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SUMMARY In this paper, we study the decentralized coverage control
problem for an environment using a group of autonomous mobile robots
with nonholonomic kinematic and dynamic constraints. In comparison
with standard coverage control procedures, we develop a combined con-
troller for Voronoi-based coverage approach in which kinematic and dy-
namic constraints of the actual mobile sensing robots are incorporated into
the controller design. Furthermore, a collision avoidance component is
added in the kinematic controller in order to guarantee a collision free cov-
erage of the area. The convergence of the network to the optimal sensing
configuration is proven with a Lyapunov-type analysis. Numerical simu-
lations are provided approving the effectiveness of the proposed method
through several experimental scenarios.
key words: networked control systems, sensor networks, coverage prob-
lem, nonholonomic mobile robots, collision avoidance

1. Introduction

Sensor networks have a broad application in environmental
sampling, ecosystem monitoring, and military surveillance.
One of the fundamental problems of multi-robot mobile sen-
sor networks is how to deploy a group of autonomous robots
to spread out over an environment in order to monitor some
quantity of interest over an area, which is called coverage
control. Researchers have proposed various solutions to a
lot of interesting sensor network coverage problems. In [1]
coverage controllers are categorized in three common kinds,
a Voronoi controller, which is geometric in nature, a mini-
mum variance controller, which has a probabilistic interpre-
tation, and a potential field controller.

In [2], Du et. al. introduce the centroidal Voronoi tes-
sellations as a comprehensive solution to a series of par-
tition problems which sheds light on the sensor cover-
age problem, and also provide some of several centralized
algorithms under deterministic and probabilistic domains.
Cortes et. al. [3] propose a decentralized control law for
multi-robot coverage of an area partitioned into Voronoi di-
agram, in the sense that continually driving the robots to-
ward the centroids of their Voronoi cells. A recent text that
presents much of this work in a cohesive fashion is [4] and
an excellent overview is given in [5]. Different extensions
of the framework devised in [3] have been proposed in the
literature. In [6] the problem of limited-range interaction be-
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tween agents was addressed. In [7] the basic approach was
extended to deal with the agents with limited energy. The
problem of the online learning of the distribution density
function, while moving toward the optimal locations, was
addressed in [8], [9]. In [1] the authors propose a cost func-
tion form for coverage problems that can be specialized to
fit different distributed sensing and actuation scenarios. The
cost function is shown to subsume several different kinds
of existing coverage cost functions. There has been another
extension to heterogeneous groups of finite size robots and
non-convex environments in [10].

Standard approaches to Voronoi based coverage con-
trol assume simple integrator dynamics for the robots, yield-
ing the ability of traversing both smooth and non-smooth
trajectories for robots. They do not address the kinematic
and dynamic constraints of physical nonholonomic mobile
robots in developing coverage algorithms. However, most of
the actual robots such as differential drive ones suffer from
kinematic nonholonomic constraints confining the plausible
motions of the robot. Once an appropriate feedback velocity
control inputs are designed for kinematic steering system,
one should take into account the specific dynamic vehicles
to convert a steering system command into control inputs
for the actual vehicle [11].

Stabilization and tracking control of nonholonomic
mobile robots has been a subject of intense research in
the past years [12]–[14]. Many approaches have been pro-
posed to address this issue of nonholonomic stabilization.
As pointed out by Kim and Tsiotras [15], the majority of
nonholonomic control laws are based on kinematic mod-
els [16]–[18]. Stabilization of dynamic models for nonholo-
nomic systems has also been addressed in [19]–[21]. A pop-
ular way of implementing a kinematic control law to a dy-
namic nonholonomic system is by backstepping the veloc-
ity control commands to acceleration input [23]. Backstep-
ping has been used in translating kinematic controllers into
equivalent dynamic ones in [11], [24].

In this paper, we extend the contributions in kinematic
and dynamic control of single nonholonomic mobile robots
to the Voronoi-based locational optimization framework in-
troduced in [3], and propose a decentralized control law with
the aim of coverage control problem. After including a kine-
matic velocity controller in the coverage problem, we seek
to incorporate the dynamics of the robots into the cover-
age controller design based on the backstepping approach
of [11]. Using Lyapunov stability theory, we prove that the
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control law causes the network to converge to an optimal
sensing configuration. Then we propose a collision avoid-
ance component be incorporated with the kinematic con-
troller in order for the robots to avoid collision among them,
and prove that the robots approach to their optimal configu-
ration with bounded error.

The remainder of the paper is organized as follows.
We describe problem setup along with some background
on nonholonomic mobile robots and locational optimization
problem in Sect. 2. In Sect. 3, we first present the proposed
kinematic controller and prove its stability. Then we add a
collision avoidance component so that no two robots get too
close to each other. In Sect. 4 we present the proposed dy-
namic controller. Numerical simulation results are given in
Sect. 5. Finally, we conclude the paper in Sect. 6.

2. Problem Setup

Consider we want to deploy a group of N nonholonomic
mobile agents in a bounded, convex environment D ⊂ R2.
In the following, we first describe the characteristics of the
sensing mobile robots, and then depict the Voronoi based
coverage approach with some background on locational op-
timization problem.

2.1 Nonholonomic Mobile Agents

Let each of the agents be a two-wheeled mobile robot mov-
ing on a horizontal plane as shown in Fig. 1. Let qi ∈ Q ⊂
R

3, i ∈ N = [1, . . . , N] be the configuration of the i’th robot
described by generalized coordinates in the global frame as

qi = [pi
T , θi]

T
(1)

where pi = (xi, yi) ∈ D is the position of the point C of
the i’th robot in the global coordinate frame O, X, Y and
θi ∈ (−π, π] is the orientation of that, measured from X-axis
of that frame. Each vehicle is subjected to nonholonomic
kinematic constraints which can be expressed as:

A(qi)q̇i = 0 (2)

where A(qi) ∈ R1×3. Then the kinematic model for each
robot can be written in the form of:

q̇i = S (qi)vi (3)

where, S (qi) is a matrix consisting of a set of linearly in-
dependent vector fields spanning the null space of A(qi),

Fig. 1 Nonholonomic mobile robot configuration.

vi = [vi, ωi]T with ωi = θ̇i (the angular velocity) and

vi =
√

ẋ2
i + ẏ

2
i (the linear velocity) of the i’th robot. It

is easy to verify that the kinematic equations of motion of
point Ci in terms of its linear velocity and angular velocity
are [25]

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ẋi

ẏi

θ̇i

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos θi 0
sin θi 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[
vi
ωi

]
(4)

The Lagrange formalism is used to find the dynamic equa-
tions of the mobile robots. The dynamical equations of an
n-dimensional mobile robot can be expressed in the matrix
form [25]:

Mi (qi) q̈i + Vmi (qi, q̇i) q̇i + Fi (q̇i) +Gi (qi)

= Bi (qi) τi − AT (qi) λi (5)

where M(qi) ∈ Rn×n is a symmetric, positive definite iner-
tia matrix, Vm(qi, q̇i) is the centripetal and Coriolis matrix,
Fi(q̇i) ∈ Rn×1 denotes the surface friction, G(qi) ∈ Rn×1 is
the gravitational vector, Bi(qi) ∈ Rn×1 is the input transfor-
mation matrix, τi ∈ Rn×1 is the input vector, and λi ∈ Rm×1

is the vector of constraint forces.
One can rewrite the dynamic equations of the mobile

base (i.e. (5)) by differentiating (3), substituting the result in
(5), and multiplying by S T as [11]:

M̄i (qi) v̇i + V̄mi (qi, q̇i) vi + F̄i (q̇i) = B̄i (qi) τi (6)

τ̄i = B̄iτi (7)

the parameters of which for the mobile base in Fig. 1 can be
obtained as [11]:

M̄i =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
mi 0 0
0 mi 0
0 0 Ii

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , B̄i =
1

rwi

[
1 1
Li −Li

] [
τRi

τLi

]
,

V̄mi = 0, (8)

in which mi and Ii represent the mass and inertia of the
robot, and Li and rwi are shown in Fig. 1. It should be un-
derlined that the matrix ˙̄Mi − 2V̄mi has a skew-symmetric
property [11].

Once the desired velocity control inputs for the kine-
matic model, denoted by vdi = [vdi , ωdi ]

T , are obtained, one
should convert vdi to the control torque inputs τi in order to
incorporate the dynamics of the physical mobile robot plat-
forms.

2.2 Locational Optimization

Let an arbitrary point in D be denoted by p̃. Let V =

{V1, . . . , VN} be the Voronoi partition of D, for which the
robots positions are the generator points. Specifically,

Vi =
{
p̃ ∈ D | ‖ p̃ − pi‖ �

∥∥∥ p̃ − p j

∥∥∥ , ∀ j � i
}

(9)

Let the unreliability of the sensor measurement be denoted
by a quadratic function f (x) specifically, f (‖ p̃ − pi‖) =
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1/2(‖ p̃ − pi‖)2 describes how unreliable is the measurement
of the information at p̃ by a sensor at pi. This form of
f (‖ p̃ − pi‖) is physically appealing since it is reasonable
that sensing will become more unreliable farther from the
sensor [26]. Define the sensory function to be a continuous
function φ : D → R+ (where R+ is the set of strictly posi-
tive real numbers). The sensory function should be thought
of as a weighting of importance over D. As a measure of
the system performance, we define the coverage functional
as follows

H(p1, . . . , pN) =
n∑

i=1

∫
Vi

1
2
‖ p̃ − pi‖2φ( p̃) dp̃ (10)

Qualitatively, a low value of H corresponds to a good con-
figuration for sensory coverage of the environment D. The
mass, first moment, and centroid of a Voronoi region Vi are
respectively defined as

MVi =

∫
Vi

φ(q) dq, LVi =

∫
Vi

qφ(q) dq,

CVi =
LVi

MVi

. (11)

A standard result from locational optimization [3] is that

∂H
∂pi
= −

∫
Vi

(q − pi)φ(q) dq = −MVi (CVi − pi) (12)

Equation (12) implies that critical points of H correspond
to the configurations such that pi = Cvi for all i, that is, each
agent is located at the centroid of its Voronoi region. This
brings us to the concept of optimal coverage as follows: A
robot network is said to be in a (locally) optimal coverage
configuration if every robot is positioned at the centroid of
its Voronoi region, pi = Cvi for all i [9].

3. Coverage with Nonholonomic Agents: Kinematic
Control

In this section we investigate the decentralized coverage
control for a group of nonholonomic mobile robots. Be-
fore we proceed, let suppose that the following assumptions
hold:

Assumption 1: Every robot has complete knowledge of its
own dynamics.

Assumption 2: The robots have the ability to compute
their own Voronoi partitions in a distributed manner as given
in [3].

Assumption 3: The robots have point dimensions, al-
though they obey nonholonomic constraints. (This assump-
tion will be relaxed in Sect. 3.1 ).

In order to design a kinematic controller, we also need to
presume the following assumption, which will be relaxed in
Sect. 4.

Assumption 4: Perfect velocity tracking holds such that
vi = vdi ,∀i ∈ N

Fig. 2 Position and orientation errors in partition i.

Define position errors for the i’th robot as

xei = xi −CVi,x (13)

yei = yi −CVi,y (14)

the desired orientation of motion for (xei , yei ) � (0, 0) as

θdi = Atan2(−yei ,−xei ) (15)

and the orientation error as

eθi = θi − θdi (16)

The kinematic error dynamics can be written indepen-
dent of the inertial coordinate frame by Kanayama transfor-
mation [27]:[

exi

eyi

]
=

[
cos θi sin θi
− sin θi cos θi

] [
xei

yei

]
(17)

where exi and eyi are the error variables in mobile coordinate
system which is attached to the i’th robot (Fig. 2).

We propose the following auxiliary velocity control
law for the i’th robot:

vdi = −kviρi cos(eθi ) (18)

ωdi = −kωi eθi (19)

where ρi =
√

exi
2 + eyi

2, and kvi and kωi are positive scalar
gains.

Theorem 1: Consider a group of N nonholonomic mobile
robots whose kinematic models are described by (4). Let the
assumptions (1) through (4) hold. Under control laws (18)
and (19), it is guaranteed that the whole system is asymptoti-
cally stable and the robots positions converge to a centroidal
Voronoi configuration.

Proof : Consider the Lyapunov function candidate as V =
H . The time derivative of V along the trajectories of the
error dynamics then can be obtained as follows

Ḣ =
N∑

i=1

∂H
∂qi

q̇i

Using (12) and the fact that ∂H
∂θi
= 0 one can write

Ḣ =
N∑

i=1

∂H
∂pi

ṗi =

N∑
i=1

MVi (pi −CVi ) ṗi

=

N∑
i=1

MVi vi[ xei yei ].[ cos θi sin θi ]T
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= −
N∑

i=1

kviρicos(eθi )exi

Using the fact that cos(eθi ) =
exi

ρi
one can conclude that

Ḣ = −
N∑

i=1

kviρi
2cos2(eθi ) (20)

which is clearly non-positive. Due to the convexity of the
region D, each of the Voronoi centroids CVi lies in the in-
terior of the i’th partition so in the interior of the region
D. Since control law (18) provides the robots with bidi-
rectional linear velocities, the robots always move toward
the interior of the region D and never leave it. Therefore,
D is a positive invariant set for the trajectories of the closed
loop system. Since this set is closed and bounded, one can
make use of LaSalle’s invariance principle to infer that the
robots positions converge to the largest invariant subset of
the set S = {(ρi = 0) ∨ (cos eθi = 0),∀i ∈ N}. For each
robot, in the case that cos eθi = 0 and exi or eyi � 0, ac-
cording to (19), |ωi| = π/2, so the set {cos eθi = 0} is a
non-invariant set except the case that the i’th robot is lo-
cated on the centroid of its Voronoi partition. On the other
hand, ρi = 0 only if both exi and eyi are equal to zero.
Therefore, the largest invariant set contained in S is the set
I = {exi = eyi = 0,∀i ∈ N}. Moreover, for every invariant
set in I, it should be ωi = 0 which in turn yields θi = 0.
Therefore, under control laws (18) and (19), the closed loop
system is asymptotically stable and the robots positions con-
verge to the centroidal Voronoi configuration.

Remark 1: Convergence of θi to θdi can be made arbitrarily
exponentially fast by the selection of [28]:

ωi = −kωi eθi + θ̇di (21)

where

θ̇di =
exi ėyi − ėxi eyi

ρ2
, (22)

which results in

θ̇i − θ̇di = −kωi (θi − θdi ). (23)

One can also make use of a sufficiently smooth estimate of
θ̇di , namely ˆ̇θdi , which can be computed using the following
estimations of ėxi and ėyi :

ˆ̇exi =
exi (t + Δt) − exi (t)

Δt
(24)

ˆ̇eyi =
eyi (t + Δt) − eyi (t)

Δt
(25)

for some small Δt > 0 [22].

3.1 Collision Avoidance

Now we deal with the coverage problem for nonholonomic
robots with finite size dimensions. The purpose is to design

Fig. 3 Avoidance (radius 2r ), repulsion (radius Rr), and detection (ra-
dius Rd) regions around the robot i.

a control law so that the robots approach their centroidal
Voronoi configuration, while avoiding collision with each
other. We assume that the robots all have circular shapes.
For simplicity, we also assume that all robots have a com-
mon radius ri = r; however, the proposed method is applica-
ble to heterogeneous robots with different disk radii. If the
robots start from a safe configuration, a sufficient condition
to guarantee collision avoidance is that the center of each
robot disk with radius r, maintains at least at a distance of
2r with respect to the center of the other robot disks. Hence,
we deal with a constrained locational optimization problem
by addressing a modified version of the cooperative avoid-
ance control in [22], and propose the the following avoid-
ance function for robot i:

Vai =
∑
j∈Ni

Vai j (26)

where

Vai j =

⎛⎜⎜⎜⎜⎝min

⎧⎪⎨⎪⎩0,
di j

2 − Rr
2

di j
2 − 4r2

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎟⎠

2

(27)

in which di j =

√
(xi − x j)2 + (yi − y j)2, and r > 0, 2r <

Rr < Rd, and Rd > 2r are the radii of the avoidance, repul-
sion, and detection regions for the i’th robot, respectively,
depicted in Fig. 3. Accordingly one can define the set of
repulsing neighbors for the robot i as Nr,i = { j ∈ N :
||pj − pi|| ≤ Rr}.

Now defining

Xei = xei +
∑
j∈Ni

∂Vai j

∂xi
, (28)

Yei = yei +
∑
j∈Ni

∂Vai j

∂yi
, (29)

where

∂Vai j

∂xi
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if di j≥Rr,

4 (Rr
2−4r2)(di j

2−Rr
2)

(di j
2−4r2)

3 (xi−x j), if 2r≤di j≤Rr,

0 if 2r≤di j≤Rr.

and

∂Vai j

∂yi
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if di j≥Rr,

4 (Rr
2−4r2)(di j

2−Rr
2)

(di j
2−4r2)

3 (yi−y j), if 2r≤di j≤Rr,

0 if 2r≤di j≤Rr,
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One can rewrite the error variables in mobile coordinate sys-
tem as[

Exi

Eyi

]
=

[
cos θi sin θi
− sin θi cos θi

] [
Xei

Yei

]
(30)

and propose the following auxiliary velocity control law for
the i’th robot:

vdi = −kviρi cos(Eθi ) (31)

ωdi = −kωi Eθi (32)

where ρi =

√
Exi

2 + Eyi
2, and Eθi = θi − Atan2 (−Yei ,−Xei ).

Theorem 2: Consider a group of N nonholonomic mobile
robots whose kinematic models are described by (4). Let the
assumptions (1), (2), and (4) hold. Under control laws (31)
and (32), it is guaranteed that 1) the robots positions become
ultimately bounded, i.e. they approach neighbourhoods of
centroidal Voronoi configuration, and 2) the collision among
the robots is avoided.

Proof : consider the following Lyapunov like function:

V =
N∑

i=1

[∫
Vi

1
2

(‖ p̃ − pi‖)2φ( p̃) dp̃ + Vai

]

The time derivative of V along the trajectories of the error
dynamics will then be

V̇ = −
N∑

i=1

[
kviρi cos(eθi )exi +

∂Vai

∂xi
ẋi +
∂Vai

∂yi
ẏi

]
. (33)

In the case that Nr,i = ∅,∀i ∈ N one can see that
∂Vai

∂xi
= ∂Vai

∂yi
= 0,∀i, and (33) reduces to (20); Therefore,

V̇ is non-positive when all the robots are outside the re-
pulsion region of each other. Now consider the case that
for some robot i, there exists at least one robot j such
that ||pi − p j|| ≤ Rr, so the partial derivatives of repulsive
avoidance function Vai would be nonzero. In this case, if
kviρi cos(eθi )exi > − ∂Vai

∂xi
ẋi − ∂Vai

∂yi
ẏi holds, the i’th component

of V̇ would be non-positive. If this holds for all i ∈ N ,
V̇ is non-positive. Now consider the case that for some i,
kviρi cos(eθi )exi ≤ − ∂Vai

∂xi
ẋi − ∂Vai

∂yi
ẏi, in which the robot i tries

to approach the centriod, while robot j pushes it away from
its related centriod. In this situation, at the worst case for
robot i where the centriod of Vi lies inside the semicircle re-
gion Λi j

1 (See Fig. 4), the Euclidean norm of the position
error will be a value less than δ = r + Rr/2, according to
the fact that the Voronoi centriod for each partition, lies in
the interior of that partition. Note that although there ex-
ists a unique distance δi(qi, qn1 , . . . , qnk ,Rr, ki), ni ∈ Nr,i at
which kviρi cos(eθi )exi equals − ∂Vai

∂xi
ẋi − ∂Vai

∂yi
ẏi, the value of δi

depends on the number of all repulsing neighbors Nr,i and
cannot be obtained straightforward. However, the most con-
servative value is δ. According to Fig. 4 if the centriod lies
outside the semicircle region Λi j

1, robot i will move away
from robot j according to bidirectional linear velocities, and

Fig. 4 The worst case for the position error.

the position error will decrease and even approach to zero
if no other robot lies in the avoidance region of the robot i.
Concluding the above discussion, one can see that provided
that for all i ∈ N , ‖[exi , eyi ]

T ‖ < δ, V̇ is non-positive and the
proof completes.

Remark 2: As it can be seen in the proof, with the use the
proposed kinematic controller for coverage with collision
avoidance, the norm of the position error with respect to the
centroid for each robot is bounded by δ = r + Rr/2.

4. Coverage with Nonholonomic Agents: Dynamic
control

Now we consider the case that the perfect velocity tracking
assumption (assumption 4) does not hold. Considering ui as
an auxiliary input, a suitable control input for velocity fol-
lowing is given by the computed-torque nonlinear feedback
control input [11]

τ̄i = B̄−1
i (M̄i(qi)ui + V̄mi (qi, q̇i)vi + F̄i(vi)), (34)

which converts the dynamic control problem into:

q̇i = S (qi)vi (35)

v̇i = ui. (36)

One can define the auxiliary velocity error as:

edi = vdi − vi. (37)

which can be written as

edi =

[
edi,1

edi,2

]
=

[
vi + kviρi cos(eθi )
ωi + kωi eθi

]
(38)

Differentiating (38) and using (6) and (7), one can write the
mobile robots dynamics in terms of velocity tracking error
and its derivative:

M̄i (qi) ėdi = −V̄mi (qi, q̇i) edi − τ̄i + fi(xi) (39)

where

fi(xi)
Δ
= M̄i (qi) v̇di + V̄mi (qi, q̇i) vdi + F̄i (q̇i) (40)

is the nonlinear mobile robot function and the vector xi is
defined as xi = [ vi

T vdi
T v̇T

di
]T . Proposing the auxil-

iary nonlinear control input to be
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ui = v̇di + Kiedi (41)

where Ki is a positive definite and diagonal matrix defined
by K = kI2, one can obtain the following torque input for
the i’th robot

τi = B̄−1
i (M̄i(qi)Kedi + fi(xi)). (42)

Theorem 3: Consider a group of N nonholonomic mobile
robots whose kinematic and dynamic models are described
through (4), (6) and (7). Let the assumptions (1) through (3)
hold. Under control laws (18), (19) and (42), it is guaranteed
that the whole system is asymptotically stable and the robots
positions converge to a centroidal Voronoi configuration.

Proof : Pick the candidate Lyapunov function as

V = H + 1
2

edi
T M̄iedi .

Differentiating V results in

V̇ = Ḣ + 1
2

edi
T ˙̄Miedi + eT

di M̄iėdi (43)

Ḣ is shown to be non-positive in (20). Substituting (42) into
(39) results in the closed loop error dynamics as

M̄i (qi) ėdi = −( ˙̄Mi(qi)K + V̄mi (qi, q̇i))edi . (44)

Substituting (44) into (43) and considering the skew sym-
metric property mentioned in Sect. 2, one can write:

V̇ = Ḣ − edi
T (M̄iK)edi (45)

Since −eT
di (M̄iK)edi ≤ 0 is negative semi-definite, consid-

ering the same argument as the preceding theorem, one can
deduce that the closed loop system is asymptotically stable
and the position and velocity errors asymptotically converge
to the set I = {exi = eyi = edi,1 = edi,2 = 0,∀i ∈ N}.

5. Simulation Results

The proposed decentralized coverage controller has been
demonstrated via numerical simulations in Matlab environ-
ment. A team of 20 mobile robots is waiting to be deployed
into a 2 m × 2 m square environment. The robots in the net-
work start their motion from random initial positions with
the angle of θi0 = π/2. The Matlab numerical solver ode45
have been used to integrate the equations of motion of the
group of robots, and the spatial integrals in (11) required
for the computation of the centroids have been computed
by discretizing each Voronoi region and summing contribu-
tions of the integrand over the grid. Voronoi regions can
be computed using a decentralized algorithm similar to that
of [3]. The parameters for the mobile robots are selected as
mi = 1 kg, Ii = 0.5 kg − m2, rwi = 0.03 m, Li = 0.85ri, and
the ones for the controllers are selected as kvi = 3, kωi = 6,
and Ki = 10.

The simulations are carried out via three scenarios with
two examples for each one. In the first example of each
scenario, the robots are to be deployed in an environment

(a) (b)

(c) (d)

Fig. 5 Scenario 1, example 1, (a) initial configuration, (b) sensory func-
tion, (c) robot trajectories and final configuration, and (d) mean square er-
ror.

with a Gaussian sensory function,

φ ( p̃) =
1

σ
√

2π
exp

(
− ( p̃ − μ)2

2σ2

)
(46)

where μ = (1, 1)T , σ = 0.2. In the case of the second exam-
ple, a bimodal Gaussian distribution function is considered
as

φ ( p̃) =
1

σ1

√
2π

exp

(
− ( p̃ − μ1)2

2σ1
2

)

+
1

σ2

√
2π

exp

(
− ( p̃ − μ2)2

2σ2
2

)
(47)

the parameters of which are selected as μ1 = (1/3, 1/3)T ,
μ2 = (5/3, 5/3)T , σ1 = σ2 = 0.18. In the first scenario,
the physical (avoidance region) radii for all of the robots are
considered as r = 0.08 m, and the kinematic and dynamic
controllers (18), (19), and (42) are applied for each robot.
Therefore, no collision avoidance strategy here is applied.
The positions of the robots through the evolution in the first
scenario are shown in Fig. 5 and Fig. 6. Figure 5 (a) depicts
the initial configuration of the robots, and Fig. 5 (b) presents
the sensory function φ for the first example; Fig. 5 (c) shows
the initial and final configuration of the robots as well as the
trajectories of them during the simulation run of the first ex-
ample. Figure 5 (d) portrays the mean square error of the po-
sitions of all robots with respect to their optimal centroidal
configuration. Figures 6 (a), (b), (c), and (d), depict the same
properties but through the simulation of the second example.
The centers of the contributing Gaussian functions and the
centroids of the Voronoi partitions are marked with red o’s
and blue × ’s, respectively. The performance of the pro-
posed controller is clearly demonstrated in the simulation
results. It is clear that in both examples, the robots con-
verge to their optimal configuration and the mean square
error reaches zero at a finite time. Also, inasmuch as the
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(a) (b)

(c) (d)

Fig. 6 Scenario 1, example 2, (a) initial configuration, (b) sensory func-
tion, (c) robot trajectories and final configuration, and (d) mean square er-
ror.

(a) (b)

Fig. 7 Scenario 2, robot trajectories and final configuration of (a) the first
and (b) the second example.

size of the robots with respect to the area are selected small
enough, no collision occurs although no avoidance control
is enforced on the system. In the second scenario the same
simulation set-up as the first one is taken into consideration
with the difference that the physical radii of the robots are
considered as r = 0.13 m. Here, the same controllers are
applied (with no collision avoidance component). The tra-
jectories of the robots positions together with the final con-
figuration in this scenario are shown in Figs. 7 (a), and (b),
for the first and second example, respectively. It is seen that
the robots collide with each other since there exists no avoid-
ance control. In the last scenario, we simulate the previous
set-up with the kinematic controller in (31) and (32), de-
signed for collision-free coverage control and dynamic con-
trol law (42). The repulsion and detection regions radii are
selected as Rr = 1.3r,Rd = 3r, respectively. The trajectories
of the robots as well as the final configuration and the mean
square position errors of all the robots for the first example
are presented in Fig. 8 (a) and (b), and for the second ex-
ample in Figs. 8 (c) and (d), respectively. The plots clearly
demonstrate the effect of the incorporation of the collision
avoidance component to the controller. While the robots do
not collide with each other, the mean square error of the
robots positions with respect to the optimal configuration

(a) (b)

(c) (d)

Fig. 8 Scenario 3, example 1, (a) robot trajectories and final configura-
tion (b) mean square error, and example 2, (c) robot trajectories and final
configuration (d) mean square error.

maintains at a non-zero level, which illustrates the trade-off
between coverage and collision avoidance.

6. Conclusion and Future Work

In this study, we first considered the decentralized cover-
age problem of autonomous mobile sensing robots subject
to nonholonomic kinematic and dynamic constraints, and
introduced an extension to the standard Voronoi-based cov-
erage problem for single integrator agents with point dimen-
sions. A Lyapunov based stability was used to investigate
the converge of the robots to their centroidal Voronoi config-
uration. The proposed method is decentralized in the sense
of both coverage and collision avoidance, and it has been
successfully verified in numerical simulations. Future work
will focus on the extension of the proposed controller for
coverage in unknown environments.
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