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PAPER

Robust Iris Segmentation Based on Local Image Gradient
Properties

Somying THAINIMIT†a), Member, Chirayuth SREECHOLPECH†, Vuttipong AREEKUL†,
and Chee-Hung Henry CHU††, Nonmembers

SUMMARY Iris recognition is an important biometric method for per-
sonal identification. The accuracy of an iris recognition system highly de-
pends on the success of an iris segmentation step. In this paper, a robust and
accurate iris segmentation algorithm for closed-up NIR eye images is devel-
oped. The proposed method addressed problems of different characteristics
of iris databases using local image properties. A precise pupil boundary
is located with an adaptive thresholding combined with a gradient-based
refinement approach. A new criteria, called a local signal-to-noise ratio
(LSNR) of an edge map of an eye image is proposed for localization of the
iris’s outer boundary. The boundary is modeled with a weighted circular
integral of LSNR optimization technique. The proposed method is experi-
mented with multiple iris databases. The obtained results demonstrated that
the proposed iris segmentation method is robust and desirable. The pro-
posed method accurately segments iris region, excluding eyelids, eyelashes
and light reflections against multiple iris databases without parameter tun-
ings. The proposed iris segmentation method reduced false negative rate
of the iris recognition system by half, compared to results obtained using
Masek’s method.
key words: iris localization, iris segmentation, NIR iris images, local
signal-to-noise ratio

1. Introduction

Automatic, secure personal identification and authentica-
tion system based on biometrics have seen more widespread
adoptions recently. Among the biometrics available, the
iris recognition system yields a very high level of accu-
rate identification. Iris recognition uses iris patterns, which
are formed during the eighth month of gestation, to achieve
identification of individuals. The formation is believed to
generate highly unique, distinguishable and reliable iris pat-
terns [1], suitable for personal authentication. The human
iris is a thin, colored, contractile and circular disc, sus-
pended between the cornea and the lens [2] as shown in
Fig. 1. These eye images are examples of typical input im-
ages of an iris recognition system. Generally, iris acquisition
systems acquire images with the assistance of near-infrared
(NIR) light source(s). Under the NIR condition, texture de-
tails of irises can be seen clearer.

A typical iris recognition system is comprised of four
main modules: acquisition, preprocessing, feature extrac-
tion, and feature matching. During the acquisition phase, a
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Fig. 1 Examples of NIR eye images (a) The CASIA-irisv.3-interval
database, (b) The KSIP-db01R database.

sequence of eye images of a subject is captured. These im-
ages are preprocessed with three main steps: segmentation,
normalization, and enhancement. The purpose of segmen-
tation is to isolate an iris region of the eye from the image.
Generally, this is done by detecting and modeling an inner
(pupil) and outer (sclera) iris boundaries. This detection
process is often called iris localization. After localization,
irrelevant portions such as eyelids, eyelashes and reflections
are removed. Then, the segmented iris region are normal-
ized and enhanced to provide an effective region for subse-
quent processes. In the feature extraction module, the goal
is to generate an iris code that represents the identity of each
individual. A person’s identity is determined by the simi-
larity of the generated template and the reference iris codes
stored in a database.

The success of the segmentation module is crucial to
the performance of an iris recognition system, since in-
correctly segmented regions can mislead subsequent pro-
cesses. Factors that affect the segmentation accuracy include
the quality of captured eye images such as the eye’s size,
occlusions, and its focus quality. Typically, different iris
databases have different image qualities such as its ambi-
ent illumination, iris’s size, eyelid/eyelash obscuration, etc.
This variability poses more challenges in the development
of an iris segmentation algorithm that are robust across the
divergent iris databases.

In the literature, iris segmentation methods have been
classified into two categories: a model-based method and
an active contour-based method. The model-based method
approximates iris boundaries using a parametric shape such
as a circle or an ellipse, whereas the active contour-based
method approximates the iris boundaries with closed con-
tours. The active contour-based approach is more suitable
for iris images with severe occlusions and distorted in shape.
However, the shape of the obtained iris boundaries will not
be elliptical or circular. Hence, the obtained boundaries will
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complicate the subsequent iris recognition process. Addi-
tionally, the International Organization for Standardization
have recommended a circular model for a polar iris image
specification [3].

In the best known iris recognition system presented by
Daugman [1], both iris boundaries are localized by the opti-
mization of the integro-differential equation:

max
(r,x0,y0)

∣∣∣∣∣∣Gσ(r) ∗ ∂
∂r

∮
(r,x0,y0)

I(x, y)
2πr

ds

∣∣∣∣∣∣ (1)

where G(r) represents a Guassian operator of scale σ, I
is an input eye image, and a contour integral along a candi-
date circle given by radius r and center (x0, y0). A later paper
by Daugman [4] elaborates on the development of an active
contour segmentation method based on the discrete Fourier
series expansion. The active contour approach avoids any
assumptions on the parametric shape of an iris. Other active
contour-based approaches have been developed: Ross [5]
used the evolution of the geodesic active contours to dy-
namically fit the iris boundaries; Arvacheh [6] used a snake
model to obtain a near-circular shape of the iris boundary;
He et al. [7] used an elastic model called pulling and push-
ing to locate non-circular iris boundaries. Tan et al. [8] pro-
posed an integro-differential constellation approach to ac-
celerate the conventional equation aforementioned. Circular
iris boundaries are then refined with the application of inten-
sity statistics. Sankowski et al. [9] also exploited the conven-
tional integro-differential for iris localization. He proposed
to utilize information in different image color spaces. The
iris outer boundary is located in the Y component, whereas
the iris inner boundary is located in the red component of
the eye image.

Another well-known iris localization method is pro-
posed by Wild [10]. His approach is a gradient based ap-
proach combined with a parametric Hough transform. An
edge map of an iris image is first obtained by thresh-
olding the magnitude of the first derivative of the image,
followed by the Hough transform. Several subsequent
works [11]–[18] follow Wild’s approach with some varia-
tions: Liu et al. [11] improved the accuracy of iris local-
ization by the prior reduction of irrelevant edge points of
the iris boundaries. Proenca and Alexandre [12] proposed to
produce a more robust edge map from clustered pixels of an
iris image. The clustered image is produced with moment-
based texture segmentation and K-means clustering algo-
rithms. L. Masek [13] implemented an open source of an
iris recognition algorithm. A canny edge detector is used to
obtain an edge map of the eye image. The iris boundaries
are modeled with the circular Hough transform. The eyelids
are localized by the linear Hough transform. A conventional
thresholding operator is used for the eyelashes removal.

One major problem of most existent edge-based ap-
proaches is on accurately detecting the sclera boundary,
since this boundary has a soft contrast in the NIR-iris im-
ages. An application of global edge detection always results
in incomplete edges around the sclera boundary with strong
edges of eyelids, eyelashes and pupil. These strong edges

cause interference on the segmentation process, resultant in
an inaccurate sclera boundary.

This paper focuses on the development of an edge-
based iris segmentation scheme that works efficiently on
multiple NIR-iris image databases. The iris boundaries are
modeled using two non-concentric circles. The model is
chosen in adherence to the ISO M1 Iris image data stan-
dards [3]. The proposed segmentation method exploits lo-
cal properties of an image for iris segmentation. Threshold
value used in pupil detection is automatically adapted to the
minimum value of local means of eye sub-images. A reli-
able sclera boundary is accomplished via a local signal-to-
noise ratio (LSNR) of an edge map of an input eye image.
The proposed local properties are able to handle inconsis-
tencies present in diverse iris databases. Despite the ab-
sence of any conventionally necessary parameter tunings,
the proposed method achieves high accuracy results with
two distinct iris databases: CASIA-irisv.3-interval [19] and
KSIP-db01R [20]. Examples of eye images used in our ex-
periments are shown in Fig. 1. Major differences among the
two iris databases are illumination backgrounds and occlu-
sion conditions.CASIA3.0 employs higher levels of ambient
illumination as well as more NIR-LEDs than KSIP. This
leads to difficulties in accurate pupil localization as the pupil
boundary is disturbed by the LED light. Images in KSIP
suffer of higher occlusions than images of CASIA3.0. The
edges of eyelashes often degrade the performance of the iris
boundary localization.

2. Iris Localization Using Local Image Properties

Most present edge-based iris localization approaches exploit
global features, for example global thresholding of image
intensity or its edge map. These methods assume a small
variability of illumination conditions of the iris images.
However, these conditions are often invalid for multiple iris
databases. Dissimilar iris databases generally captured eye
images under different conditions. Therefore, parameters of
the segmentation system applied with each database must
be determined prior to its usage. To overcome this prob-
lem, local features that are less sensitive to the inconsistency
of iris’s illumination conditions are proposed for robust iris
segmentation of multiple iris databases. Details of the pro-
posed method are elaborated in following sections.

2.1 Pupil Boundary Localization

Typically, an NIR eye image has a bimodal histogram in
which the lower part of the histogram mainly associates with
the pixels of a pupil, eyelashes and eyebrows. Therefore, a
thresholding technique is applicable to pupil segmentation.
However, global thresholding is sensitive to illumination of
an image. Therefore, an appropriate threshold value based
on its illumination background and interferences of each iris
database must be determined prior the application. To avoid
this training process, we propose a self adaptive threshold-
ing based on the minimum value of local mean values for
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Fig. 2 The flowchart of the proposed pupil localization with its corre-
sponding results.

coarse pupil detection, combined with a gradient-based re-
finement procedure to improve the segmentation accuracy.

Figure 2 illustrates the proposed pupil localization
scheme. The images on the left- and right-hand side depict
the obtained result of each step. The method starts by the di-
vision of an iris image into sub-images sized 16×16 pixels.
Subsequently, an average intensity of each sub-image is cal-
culated. The pupil region is segmented with the minimum
value among the obtained means. The segmented threshold
value (T Hpupil) is formulated as:

T Hpupil = argminR⊆I E(R) (2)

where R ranges over all sub-windows in image I and
E(R) is the average value of the region R. Since the mini-
mum value is used, the pupil region is always contained in
the segmented result. However, the obtained region is often
segregated into upper and lower parts. Morphology closing
is used to merge the two parts. Then morphology opening is
applied to isolate eyelashes and other irrelevant noises from
the detected pupil region.

To determine the pupil boundary, an edge operator
(such as the Sobel edge detector) along with a process of
thinning is applied. The obtained edges often include edges
of the pupil boundary and other irrelevant interferences such
as edges of light reflections and eyelashes. Edges of light
reflections are removed by the deletion of edges associ-
ated with high intensity values, since those values are of-
ten caused by light reflections. Pixels associated to the light

reflections are detected using thresholding, followed by di-
lation operation. The dilated result is then combined with
the result obtained from the thinning operation using AND
operator. Other irrelevant edges are further removed based
on the circularity property of the pupil. A centroid of the
remaining edges is computed and serves as the approximate
center of the detected circle. Next, edges with improper cir-
cular direction based on the center obtained are removed.
As NIR-iris images provide high contrast pupil boundaries,
more accurate pupil boundaries are obtained by the search
for edges with the maximum gradient values within a pre-
specified search area. Finally, the detected edges are mod-
eled with a circular model fitting technique [21]. The av-
erage computational time of the pupil boundary localiza-
tion on a personal computer (Core2Duo 2.20 GHz with 1 GB
RAM) is 0.325 seconds.

2.2 The Sclera Boundary Localization

The tendency of soft contrast of the sclera boundary of
an NIR image often causes a problem for the iris outer
boundary localization. Typical edge detectors used in edge-
base iris localization techniques often result in partial edges.
Even when an enhancement operator is employed to im-
prove the contrast of the boundary, it also generates un-
wanted spurious edges which confuse the modeling process.

2.2.1 The Sclera Boundary Detection

To address the aforementioned problem, an enhancement of
soft contrast sclera boundary with a local signal-to-noise ra-
tio (LSNR) of the edge map of an eye image is proposed.
In this paper, the edge map image is computed using the
Sobel edge operator. The LSNR is a ratio of a local mean
to a local standard deviation. From pervious experiments,
the LSNR of an edge map is very robust to illuminate the
variations among iris databases. The LSNR technique can
reliably detect an iris outer boundary.

For an image I, its local area is defined as a (2m + 1) ×
(2n + 1) window centered at pixel (x, y), where m, n is an
integer number. The local mean and local standard devia-
tion of pixel (x, y) can be computed with Eq. (3) and Eq. (4),
respectively.

LM(x, y) =
1

(2m + 1)(2n + 1)

m∑
j=−m

n∑
i=−n

I(x + i, y + j)

(3)

LS D(x, y) =√√
1

(2m + 1)(2n + 1)

m∑
j=−m

n∑
i=−n

[I(x + i, y + j) − LM(x, y)]2

(4)

The LSNR of a pixel (x,y) is then computed using
Eq. (5).
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 (a) local mean of an edge image, (b) local standard deviation of
the edge image, (c) a LSNR edge image, (d) result after the removal of pix-
els of a very low mean and standard deviation, (e) result after the removal
of pixels associated with the pupil region, (f) result after the removal of
pixels of improper circular direction.

LS NR(x, y) = 20log
LM(x, y)
LS D(x, y)

dB (5)

To accelerate the system computational time, the
LS NR(x, y) applied is reduced to Eq. (6).

LS NR(x, y) =
LM(x, y)
LS D(x, y)

(6)

To obtain the LSNR values of an edge map, the aver-
age and standard deviation values of the obtained edge map
are locally computed with a 11×11 pixel window. The size
of window is obtained empirically. Figure 3 (a) and 3 (b)
depict example results of the obtained local mean and local
standard deviation of an edge map. It is evident that edges of
pupil display high local means and high local standard de-
viations. Edges of the sclera have high local means but low
local standard deviations due to their lower contrast levels.

Motivated by these observations, the LSNR of the ob-
tained edge map is computed using Eq. (6). The division
of the local average value with its relevant local standard
deviation enhances edges of sclera boundary significantly
as shown in Fig. 3 (c). To avoid zero division, edge pixels
with very low local means and standard deviations are elim-
inated prior the division. The obtained result, as shown in
Fig. 3 (d), illustrates that these edges often belong to smooth
regions of the eye image. Next, pixels related to the pupil re-
gion obtained from the previous section are removed, which
yields the result shown in Fig. 3 (e). Lastly, the directions
of the obtained edges are investigated. Edges with improper
circular direction associated to the directions of edges of the
pupil are removed. The obtained LSNR of the edge map is
shown in Fig. 3 (f).

(a) (b)

Fig. 4 (a) Vertical dark line detector (b) Horizontal dark line detector.

2.2.2 The Sclera Boundary Modeling

To model an outer iris boundary, a weighted circular integral
of the attained LSNR values of an edge map is exploited.
The modeling is performed by the optimization of the below
equation:

max
(r,x0,y0)

∮
(r,x0,y0)

wx0,y0

LS NRedge(x, y)

2πr
ds (7)

where LS NRedge is a LSNR of an edge map of an in-
put eye image, and w is a weight value used to constrain a
center of the outer boundary of the iris. The center of the
outer boundary should be as close as feasible to the center
of the pupil. Thus, the weight value is defined by following
equation:

wi = 1 − di

dmax
(8)

where di is the distance between the center of the pupil
and the center of candidate circle i, and dmax is the allow-
able tolerance between the center of the pupil and the cen-
ter of possible circles in the search area. This optimization
renders the maximum contour integral over a summation of
the LS NR along a candidate circle given by r radius and
center (x0, y0) over the obtained LSNR edge image. The
proposed sclera boundary localization consumes more times
than the pupil boundary localization. The average computa-
tional time of the process is 0.929 seconds.

2.2.3 Eyelash and Eyelid Removal

Once the iris boundaries are localized, major occlusions of
an iris, for instance eyelashes and eyelids, are removed. An
adaptive thresholding is used in this paper to detect separa-
ble and multiple eyelashes. A separable eyelash is a sin-
gle eyelash of a thin line shape. Multiple eyelashes are
a group of separable eyelashes which are connected. For
separable eyelashes, a vertical dark line detector mask, as
shown in Fig. 4 (a) is applied over an eye image. Its average
and standard deviation values are computed. The separable
eyelashes are detected by thresholding the obtained image
with the threshold value of the computed mean in addition
to three times of its standard deviation. Then, multiple eye-
lashes are located by thresholding the image based on the
average and standard deviation values of the detected sep-
arable eyelashes. The threshold value is derived from the
obtained average value minus its standard deviation.
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(a) (b)

Fig. 5 Examples of the segmented irises.

For the detection of eyelids, a horizontal dark line de-
tector, as illustrated in Fig. 4 (b), is applied over an eye im-
age. This detector is suitable for the eyelid detection since
the boundary between the iris and the eyelids is usually
darker than their pixels. The result acquired from the de-
tection, denoted by G(x, y) is consequentially modeled with
a weight parabolic integral defined as follow:

max
(p,θ,xv,yv)

∮
(p,θ,xv,yv)

wxv

G(x, y)
l

ds (9)

This approach is analogous to Eq. (7), except that the
integral is performed along the parabolic curve character-
ized by parameters p, θ, xv, and yv, where (xv, yv) indicates
the vertex of a parabola, p indicates the distance between
the vertex and the focus of the parabola, and θ indicates the
angle of the parabola. An equation of the parabolic curve is
defined by Eq. (10). The l is a latus rectum of the parabola.
The weight value is computed with Eq. (8), but in this in-
stance di is the difference between the row index of the iris
center and the row index of the parabola vertex, and dmax is
the maximum allowable di in the search space.

((y − yv) cos θ − (x − xv) sin θ)2 =

4p((y − yv) sin θ + (x − xv) cos θ) (10)

Figure 5 displays examples of the attained segmenta-
tion images.

3. Performance Evaluations

Three experiments were set up to evaluate the proposed iris
segmentation approach. The first two experiments measured
the accuracy of the suggested localization approach. The
first experiment served to visually inspection accuracy of
the approach. The second experiment validate system ac-
curacy with the application of classification errors criteria.
The third experiment was designed to validate the effects
of the proposed segmentation approach on the accuracy of
iris recognition systems. In all experiments, the results of
the proposed segmentation method were compared with the
best results obtained by means of the Masek’s segmenta-
tion algorithm. Robustness of the method put forward was
tested against two iris databases: Casia-irisv3-interval (CA-
SIA3.0) [19] and Ksip-DB01R (KSIP) [20]. The CASIA3.0
contains 2655 eye images sized 320×280 of 395 irises. The
KSIP contains 1920 images sized 352×288 of 240 irises.

3.1 Visual Inspection of Localized Iris Boundaries

The first experiment served to assess the accuracy of the

Table 1 Localization accuracy by human inspection.

Masek Proposed
Database CASIA3.0 KSIP CASIA3.0 KSIP

Inner Fail (%) 4 40.4 1.2 2
Outer Fail (%) 9.6 18.4 0.4 0

Inner+Outer Fail (%) 0 11.2 0 0
Total Fail (%) 13.6 47.6 1.6 2

(a) (b)

(c) (d)

Fig. 6 Examples of localization results of both databases. The KSIP im-
ages are on the left side. The CASIA3.0 images are on the right side. (a-
b) results obtained with our proposed method, (c-d) results obtained with
Masek’s method.

proposed localization method. Only inner and outer iris
boundaries were visually inspected. For each database,
250 iris images are randomly selected for the inspection.
In the experiment arrangement, incorrect localization typ-
ically occurs when the obtained boundary differs in excess
of 10 pixels from its actual boundary. This difference was
measured by overlaying the obtained boundary over the eye
image using Photoshop program. Percentages of incorrect
localization of inner, outer as well as both of inner and outer
boundaries were computed and are displayed in Table 1.
The percentage of Total Fail in the table indicates the to-
tal number of images of incorrect localized iris boundaries.
The Total Fail was attained at with the below equation:

%TotalFial = %InnerFail +%OuterFail

−%(Inner + Outer)Fail (11)

The experiment results revealed that the proposed
method outperformed Masek’s method in both iris
databases. Performance of the Masek’s algorithm degrades
severely when applied to the KSIP iris database. This is
due to the higher eyelash occlusions of eye images of the
KSIP database. The occlusions disturbed both the inner and
outer boundary detection, as shown in Fig. 6. Figure 6 (a)
and 6 (b) show the results of correctly localized iris bound-
aries by the suggested segmentation approach. Figure 6 (c)
displays the failures of both inner and outer boundary of the
image from the KSIP database by the Masek’s segmenta-
tion approach. From the obtained experimental results, the
proposed iris outer boundary based on the LSNR of an edge
map proved to be very robust against both databases applied.
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Table 2 Classification performance.

Masek Proposed
Database CSR FPR FNR AER CSR FPR FNR AER

CASIA3.0 94.48 3.71 10.43 7.07 95.03 5.01 4.83 4.93
KSIP (%) 92.3 4.91 15.88 10.39 94.35 5.76 5.34 5.55

Fig. 7 A protocol of system evaluation.

3.2 Segmentation Performance via Classification

The second experiment served to compare the segmented
iris with its ground truth image. Two hundred fifty ground
truth images of each database were manually generated by
categorization of each pixel of the ground truth images as ei-
ther an iris or non-iris pixel. Then, following classification
accuracy were computed: correct segmentation rate (CSR),
false positive rate (FPR), false negative rate (FNR) and an
average error rate (AER). The CSR is the ratio of a number
of correctly classified pixels to a total number of all pixels.
The FPR is the ratio of the number of non-iris pixels incor-
rectly classified as iris pixels to the total number of non-iris
pixels. The FNR is the ratio of the number of iris pixels
incorrectly classified as non-iris pixels to the total number
of iris pixels. The AER is the average value of the FPR and
FNR. The obtained results are shown in Table 2. The results
indicated comparable performance in terms of the CSR val-
ues. The obtained FRR of the Masek’s method is slightly
lower than the FRR of our approach. However, the FNR of
our approach is approximately half of the Masek’s approach.

3.3 Recognition Performance

The last experiment is to investigate effects of the proposed
iris segmentation on the iris system accuracy. A protocol
of this experiment is illustrated in Fig. 7. Two iris segmen-
tation approaches, which are Masek and the proposed seg-
mentation approaches are used with both iris databases for

Table 3 The equal error rate of the proposed system.

Masek’s segmentation Proposed segmentation
Feature Extraction CASIA3.0 KSIP CASIA3.0 KSIP
Daugman (Gabor) 11.99 29.7 1.39 10.46

Masek (Log Gabor) 3.1 10.08 0.85 0.46

system performance comparisons. The segmented iris ring
is then normalized using Rubber-sheet model [1]. To vali-
date robustness of the segmentation against the feature ex-
traction methods, two feature extraction approaches which
are developed by Daugman and Masek are used in the ex-
periment. The normalized iris image is fed to each feature
extraction module for the comparison purpose.

Brief details of Daugman’s and Masek’s feature ex-
traction are as follows. Both Daugmant and Masek rep-
resent an iris by extracting phase information of an iris.
The obtained phase information is then quantized and en-
coded using 2 bits. Similarity of two encoded iris codes
is evaluated using the Hamming distance. To extract the
phase information of an iris, Daugman exploited a 2D Ga-
bor filter, whereas Masek exploited a 1D Log-Gabor filter.
An advantage of the Log-Gabor over the 2D Gabor is that
the Log-Gabor can be constructed at any arbitrary band-
width, whereas bandwidth of Gabor is limited to once oc-
tave. Therefore, the Log-Gabor has no DC-component. In
addition, the Log-Gabor filter contains more high frequency
components, resulting in better natural texture analysis [22].
In the experiment, Masek’ segmentation and feature extrac-
tion approaches are downloaded from [13]. Since there is
no public access for Daugman approach [1], the Daugman’s
feature extraction approach is implemented. The best ob-
tained result by tuning required parameters such as Gabor’s
frequency is set as the system accuracy.

The iris recognition system accuracy is measured in
terms of an equal error rate (EER) with a leave-one-out
scheme. The EER is an equilibrium error of Fault Accept
Rate (FAR) and Fault Reject Rate (FRR). The comparison
results are shown in Table 3. The results attained prove it ev-
ident that the proposed segmentation significantly improves
the system performance regardless of the characteristics of
an iris database. The experiment confirmed the correlation
of the iris system accuracy with the segmentation achieve-
ment. However, with the same segmentation approach used,
the recognition system performance highly depends on the
chosen feature extraction. The results of the performed ex-
periments indicate that Log-Gabor based feature extraction
outperforms the Gobor based feature extraction scheme. Al-
though encouraging results were achieved in all three ex-
periments, the false positive rate of the suggested approach
should be further reduced. The inaccurate segmentation is
due to the non-circular geometry of an iris. Additionally,
refinement for better eyelashes removal should be imple-
mented in any future work.

4. Conclusions

Details of an iris segmentation based on local image proper-
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ties are described in this paper. The pupil boundary is adap-
tively segmented with the minimum value of local average
values of an eye image. A local property usually referred to
as a local signal-to-noise ratio obtained from an edge map
of the eye image is introduced for the sclera boundary de-
tection. The LSNR significantly enhances the edges of the
sclera boundary, resultant in a robustly detection of the outer
iris boundary. The obtained iris boundaries are modeled
with two non-concentric circles. Eyelashes and eyelids are
removed by adaptive thresholding. The results of assess-
ment against two iris databases without parameter tunings
reveal that the proposed segmentation algorithm improves
iris recognition system performance significantly.
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