change if
L1 − L2 �0. Furthermore, although the delay of CPA1 with
EAC is (4β + 2)DFA, the carry-out will be available after
(2β + 1)DFA. Thus, the critical path delay can be obtained
as

Delay = (7β+4)DFA+DMUX+2DNOT (58)

Where DFA, DNOT and DMUX are indicating the delay of one
FA, NOT gate and MUX, respectively.

3. Reverse Converter for {22n, 22n+1 − 1, 2n − 1}

In this section a new moduli set with its specialized reverse
converter is presented. The motivation to propose this new
set as well as the way to derive the reverse converter from
general architecture is described in the followings.

3.1 Introducing New Moduli Set

Many considerations are given on the 5n-bit DR residue
number systems in recent years and new moduli sets with

this DR are introduced. The first moduli set was {2n, 2n −
1, 2n+1, 2n−2(n+1)/2+1, 2n+2(n+1)/2+1} and the best reverse
converter for this set presented in [25]. The main drawbacks
are the moduli 2n − 2(n+1)/2+1 and 2n + 2(n+1)/2+1 that re-
sult in decreasing performance of the arithmetic operation.
Therefore in [26], the moduli set {2n − 1, 2n, 2n + 1, 22n+1}
was suggested. For the first time, four moduli set are used
to provide more than 4n-bit DR. The reverse converter of
the above mentioned work has higher performance and also
faster arithmetic operations in comparison to [25]. More-
over, the three moduli set {2n, 22n − 1, 22n+1} [14] has been
also proposed with 5n-bit DR and faster reverse converter
compared to [25] and [26]. Although, moduli sets reported
in [14], [25] and [26] can provide high DR but presence of
the moduli 22n+1 caused inefficient arithmetic operations.
Hence, the set {2n − 1, 2n, 2n + 1, 2n−1 − 1, 2n+1-1} [27] with
balanced moduli is introduced. However, unfavorable mul-
tiplicative inverses of this set lead to noticeable decreases
in the reverse converter performance. In the newly reported
work [28], the moduli set {2n − 1, 2n, 2n + 1, 22n+1-1} is pro-
posed to solve the problem of inefficient multiplicative in-
verses. Comparing to [27], their moduli set provides faster
reverse converter with the same speed of the RNS arithmetic
unit and also less hardware complexity. However, the delay
of the converter of [28] is longer than [14]. Therefore, the
lack of a moduli set that can provide better tradeoff between
fast arithmetic operations and efficient reverse converter in
5n-bit DR is evident. Hence, we propose the new 5n-bit DR
moduli set {22n, 22n+1 − 1, 2n-1}. This set can result in a very
efficient RNS arithmetic unit, since it is free from modulo
2n+1. Furthermore, the critical modulo of this set is 22n+1-
1 and as investigated in [28], the moduli 22n+1-1 can result
in a slightly faster modular addition than 2n+1. So, it can
be concluded that the proposed moduli set is slightly faster
than moduli sets of [27] and [28] and quite faster than other
moduli sets in 5n-bit DR class which have been introduced
in [14], [25] and [26].

3.2 Converter Design

The moduli set {22n, 22n+1 − 1, 2n-1} is a special case of the
general set {2α, 22β+1-1, 2β-1}, where β ≺ α � 2β. Hence,
its reverse converter can be derived from the general archi-
tecture by substituting α=2n and β=n into the general con-
version equations which are described in Sect. 2. First, from
lemma 2 formulas (18)–(20), we have
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Z2 =

⏐⏐⏐⏐⏐⏐⏐⏐L1 + L2

⏐⏐⏐⏐⏐⏐⏐⏐22n+1−1
(59)

Where

L1 = x2,2n−1 . . . x2,1x2,0︸���������������︷︷���������������︸
2n

x2,2n (60)

L2 = x1,2n−1 . . . x1,1x1,0︸���������������︷︷���������������︸
2n

0 (61)

Second, from lemma 3 formulas (24)–(30), we have

Z3 =

⏐⏐⏐⏐⏐⏐⏐⏐L3 + L41 + L42 + L51 + L52 + L8

⏐⏐⏐⏐⏐⏐⏐⏐2n−1
(62)

Where

L3 = x3,n−1 . . . x3,1x3,0︸��������������︷︷��������������︸
n

(63)

L41 = x1,n−1 . . . x1,1x1,0︸��������������︷︷��������������︸
n

(64)

L42 = x1,2n−1 . . . x1,n+1x1,n︸������������������︷︷������������������︸
n

(65)

L51 = x2,n−2 . . . x2,1x2,0︸��������������︷︷��������������︸
n−1

x2,2n (66)

L52 = x2,2n−2 . . . x2,nx2,n−1︸������������������︷︷������������������︸
n

(67)

L8 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 . . . 11︸��︷︷��︸

n−1

x2,2n−1 i f (L1 − L2) � 0

0 . . . 00︸��︷︷��︸
n−2

x2,2n−1x2,2n−1 i f (L1 − L2) ≺ 0
(68)

Third, the final conversion equations can be obtained from
the simplified relations of theorem 2, i.e., (54)–(57) as fol-
lows

X = x1 + 22nY = Y3n . . . Y1Y0︸��������︷︷��������︸
3n+1

x1,2n−1 . . . x1,1x1,0︸���������������︷︷���������������︸
2n

(69)

Where

Y = Z2 + 22n+1Z3︸���������︷︷���������︸
3n+1bits

−Z3 = Y1 + Y2 + 1 (70)

Y1 = Z3,n−1 . . .Z3,1Z3,0︸���������������︷︷���������������︸
n

Z2,2n . . . Z2,1Z2,0︸�������������︷︷�������������︸
2n+1

(71)

Y2 = 1 . . . 11︸��︷︷��︸
2n+1

Z3,n−1 . . . Z3,1Z3,0︸���������������︷︷���������������︸
n

(72)

The hardware implementation and also components details
are the same as shown in Figs. 1–2 and Table 1 with α=2n
and β=n.

3.3 Numerical Example

Consider the moduli set {16, 31, 3} which is derived from
{22n, 22n+1 − 1, 2n-1}, where n=2. The RNS number (12, 25,
2) can be converted into its equivalent weighted number by
doing the following steps:

1) Binary representation of residues (12)–(14):

x1 = x1,3x1,2x1,1x1,0 = 1100

x2 = x2,4x2,3x2,2x2,1x2,0 = 11001

x3 = x3,1x3,0 = 10

2) Obtaining Z2 (59)–(61):

L1 = x2,3x2,2x2,1x2,0x2,4 = 10011

L2 = x1,0x1,2x1,1x1,00 = 11000

Z2 =

⏐⏐⏐⏐⏐⏐⏐⏐10011 + 00111
⏐⏐⏐⏐⏐⏐⏐⏐31
= 11010

3) Obtaining Z3 (62)–(68):

L3 = x3,1x3,0 = 10, L41 = x1,1x1,0 = 00

L42 = x1,3x1,2 = 11, L51 = x2,0x2,4 = 00

L52 = x2,2x2,1 = 11, L8 = x2,3x2,3 = 01

Z3 =

⏐⏐⏐⏐⏐⏐⏐⏐10 + 11 + 00 + 11 + 00 + 01
⏐⏐⏐⏐⏐⏐⏐⏐3
= 00

4) Calculating X according to (68)–(71):

Y1 = Z3,1Z3,3Z2,4Z2,3Z2,2Z2,1Z2,0 = 0011010

Y2 = 11111Z3,1Z3,0 = 1111111

Y = Y1+Y2+1 = 0011010+1111111+1 = 0011010

X = Y6Y5Y4Y3Y2Y1Y0x1,3x1,2x1,1x1,0 = 00110101100

Thus, X=428, and verification can be simply done as

x1 =

⏐⏐⏐⏐⏐⏐⏐⏐428
⏐⏐⏐⏐⏐⏐⏐⏐16
= 12

x2 =

⏐⏐⏐⏐⏐⏐⏐⏐428
⏐⏐⏐⏐⏐⏐⏐⏐31
= 25

x3 =

⏐⏐⏐⏐⏐⏐⏐⏐428
⏐⏐⏐⏐⏐⏐⏐⏐3
= 2

3.4 Performance Evaluation

This section evaluates the performance of the proposed re-
verse converter for the moduli set {22n, 22n+1 − 1, 2n-1}, and
compares it with the performance of the best state-of-art re-
verse converters for moduli sets in the class of 5n-bit DR
such as {2n, 22n−1, 22n+1} [14], {2n−1, 2n, 2n+1, 22n+1} [26],
{2n, 2n − 1, 2n + 1, 2n − 2(n+1)/2 + 1, 2n + 2(n+1)/2+1} [25],
{2n − 1, 2n, 2n + 1, 2n−1 − 1, 2n+1-1} [27] and {2n − 1, 2n, 2n +

1, 22n+1-1} [28]. Table 2 presents hardware requirements and
conversion delays of these reverse converters in terms of
logic gates and FAs. Note that all the assumptions used in
[28] are considered to obtain the formulas of Table 2, such
as using k-bit CPAs with EACs for the implementation of
the moduli of the form 2k-1 adders of all of the convert-
ers. Furthermore, the hardware requirements and conversion
delay of the proposed reverse converter for the moduli set
{22n, 22n+1−1, 2n-1} is derived from Table 1 and (58), respec-
tively, where α=2n and β=n. The results show that efficient
tradeoff between hardware requirements and conversion de-
lay is obtained. However, to achieve precise estimations for
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Table 2 Hardware requirements and conversion delays of the different reverse converter.

Converter Moduli set Hardware requirements Conversion delay
[25] {2n − 1, 2n, 2n + 1, 2n − 2(n+1)/2 + 1 (19n)AFA + (7n)AXOR + (7n)AAND (8n + 4)DFA + DNOT

, 2n + 2(n+1)/2+1} +(2n)AXNOR + (2n)AOR + (4n)ANOT

[27] {2n − 1, 2n, 2n + 1, 2n−1 − 1, 2n+1 − 1} ((5n2 + 43n + m∗)/6 + 16n − 1)AFA + (6n + 1)ANOT (18n + l∗ + 7)DFA

[28] {2n − 1, 2n, 2n + 1, 22n+1 − 1} (8n + 2)AFA + (n − 1)AXOR + (n − 1)AAND (12n + 5)DFA + DMUX

+ (4n + 1)AXNOR + (4n + 1)AOR + (7n + 1)ANOT + (n)AMUX2×1 + 3DNOT

[26] {2n − 1, 2n, 2n + 1, 22n + 1} (11n + 6)AFA + (2n − 1)AXOR + (2n − 1)AAND+ (8n + 3)DFA + DNOT

(4n)AXNOR + (4n)AOR + (5n + 3)ANOT

[14] {2n, 22n − 1, 22n + 1} (5n + 2)AFA + (2n − 1)AXOR + (2n − 1)AAND (8n + 1)DFA + DNOT

+(n − 1)AXNOR + (n − 1)AOR + (3n + 1)ANOT

Proposed {22n, 22n+1 − 1, 2n − 1} (7n + 2)AFA + (n − 2)AXOR + (n − 2)AAND + (2n + 2)AXNOR (7n + 4)DFA + DMUX

+(2n + 2)AOR + (5n + 1)ANOT + (n)AMUX2×1 +2DNOT
∗ m=n-4, 9n-12 and 5n-8 for n=6k-2, 6k and 6k+2, respectively, and l is the number of the levels of the CSA tree with ((n/2)+1) inputs.

Table 3 Implementation results of the converter on FPGA.

n=8 n=16 n=24
Converter Area Delay Area Delay Area Delay

(Slices) Saving (ns) Speed-up (Slices) Saving (ns) Speed-up (Slices) Saving (ns) Speed-up
[25]∗ 294 52.3% 26.572 24.2% 550 51.1% 45.737 29% 804 49.2% 64.937 38.5%
[27] 328 57.3% 43.325 53.5% 764 64.8% 86.575 62.5% 1168 68.1% 124.782 68%
[28] 141 0.7% 32.185 37.4% 293 8.2% 60.882 46.6% 451 9.5% 83.464 52.2%
[26] 178 21.3% 22.784 11.6% 354 24% 41.984 22.6% 530 23% 61.184 34.7%
[14] 116 -17.1% 21.673 7.1% 236 -12.2% 38.898 16.5% 356 -12.7% 50.002 20.1%

Proposed 140 - 20.124 - 269 - 32.471 - 408 - 39.927 -
∗Implementation for this work is done with n equal to 9, 17 and 25.

Hardware savings and speed-up are calculated based on
Areaother−Areaproposed

MAX(Areaproposed ,Areaother ) × 100 and
Delayother−Delayproposed

MAX(Delayproposed ,Delayother) × 100.

Fig. 3 Comparison the delay of the different converters.

area and delay, the proposed design as well as other con-
verters were described in VHDL, and implemented using
FPGA technology. The target technology is a Xilinx Virtex-
5 FPGA and the area is evaluated by the number of occupied
slices. Table 3 compares the area and delay of the convert-
ers showing the amount of improvement (%) for different
n. As it is expected, delay of the proposed design is the
least than the other converters. Comparing to fastest reverse
converter which is proposed in [14], 16.5% and 20.1% im-
provement in terms of speed of the reverse converter when

Fig. 4 Comparison the area of the different converters.

n is equal to 16 and 24 respectively is achieved. Speed and
area improvement compared to other converters are higher
than these results. In order to ease the comparison, Figs. 3
and 4 are produced to show the practical delay and area com-
parison for converters based on the result of Table 3. The
Fig. 3 confirms that with the growth of n, noticeable reduc-
tion in reverse conversion delay will be achieved. More-
over, Fig. 4 shows the noticeable hardware saving compared
to other converters. There is only one work reported in [14]
that needs less hardware requirement; however the ineffi-
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ciency of arithmetic operation due to the moduli 22n+1 and
lower speed of reverse converter forces this moduli set to
decrease the total efficiency of RNS.

4. Conclusion

We have presented a simple and efficient general reverse
converter architecture which is constructed based on the
moduli set {2α, 22β+1-1, 2β-1}, where β ≺ α � 2β. Due
to the absence of the low-performance modulo (2β+1) to-
gether with simple multiplica1tive inverses, the introduced
moduli set is suitable for realizing large DRs, fast modulo
arithmetic circuits and efficient forward/reverse converters
providing high-performance RNS systems. The general re-
verse converter architecture has been built using a FA-based
implementation of MRC where some novel techniques have
been used to eliminate the dependency between mixed-radix
coefficients to achieve high-speed. Moreover, the moduli
set {22n, 22n+1 − 1, 2n-1} is suggested with its specialized
reverse converter derived from the proposed general archi-
tecture with high-speed and low-cost, compared to the best
state-of-the-art reverse converters. In any case, modularity
and regularity of our design makes it suitable for efficient
VLSI implementation.
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