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SUMMARY Many state-of-the-art embedded systems adopt scratch-
pad memory (SPM) as the main on-chip memory due to its advantages
in terms of energy consumption and on-chip area. The cache is automati-
cally managed by the hardware, while SPM is generally manipulated by the
software. Traditional compiler-based SPM allocation methods commonly
use static analysis and profiling knowledge to identify the frequently used
data during runtime. The data transfer is determined at the compiling stage.
However, these methods are fragile when the access pattern is unpredictable
at compile time. Also, as embedded devices diversify, we expect a novel
SPM management that can support embedded application portability over
platforms. This paper proposes a novel runtime SPM management method
based on the core working set (CWS) theory. A counting-based CWS iden-
tification algorithm is adopted to heuristically determine those data blocks
in the program’s working set with high reference frequency, and then these
promising blocks are allocated to SPM. The novelty of this SPM manage-
ment method lies in its dependence on the program’s dynamic access pat-
tern as the main cue to conduct SPM allocation at runtime, thus offloading
SPM management from the compiler. Furthermore, the proposed method
needs the assistance of MMU to complete address redirection after data
transfers. We evaluate the new approach by comparing it with the cache
system and a classical profiling-driven method, and the results indicate that
the CWS-based SPM management method can achieve a considerable en-
ergy reduction compared with the two reference systems without notable
degradation on performance.
key words: embedded processor, scratchpad memory management, core
working set

1. Introduction

Memory hierarchy is one of the most ubiquitous notions in
computer system design. The main purpose of this con-
cept is to narrow the gap between a high-speed CPU core
and the memory by caching the most useful data items in a
small, fast memory, with a larger but slower memory serving
as a back-up store. The cache is the most popular on-chip
memory in general-purpose processors due to its common-
ality. As for embedded systems, power consumption and the
SRAM on-chip area are highly regarded, and the scratchpad
memory (SPM) is adopted as a perfect on-chip memory for
many embedded microprocessors.

SPM differs from the cache in several aspects: (i) SPM
is explicitly manipulated by software, thus lacking the com-
plex tag logic overhead for mapping off-chip data into the
on-chip memory; (ii) SPM commonly does not contain a
copy of data that is also stored in the DRAM, so there is
no coherence problem in a single-level SPM architecture.
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In addition, SPM accesses can be completed within certain
cycles, which makes it a promising choice in the hard real-
time environment. Some examples of processors with SPM
are Intel IXP network processor, ARMv6, IBM 440 and 405,
Motorola’s MCORE and 6812, and TI TMS-370. With the
emergence of embedded DRAM (eDRAM) [1], the integra-
tion of larger on-chip memories with less cost and lower la-
tency becomes possible in next-generation processors. Re-
cent trends indicate that the dominance of SPM in embedded
systems is likely to consolidate further in the future.

Traditional SPM allocation methods can be roughly
classified into two classes according to whether the SPM
is managed like a cache or is managed by the compiler. The
first is a software-caching technique, which emulates the be-
havior of a hardware cache by the software. The most rep-
resentative example of such methods is the local memory
in the CELL BE processor [2]. However, there is no highly
successful scheme to eliminate the high address translation
overhead at runtime, because a single memory reference in-
struction is replaced by a couple of instructions for software-
emulated cache lookups. The inevitable overhead greatly
diminishes the merits of cache-like automatic management.
The second sort of SPM allocation scheme is compiler-
directed SPM management, and it is more widely adopted
in embedded processors because its codes are more sta-
ble than desktop applications. Compiler-based approaches
commonly utilize static analysis or profiling information as
the main cue to predict memory access pattern at runtime.
These methods can be used in many embedded systems
whose program is tied at manufacturing and remain con-
stant.

However, with the development of the Internet and mo-
bile technology, more and more embedded applications are
tied with the hardware platform not only by their manu-
facturer but by users in many cases. For example, we can
download various applications for our cell phones. The
programs, however, are commonly distributed in the form
of binary executables and can not be tailored to fit the lo-
cal SPM. Therefore, the well-known SPM’s advantages
are abandoned. Furthermore, for many multimedia applica-
tions and real-time applications, memory access patterns are
highly affected by outside input [3]. Traditional compiler-
based SPM allocation schemes may lack accurate memory
reference knowledge at the compiling stage, thus decreasing
SPM utilization. With the diversity of an embedded applica-
tion’s deployment, we consider that a compiler-independent
SPM allocation method is a meaningful compensation to tra-
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ditional compiler-based approaches.
In our view, an ideal runtime SPM management

scheme is expected to adjust the SPM contents based on
the dynamic access pattern of the application itself. A nat-
ural proposal is that the most frequently used data items
should first be considered as the candidates for SPM allo-
cation. Denning was the first to formalized the notion of a
working set [4] to depict such data items that are accessed
within a certain number of instructions. The core work-
ing set (CWS) [5] extends Denning’s working set concept
and illustrates that a dramatic disparity exists between the
usage patterns of frequently used data and those of lightly
used data in the working set. It is similar to a scenario in
SPM management, in which the most popular data items
are expected to be maintained in SPM for future references.
Therefore, we are motivated to associate SPM allocation
with the CWS theory. Moreover, a counting-based CWS
identification algorithm is adopted to determine heuristically
those data blocks in the program’s working set with high ref-
erence frequency, and then these promising blocks are con-
sidered as the good candidates for SPM allocation. The nov-
elty of this SPM management method lies in its dependence
on the program’s dynamic access pattern as the main cue
to conduct SPM allocation at runtime, thus offloading SPM
management from the compiler.

The main contributions of this study include: (i) prov-
ing the existence of the CWS theory in embedded applica-
tions by analyzing the traces of some typical embedded ap-
plications; (ii) development of a novel runtime SPM man-
agement scheme without compiler support based on the
CWS theory; and (iii) a comprehensive experimental eval-
uation to prove the rationality of the proposed method by
comparing the execution time and energy consumption with
a cache reference system and a classical method.

The rest of this paper is organized as follows. Section 2
introduces the main idea of CWS and how it can impact SPM
runtime allocation. Section 3 describes the CWS-based run-
time SPM management in detail. Section 4 describes the
evaluation methodology. In Sect. 5, we prove the rationality
of the proposed method through experimental results. Sec-
tion 6 reviews previous research on SPM management, and
Sect. 7 presents the summary.

2. Core Working Set Phenomenon

The notion of the working set was proposed by [4] to de-
scribe the set of distinct addresses referenced within a cer-
tain window of time. This definition puts all memory blocks
in a working set on an equal footing. However, in real
computer workloads, memory accesses are not evenly dis-
tributed in the working set space. In other words, a dramatic
difference exists between the usage patterns of frequently
used data and those of lightly used data. Based on this phe-
nomenon, [6] proposed the concept of the core working set
(CWS) to depict the more important core elements in the
working set, which are expected to give preferential treat-
ment when doing caching. The CWS theory states that at any

given time, only a small fraction of all addresses is used, and
this used part changes relatively slowly [7]. The CWS the-
ory is an extension of the classical working set concept in a
real workload. The notion of a core leads to the realization
that not all data items in a working set are equally impor-
tant. This core partitions the working set into two subsets:
those data items that are very popular and those that are only
accessed intermittently, which is often the case in practice.

To make an intuitive understanding of the embedded
application’s memory access pattern, we extract and plot
the memory address distribution of 4 typical embedded ap-
plications from MiBench [8]. The traces are collected for
a pre-defined duration of 100,000 instructions by using a
simulator [9]. We plot the first 18700 memory accesses of
the 4 benchmarks in a highly referenced memory region,
ranging from 0X00000000(0) to 0X0000249F0(150000). In
Fig. 1, the memory traces of basicmath and dijkstra are plot-
ted, while the traces of stringsearch and matrix are shown in
Fig. 2.

For applications like dijkstra and matrix, their mem-
ory references are observed to be linearly distributed in
the whole address space, while those of basicmath and
stringsearch are more concentrated in several core regions.

Fig. 1 Memory traces of basicmath and dijkstra from 0X00000000 to
0X000030D40.

Fig. 2 Memory traces of stringsearch and matrix from 0X00000000 to
0X0000249F0.
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Despite the sizes of the memory regions, they are accessed
very frequently, and in fact they service most of the memory
references. These provide the opportunity of predicting the
frequently accessed memory regions at runtime.

There are two kinds of locality manifested by the
traces: temporal locality, which means that a referenced ad-
dress will probably be referenced again in the future, and
spatial locality, which indicates that once an address is ref-
erenced, the addresses nearby will have a greater chance to
be referenced. By analyzing the traces, we draw the conclu-
sion that the CWS phenomenon indeed exists in some typical
embedded benchmarks with regular memory access pattern,
and the use of CWS knowledge to manage scratchpad mem-
ory at runtime is possible.

3. CWS Prediction in SPM Management

In order to identify the most frequently used data at runtime,
an efficient CWS prediction algorithm should be adopted.
First, we introduce a counting-based CWS prediction algo-
rithm. Then we study the determination of predicate nB as
the basis of the following discussion. Lastly, the implemen-
tation of our proposed method is depicted.

3.1 The Counting-Based CWS Prediction

An ideal CWS identification method should meet several
conditions: first, it can obtain a CWS, which only occu-
pies small portions of the whole memory but can capture the
majority of references; second, a CWS block can be identi-
fied before too many accesses, which maximizes the access
profit for future SPM references. Particularly, an efficient
CWS prediction method with little overhead is of great sig-
nificance to a runtime implementation.

According to the definition in [6], CWS is a set of those
blocks that appear in the working set and are referenced for
a multitude of times. A predicate is employed to reflect if
a block is a CWS member or not. Indeed, evaluating the
best predicate among so many alternatives is challenging.
One of the most natural method of defining such predicate
is based on counting the number of references to a given
block. Let B represent a block of k words. Let Wi, i =
1, . . . , k be the words in block B. Let r(w) be the number of
references to word w within a period of time. This way, we
can define a predicate that is evaluated to be true if the block
is referenced n times or more:

nB ≡
k∑

i=1

r(wi) > n (1)

For example, the predicate 3 B identifies those blocks
that were referenced 3 times or more. The selection of
the CWS predicate is noted to be of great flexibility, and
the CWS identified by a predicate is a relative concept that
roughly defines only a subset of the working set.

3.2 Determination of n

In a rich set of given predicates nB, the selection of a suit-
able one for embedded applications, namely, the determina-
tion of n, is important. We evaluate a selected nB using the
following standards: (i) memory addresses in CWS can sat-
isfy as many references as possible; (ii) SPM management
based on this predicate should have a small runtime over-
head, which is reflected by the execution time collected by
the simulator in our evaluation. Accordingly, we define the
following metric

E(n) =
Texecution(n)
Re fCWS(n)

(2)

to evaluate the selection of nB among a number of optional
predicates. On the right side of Eq. (2), Texecution(n) repre-
sents the execution time of a program when the predicate is
nB; Re fCWS(n) refers to the total memory references of the
defined CWS. Generally, the execution time of the same pro-
gram varies when using a different predicate nB. For a cer-
tain memory block, a smaller nB may have a greater chance
identifying this block as a CWS member; thus, the size of
CWS can become larger when using a smaller nB. This
means there are more SPM allocations and SPM accesses
during runtime, which possibly incur a different execution
time due to the varied SPM allocation blocks and access
numbers. Therefore, we evaluate nB by E(n). A better per-
formance is achieved when the E(n) value is smaller, which
represents a smaller execution time and a suitable CWS with
more SPM accesses. All variables are counted using the
predicate nB, with the assumption that a CWS block is ref-
erenced n times or more.

We select the basicmath, dijkstra, matrix, and
stringsearch benchmarks from the benchmark suit and run
them on a simulator with a varied n (n = 2, 4, 8 and 16).
The detailed experiment setup is depicted in Sect. 4.1 with
an SPM-only on-chip memory configuration. The simulator
is employed to calculate the Texecution(n), while the memory
traces are analyzed by a simple trace analyzer to collect the
statistics of Re fCWS(n). The counted E(n) in different nB
are plotted in Fig. 3. We observe that n = 8 and 16 gain
a better CWS than n = 2, 4 except for matrix. Combined
with the previous memory reference distribution in Fig. 1
and Fig. 2, we therefore consider that a smaller n in predi-
cate nB is more suitable for benchmarks with a lower local-
ity degree, while a greater nB achieves better performance in
applications with higher locality. On the average, the CWS
predicate with n = 16 can be more efficient than other nB
choices, even though the advantage is very limited.

This standard can evaluate the selected nB. However,
the determination of n is closely related to the system ar-
chitecture and the program’s access patterns. Our selection
of 16 B is notably achieved on the ARM926EJ-S platform
and with consideration of the selected benchmarks. An even
more ideal implementation of nB selection can be an adap-
tive nB selection, which adjusts the predicate by the dy-



DENG et al.: CORE WORKING SET BASED SCRATCHPAD MEMORY MANAGEMENT
277

Fig. 3 Normalized E(n) for selected benchmarks with predicate 2 B, 4 B,
8 B and 16 B.

namic program behavior at runtime. Even though a dynamic
nB selection is more flexible for different access patterns, we
utilize a static nB in this paper for simplicity. Unless stated
otherwise, we select nB = 16 B as the CWS predicate in the
following experiment. From our evaluation, on the average,
the CWS identified by 16 B captures over 90% memory ref-
erences with only fewer than 1% memory addresses.

3.3 CWS-Based Scratchpad Memory Management Imple-
mentation

The CWS-based SPM management strategy adopts a soft-
ware and hardware co-design in order to achieve an efficient
runtime management.

3.3.1 Hardware Structure

As illustrated in Fig. 4, the data-side memory hierarchy dis-
cussed in this paper is composed of an SPM, a small cache,
a TLB, and an adder. Once the CPU core issues a memory
access virtual address (VA), the address is first translated
into a physical address (PA) by the TLB, which is a fully-
associated cache containing 8 page table entries for quick
matching. The translated PA is then compared with a pre-
determined address in an address comparator. This deter-
mines if the memory reference is hit on the SPM. If so, the
requested data item is directly returned to the requester; oth-
erwise, a cache reference is invoked to the bypassed cache
memory. If the memory reference is unfortunately not hit on
either SPM or cache on-chip memory, the on-chip memory
miss is then delivered to the next-level memory hierarchy.

For the convenience of managing the SPM as a whole,
we evenly divided the SPM into blocks of equal sizes. The
core idea of the proposed method is reference counting; a
natural way is to associate a counter with each memory
block. The block is identified as a CWS member once its
counter reaches the pre-defined threshold. However, this

Fig. 4 On-chip memory architecture with SPM and cache.

Fig. 5 Page table entries on ARM9 processors.

method incurs a huge hardware overhead to record the ref-
erence information, and the counting procedure self is time
consuming. To address the problem, we use 4 unused page
table entry bits in our implementation on a 32-bit ARM9EJ-
S processor as a counter to record the access number of a
block. As shown in Fig. 5, the ARM architecture adopts
a two-level page table technique. We utilize the unused 6–
9 bits in the second-level page table entry for block reference
counting. A hardware adder is responsible for updating the
reference number of each block in the TLB. Differing from
the ordinary adder, the simple logic only updates the ref-
erence counter in the page table entry by adding one. The
counter of each block is incremented only if the associated
block is found to be accessed. Many types of architecture
maintain some unused bits in their page table implementa-
tions [37], and these bits can be utilized to record the refer-
ence information for each block. Thus, the extra hardware
overhead is effectively controlled by exploiting the poten-
tial of the existing hardware. In an extreme case wherein
there is no sparse bit for counting, a separate counter should
be maintained for every page table entry. In this case, the
page table entry and its counter should be scanned at the
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same time, which incurs slightly more overhead. With hy-
pothetical hardware modification to allow this, we could ef-
fectively control the hardware overhead by adding only an
adder and an address comparator register, which is easy to
implement by hardware. Unless stated otherwise, a “block”
refers to a tiny page sized 1 KB in our implementation ac-
cording to the ARM926EJ-S manual [10]. Even though a
4-bit counter incurs counter overflow frequently, it can still
reflect the fundamentals of our method. The experimental
results prove that a 16 B predicate can achieve a consider-
able performance according to the evaluation.

Apparently, the counting-based method results in great
overhead by modifying the page table entries frequently.
This problem is tackled by counting only the DRAM blocks.
Namely, when a block is transferred to SPM, its counter is
stopped. For example, in the basicmath benchmark whose
CWS is composed of 16 data blocks (see Table 6) with a
pre-defined predicate 16 B, we count only 16 × 16 = 256
accesses in total, which is far fewer than the total memory
accesses of the application. If an SPM block is evicted af-
ter the SPM replacement, its counter is reset. This design
reduces the pressure of updating page table entries too fre-
quently. Moreover, the execution time evaluation in the next
section well supports the reasoning that CWS can be pre-
dicted within small references, thus avoiding an overwhelm-
ing amount of overhead by counting every reference.

3.3.2 Software Management

Listing 1 Pseudo code of CWS based SPM allocation algorithm.

1 CWS SPM Alloc ( ) {
2 i f ( b l o c k [ i ] . r e f e r e n c e < CWS THRESHOLD)
3 b l o c k [ i ] . r e f e r e n c e ++;
4 / / R e f e r e n c e t i m e r e a c h e s t h e t h r e s h o l d
5 e l s e {
6 i f (SPM f r e e b l o c k e x i s t s )
7 Move to SPM ( i ) ;
8 e l s e
9 / / No f r e e SPM b l o c k s

10 SPM Replacement ( i ) ;
11
12 / / Addres s r e d i r e c t i o n
13 P a g e t a b l e U p d a t e ( i ) ;
14 }
15 }
In software management, a bitmap structure is used to keep
information such as the available positions in SPM. Once
a bit is set, the associated SPM block is used; otherwise,
the block is available for a future allocation. Listing 1 de-
picts this software management algorithm by pseudo code.
There are two situations in the data movement procedure:
if there is available space in SPM, the selected block is
copied directly into the proper location through Load/S tore
instructions; otherwise, a cache-like replacement algorithm
is adopted to select a block from SPM for eviction. The steps
followed are similar to those of the former situation. Once
a memory access is hit in SPM, the requested data item is
directly returned to the CPU core. If the requested data is
not located in the SPM range, namely, the SPM miss, the

CPU core looks up the data cache sequentially. Differing
from a cache miss, the SPM replacement does not immedi-
ately happen when an SPM miss occur. It is only invoked
when the memory reference counter reaches the pre-defined
threshold and there is no available space in the SPM.

For simplicity, we implement the data transfer between
off-chip DRAM and on-chip SPM through Load/S tore in-
structions using the software. The function Move to SPM(i)
transfers a data block from the off-chip DRAM to the on-
chip SPM using memory access operations. The overhead
involves of the cost of reading the data items from DRAM
and that of writing them into SPM. SPM Replacement(i)
first write a data block back into its original address in
the DRAM, and then the available space is allocated to
a new block. In this procedure, the overhead of writing
a block back is considered. We simply adopt a random
SPM block replacement policy in our evaluation. Some
optimized cache-like eviction policy, such as the LRU and
MRU, may still be effective for the SPM replacement. How-
ever, for the selected benchmarks, the replacement policies
make little sense for the evaluation result since that most
of the applications do not evict a block from SPM during
execution because the SPM is larger than the size of the
CWS. Even though a block is evicted, it has little chance
to be reused by observing the traces of the applications.
Pagetable Update(i) operation is implemented by first look-
ing up the TLB. If the expected entry is not found in the
TLB, the MMU and even the page table in DRAM is in-
quired. The VA is then redirected to the newly allocated
SPM space by updating its mapped PA. In the ARM926
processor, updating the reference counter involves two page
table walks in such a two-level page table architecture. A
detailed overhead calculation is shown in Sect. 5.4.

In our experiment, once the reference counter reaches
the threshold, a software exception will interrupt the exe-
cution of the running program to make an SPM allocation.
However, the data transfer can be accelerated by hardware
in real implementation through DMA, which can handle the
data movements between off-chip and on-chip memories
without interrupting the CPU core. When the data trans-
fer is complete, an address redirection is needed to ensure
that the follow-up memory references can still reach the
transferred data blocks in SPM. In previous compiler-based
methods, the compiler is responsible for modifying the ref-
erence addresses once the data item is allocated to SPM.
In the runtime method, we turn to the virtual memory tech-
nique to reconstruct the virtual to physical address mappings
after the SPM allocation is complete with the assistance of
MMU. The runtime method is more flexible compared with
compiler-based methods at the costs of some extra hard-
ware.

4. Experiment Methodology

In this section, we present the evaluation of the proposed
SPM runtime management method. We first describe the
experimental setup which includes the selections of the sim-
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ulator and benchmarks. Then, we explain the measurement
metrics for energy and show the area and size configurations
of the memory components.

4.1 Experimental Setup

The experimental setup includes two main parts: the simu-
lator hacking and the selection of standard benchmarks.

4.1.1 Simulator

We use FaCSim [9], an ARM926EJ-S [10] processor simu-
lator, to model the SPM on-chip memory setup. FaCSim
supports a cycle-accurate simulation based on its func-
tional frontend and accurate backend. Its memory subsys-
tem is composed of instruction/data SPM (in the form of
a tightly-coupled memory), instruction/data cache, unified
TLB, MMU, write buffer, prefetch buffer, bus, and main
memory. In our experiment, we optimize SPM management
on data side alone. However, instruction-side optimization
is theoretically similar because the proposed method does
not distinguish between the instruction and data at runtime.
The details of the experimental setup are summarized in Ta-
ble 1.

Table 1 Parameters of the evaluation.

Core
CPU type: ARM926EJ-S
Frequency: 200 MHz

Bus
Bus type: AHB
Core frequency/Bus frequency: 3

Instruction cache

Size: 32 KB
Associativity: 4
Line size: 32 B
Latency: 1 cycle

Data cache

Size: 4 KB
Associativity: 4
Line size: 32 B
Latency: 1 cycle
Write back latency: 1 cycle

Data side SPM

Size: 16 KB
Page size: 1 KB
Latency: 1 cycle
Replacement policy: random

Memory

Memory size: 128 MB
Non-sequential read hit: 8 cycle
Non-sequential read miss: 11 cycle
Non-sequential write hit: 3 cycle
Sequential read hit: 1 cycle
Sequential write miss: 4 cycle
Sequential write hit: 1 cycle

Table 2 Benchmarks description.

Benchmark Category Description
basicmath Auto./Industrial Simple mathematical calculations.
bitcount Auto./Industrial Bitcount algorithm tests the bit manipulation.
blowfish Security A symmetric block cipher with a variable length key.
fft OOPACK A fast fourier transform and its inverse transform.

dijkstra Network A well known algorithm for shortest path routing.
stringsearch Office A comparison algorithm for given words in phrases using.

MD5 OOPACK A widely used cryptographic hash function with a 128-bit hash value.
matrix OOPACK Multiplies two matrices containing real numbers.

4.1.2 Benchmarks

We select MiBench [8] and OOPACK [11] as the benchmark
suits in our experiment. MiBench is a representative bench-
mark suit for embedded applications, and OOPACK is often
adopted to simulate typical embedded programs with object-
oriented features. For some constraints of the simulator, we
avoid some multimedia benchmarks with a multitude of in-
put data. However, we select applications of different local-
ity degrees to verify the rationality of the proposed method
on various memory access patterns. Table 2 shows the char-
acteristics of the benchmarks.

4.2 Evaluation Metrics

For a fair comparison between SPM and the reference cache
system, we should first determine the capacity of SPM and
the cache in the experiment. Then an energy model is
adopted to make an energy comparison.

4.2.1 Area and On-Chip Memory Capacity

We adopt a hybrid on-chip memory architecture in our ex-
periment. According to Table 3, by following the princi-
ple that the total on-chip area of the hybrid design should
not exceed the size of the cache-only architecture, we de-
termine the SPM and cache capacity in the hybrid on-chip
memory configuration for a fair comparison. Table 3 shows
the on-chip area parameters of the cache and SPM calcu-
lated by the CACTI tool [12], from which we figure out that
a hybrid on-chip memory configuration of 32 KB SPM plus
8 KB cache is approximately 78.7% of a 32 KB cache-only
reference system. Unless stated otherwise, we use the 32 KB
SPM plus 8 KB cache as the hybrid configurations in our
following evaluation.

4.2.2 Energy Consumption Calculation

The energy consumption parameters of SPM and the cache
are listed in Table 4, which are calculated by CACTI5.3.
With tag memory and tag comparison undone, the CACTI
tool [12] is used to estimate the energy values for the
scratchpad. We reference the DRAM energy parameters
from previous study [13]. The DRAM energy consumption
is composed of a dynamic part, which is related to access
types, and a static part, which remains stable in the whole
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Table 3 Chip area parameters of cache and SPM (90 nm technology).

Size [KB] Cache [mm2] SPM [mm2]
4 0.4938 0.0779
8 0.7219 0.1456
16 1.3470 0.3006
32 1.6420 0.5706

Table 4 Parameters of energy consumption.

On-chip Memory
SPM Cache

Size Energy [nJ] Size [KB] Assoc. Energy [nJ]
4 KB 0.009 4 4 0.087
8 KB 0.016 8 4 0.091
16 KB 0.018 16 4 0.126
32 KB 0.035 32 4 0.138

off-chip Memory
Reference Dynamic [nJ] Static [mW]

Random read 11.75

7.6
Burst Read 26.98
Random Write 10.40
Burst Write 13.27

execution. We trace the memory references by the simulator
and calculate the energy consumption of all memory lev-
els by the energy model shown below. In our calculations,
we assume that a cache line size is 32 bytes, and the asso-
ciativity is 4 with a 90 nm technology. We reference the en-
ergy model in [14] to calculate the energy consumption. The
components of the memory subsystem include the on-chip
cache, SPM, and the main memory. The energy consump-
tion of the memory subsystem is computed by

Etotal = ES PM + Ecache + EDRAM (3)

ES PM = eS PM ∗ (readS PM + writeS PM) (4)

Ecache = ecache ∗ (hit + miss ∗ linesize) (5)

EDRAM = eDRAMread ∗ readDRAM

+ eDRAMwrite ∗ writeDRAM

+ Ttotal ∗ Pstandby (6)

where ecache, eS PM eDRAMread, and eDRAMwrite denote the ac-
cess energy of the cache, SPM, and DRAM calculated by
CACTI (in Table 4) for the memory types, respectively.
readS PM , writeS PM , readDRAM , writeDRAM , hit, and miss are
the memory reference statistics, and Ttotal is the number of
execution cycles collected by the simulator.

5. Results

In this section, we first compare the performance of the pro-
posed method with a cache reference system. A compari-
son between a classical method and the one in this paper is
then given. Our evaluations are concerned with the execu-
tion time and energy consumption to verify if the proposed
SPM allocation method can indeed utilize the advantages of
SPM in contrast with traditional cache systems. A comple-
mentary analysis on the SPM size impact and the execution
time overhead of SPM follow in an attempt to gain a deeper
understanding of the proposed method.

Fig. 6 The execution time comparison among 4 different on-chip mem-
ory configurations.

5.1 Comparison with Cache

In Fig. 6, we compare the execution time for the se-
lected benchmarks under cache-only, cache+SPM, SPM,
and DRAM memory configurations. Bars of different col-
ors represent the 4 on-chip memory configurations. Particu-
larly, the hybrid memory of SPM plus the cache is identified
as the gray bar. The SPM+cache and cache-only configu-
rations show the best performance among nearly all bench-
marks, while the DRAM configuration performs the worst,
against which the others are normalized. On the average, the
SPM+cache and cache-only configurations reduce the exe-
cution time by 27.9% and 28.2% compared with DRAM,
respectively. Particularly, the SPM-only design incurs a
worse execution time than the DRAM setup in the matrix
benchmark, which can be explained by the program local-
ity features. Reviewing Fig. 2, we can observe that the
memory references of matrix are more evenly distributed
among several benchmarks, resulting in great challenges for
a CWS-based runtime method in predicting the access pat-
tern. This paper believes that a hybrid memory design along
with cache plus SPM can enhance flexibility for applications
with low data locality.

Figure 7 shows the normalized energy consumption be-
tween the SPM+cache and cache-only designs. The black
bar represents the energy consumption of the cache, against
which the SPM+cache configuration is normalized. We can
observe that the energy consumption of the SPM+cache is
much lower in nearly all benchmarks except for matrix. On
the average, the hybrid on-chip memory managed by the
proposed method can reduce the energy consumption by ap-
proximately 32.5% in contrast with the reference cache sys-
tem. The reason for this is that the proposed method mi-
grates a considerable amount of on-chip memory references
from the cache to SPM, thus fully utilizing the inherent en-
ergy advantage of SPM.
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Table 5 Comparison of the execution time between Egger’s method and the proposed method.

Benchmarks movedblocksEgger movedblocksProposed overheadProposed (%)
basicmath 7 16 102.0
bitcount 4 4 99.9
blowfish 1 3 98.9
fft 0 5 97.3

dijkstra 5 22 99.8
matrix 4 2432 100.3

stringsearch 1 6 87.6
MD5 1 4 90.6

average 97.1

Fig. 7 The energy consumption comparison between cache and
SPM+cache configurations.

5.2 Comparison with Egger’s Method

[21] proposed a profiling-driven dynamic SPM management
method by Egger et al.. Egger’s method divides the binary
into pageable, cacheable, and uncacheable regions based on
profiling information and a heuristic energy model. Only
the pageable region is capable of being allocated into SPM.
Their method and the one in this paper both use MMU to
assist the address redirection after SPM allocation. How-
ever, the proposed method differs from Egger’s method not
by utilizing the profiling information, but by monitoring the
runtime access pattern. For a fair comparison, we adopt a
hybrid on-chip memory configuration of 16 KB data SPM
plus 4 KB data mini-cache [21] in this experiment. The SPM
is managed by the proposed method and Egger’s method, re-
spectively.

Table 5 shows an execution time comparison of the two
methods. The second and third columns list the numbers
of SPM allocation blocks by Egger’s method and the pro-
posed method, respectively, whereas the last column shows
the normalized execution time of the proposed method with
respect to Egger’s method. It depicts that Egger’s method
outperforms the proposed method only in basicmath and
matrix; however, the superiority is very limited. The re-
sult indicates that the proposed method based on runtime

Fig. 8 The energy consumption comparison between the proposed
method and Egger’s method.

decision does not incur unacceptable huge runtime overhead
compared with the profiling-driven method.

Figure 8 depicts the energy consumption comparison
of the proposed method and Egger’s method. The energy
consumptions of the proposed method are normalized with
respect to Egger’s method. The result shows that the pro-
posed method gains a lower energy consumption in all the
benchmarks. On average, the CWS method outperforms the
reference system by 31.6%. There are two possible causes
of the disparity. First, the method in [21] adopts some em-
pirical factors, such as the cache miss ratio and the aver-
age page miss number. The accuracy of these parameters
is closely related to the application’s characteristics and the
profiling numbers. Second, Egger’s method is more appli-
cable to SPM management in instruction side. Some opti-
mizations regarding the code region are ignored in our ex-
periment, which may degrade the performance to some ex-
tent. However, the implementation of Egger’s method still
reflects the basic idea of a profiling-driven method.

Notably, compared with the previous methods, the pro-
posed scheme operates the SPM allocation without profiling
information and the compiler support, achieving more flex-
ibility and less constraints. The new method is especially
meaningful in some circumstances where the profiling-
driven methods may lose their efficiency.
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Fig. 9 Execution time in different SPM sizes.

5.3 SPM Size Impact

In this section, we examine the effect of varied SPM sizes
on the execution time by configuring the SPM sizes from
4 KB to 8 KB, 16 KB, and 32 KB. Figure 9 shows the exe-
cution time changes according to different SPM sizes. We
select blowfish, matrix, dijkstra, stringsearch, and bitcount
as the benchmarks. Clearly, the increasing SPM size re-
duces the execution time by 0.16%, 0.27%, and 0.28% on
average. However, the execution time reduction degree de-
grades when the SPM size is varied from 4 KB to 32 KB.
The execution time of blowfish and bitcount in a larger SPM
configuration is even higher than that in the smaller SPM
cases. The reason for this is that only a small subset of pro-
gram data is frequently used. Therefore, a relatively stable
performance improvement is achieved when the SPM size
increases continuously. This result is very similar that of the
cache.

5.4 Runtime Overhead

The runtime overhead is composed of the latencies of data
transfer, reference counting, and page table remapping. We
use the following model

Toverhead=Ttrans f er+Tre f erencecounting+Tpagetableremapping (7)

to calculate the overhead resulting from SPM management,
in which Ttrans f er, Tre f erencecounting, and Tpagetableremapping rep-
resent the three types of latencies mentioned above. Specifi-
cally, when the SPM allocation invokes a block replacement,
Ttrans f er is composed of both the overhead of block eviction
and block filling. For example, from Table 6, 8 CWS blocks
are identified in stringsearch. We compute the SPM man-
agement overhead by Toverhead = (32 + 24) ∗ 256 ∗ 8 + 16 ∗
(32 + 24) ∗ 8 ∗ 2 + 56 ∗ 8 ∗ 2 = 129920 cycles, where the
DRAM read and write latencies are 32 and 24, respectively.
All of these results are calculated under the assumption that

Table 6 CWS based SPM management overhead ratio.

Benchmarks Total cycles CWS blocks Overhead
basicmath 832762752 16 0.03%
bitcount 119721978 14 0.18%
blowfish 7466869 14 2.85%
fft 531747 23 61.79%

dijkstra 97036984 53 0.81%
matrix 251297567 241 1.00%

stringsearch 760486 8 16.58%
MD5 133365 7 75.07%

a memory block is identified as a CWS member by the pred-
icate 16 B.

We trace the selected benchmarks by simulating and
analyzing the trace results through an analyzer program to
determine the CWS for each application. Table 6 lists the
block numbers of the benchmarks, from which we can ap-
proximately count the SPM management overhead and its
percentage in the total execution time of the hybrid memory
configuration. It indicates that the SPM management over-
head in 5 benchmarks only occupies a small part (< 10%)
of the total cycles. For benchmarks such as fft and MD5,
the overhead percentage for SPM management is over 50%.
The reason is that the program size is relatively small, which
leads to a short execution time and a high SPM overhead.
On the contrary, for benchmarks like matrix, the relatively
high SPM management overhead is partially neutralized by
the great program execution time. In these cases, the SPM
overhead can be nearly ignored.

6. Related Work

In this section, we briefly review previous research on
scratchpad memory management. In the literatures, SPM
management is roughly divided into static methods [15]–
[19], in which the SPM contents cannot be changed, and
dynamic ones, in which the contents of SPM can be tuned
after the compiling stage. Static approaches tend to model
SPM allocation as a knapsack problem or use greedy
strategies for efficiency. Meanwhile, the dynamic SPM
management [14], [20]–[26] enables a change in SPM lay-
out through compiler-inserted instructions or other runtime
strategies. Compared with static methods, dynamic meth-
ods tune SPM layout at runtime, so they are more suit-
able to polytropical access patterns. SPM researchers show
preference for dynamic methods over their static counter-
parts. Ramanujam et al. [20] was the first to proposed a dy-
namic SPM allocation scheme, which is a compiler-directed
method to support loop and data transfers. Egger et al. [14],
[21] proposed a horizontally partitioned on-chip memory ar-
chitecture of mini-cache plus SPM, the purpose of the mini-
cache is to cover the external memory access overhead by
those memory reference that are not hit on SPM. The pro-
filing information is mainly referenced for SPM allocation.
This method handles address redirection by MMU, which
is very similar to our method. [26] presented a scratchpad
memory allocator for heap allocation in SPM, which uses a
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variety of techniques to reduce its memory footprint while
still remaining effective. The allocation algorithm supports
both fixed-sized block allocation and a variable-sized re-
gion’s allocations within these blocks. Similar to their de-
sign, our method also adopts a bitmap structure to record the
SPM state at runtime.

SPM management is very similar to Stream Register
File (SRF) allocation. In [27], a general-purpose compiler
method called memory coloring is introduced, which adapts
the array allocation problem to graph coloring for register al-
location. The approach operates in three steps: (i) SPM par-
titioning to pseudo registers, (ii) live-range splitting to insert
copy statements in an application code, and (iii) memory
coloring to assign split array slices into the pseudo registers
in SPM. This approach was further implemented in a real
stream processor by Wang et al. [28] to address the prob-
lems of: (i) placing streams in SRF, (ii) exploiting stream
use, and (iii) maximizing parallelism. However, these meth-
ods toward SRF allocation achieve better performance only
for regular data accesses.

To avoid allocation overhead at runtime, existing dy-
namic SPM management is commonly based on profiling
information and compiler knowledge, resulting in to stati-
cally decided dynamic methods. The most representative
runtime method so far is software caching, which emulates
the cache’s automatic hardware management by software.
In this method, a memory reference instruction is replaced
by a series of instructions for tag comparison and address
mapping, which incurs a huge overhead. Software caching
is more widely adopted in certain applications with regu-
lar access pattern, such as the CELL BE stream proces-
sor, whose local memory is manually tuned by program-
mers. Previous studies [29]–[31] on software caching were
expected to eliminate the problem of runtime overhead, but
to dates there remains no still no successful solution for or-
dinary embedded systems.

Recently, more and more studies [3], [32], [33] have
focused on real runtime SPM management because tradi-
tional SPM allocation methods have drawbacks for appli-
cation portability. Further, they may be inadaptable in an
environment with unpredictable access pattern at compile
time. A compiler-independent SPM management method
was introduced by Nguyen et al. [32] for java applications.
The method first collects the most frequently accessed ob-
jects as the SPM allocation candidates. Next, the SPM size
on particular devices is determined by making a call to the
OS. Then, a run time decision is made to select the fre-
quently used object for SPM allocation. Another represen-
tative runtime adaptive SPM management was proposed by
Cho et al. [3] for multimedia applications. This method pre-
pares several optional SPM layout schemes based on pro-
filing and tracks memory reference pattern at runtime. A
prepared SPM allocation scheme is selected when the run-
time memory access record matches the pre-arranged pro-
filing information. Both runtime methods reference the of-
fline profiling message when doing a runtime SPM allo-
cation. Deng et al. [33] discussed the hot data prediction

problem not by profiling but by using a random sampling
method completely during runtime. This method can detect
CWS efficiently; however, the existing randomness cannot
promise 100% accuracy in hot-spot prediction. We address
this problem by using a counting-based method to predict
CWS more accurately. Inevitably, most runtime SPM meth-
ods cost some hardware to track the memory reference pat-
tern, and our method attempts to reduce such overhead by
exploiting the potential of an existing architecture.

The notion of the working set was first formalized by
Denning [4] to define those items that are accessed within
a certain number of instructions. [36] introduced a software
prefetch method for cache. Our method shares the same idea
of prefetching hot data items before access. However, there
are notable differences between the two methods. [36] is
a compiler-based method that uses the static code analysis,
whereas the method in this paper manages SPM by analyz-
ing the dynamic access pattern. The compiler-based method
inserts some instructions as hints to guide the prefetch op-
erations during runtime, leading to a larger binary after the
optimization. The definition of working set puts all items
in a working set on equal footing, which is antithetical to
many real computer workloads. Feitelson et al. [34] revealed
the distinction by statistic analysis, and Etsion et al. [5] pro-
posed a concept named core working set. In [35], a random
sampling method was utilized for CWS prediction in a filter
cache design to improve cache insertion efficiency. More-
over, based on CWS, [6] used a dual cache structure to give
varied treatment to frequently used data and seldomly used
items. All these improvements share the same idea that dif-
ferent treatment should be given to data items of different
access pattern. This is the inspiration of our paper.

7. Conclusion

This paper associates a runtime SPM management with the
core working set (CWS) by analyzing the traces of some
typical embedded applications. In this method, a counting-
based CWS predicate is used to identify the heavily refer-
enced data blocks by monitoring the memory references at
runtime. The novelty of the proposed method lies in its de-
pendence on the program’s dynamic access behavior as the
main cue to guide the SPM allocation at runtime, thus of-
floading the SPM management from the compiler. We com-
pare the proposed method with a cache reference system
and a classical profiling-driven SPM management method,
the results indicate that the method in this paper achieves
considerable energy reduction without notable performance
degradation. Moreover, the CWS based method manages the
SPM in a more flexible and general-purpose manner.
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