
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.2 FEBRUARY 2011
371

LETTER

Acceleration of Computing the Kleene Star in Max-Plus Algebra
Using CUDA GPUs

Hiroyuki GOTO†a), Member

SUMMARY This research aims to accelerate the computation module
in max-plus algebra using CUDA technology on graphics processing units
(GPUs) designed for high-performance computing. Our target is the Kleene
star of a weighted adjacency matrix for directed acyclic graphs (DAGs).
Using a inexpensive GPU card for our experiments, we obtained more than
a 16-fold speedup compared with an Athlon 64 X2.
key words: Kleene star, max-plus algebra, adjacency matrix, DAG, GPU,
CUDA

1. Introduction

This research aims to accelerate the computation of the
Kleene star [1] of weighted adjacency matrices in max-plus
algebra [1], [2], using computers equipped with high perfor-
mance graphics processing units (GPUs). We implement a
program using CUDA (compute unified device architecture)
technology [3], which is available on recent NVIDIA GPUs.

The Kleene star plays an essential role in max-plus al-
gebra approaches to scheduling problems for repetitive dis-
crete event systems (DESs). To be precise, the governing
equation in max-plus algebra, referred to as the state equa-
tion, includes the Kleene star in the transition matrix [4].

Hereafter, we focus on DESs whose behavior can be
described by a directed acyclic graph (DAG). Let the num-
ber of nodes and arcs in the system be n and m, respec-
tively. If we compute the Kleene star based on the most
efficient algorithm known thus far, the time complexity is
O(n · (n + m)) [4], [5]. On the other hand, the state equa-
tion includes other addition and multiplication operations,
the worst time complexity of which is O(n2). Thus, the bot-
tleneck in computing the state equation lies in the Kleene
star.

In the field of high performance computing, on the
other hand, much attention has been paid to the concept
of general-purpose computing on graphics processing units
(GPGPU). In particular, recent GPU cards produced by
NVIDIA Corporation provide substantial benefits for par-
allel computation, and the company itself supplies an easy-
to-implement environment for developers and researchers.
Recently, the effectiveness and advantages of using GPUs
for technical computations have been widely reported [6]–
[8].

In view of this, we aim to accelerate the computation of

Manuscript received September 1, 2010.
†The author is with Nagaoka University of Technology,

Nagaoka-shi, 940–2188 Japan.
a) E-mail: hgoto@kjs.nagaokaut.ac.jp

DOI: 10.1587/transinf.E94.D.371

the Kleene star in max-plus algebra by implementing code
for CUDA GPUs. Then, we measure the effective speedup
using both single and multiple GPUs.

2. Target Algorithm

First, we introduce the specific notations and operation rules
in max-plus algebra. Denoting the real field by R, we de-
fine a field Rmax = R ∪ {−∞}. Then, for x, y ∈ Rmax,
we define operators and unit elements: x ⊕ y = max(x, y),
x ⊗ y = x + y, ε (= −∞), and e (= 0). If m ≤ n, ⊕n

k=mxk =

max(xm, xm+1, · · · , xn). For matrices X, Y ∈ Rm×n
max , and

Z ∈ Rn×q
max, [X ⊕ Y]i j = [X]i j ⊕ [Y]i j and [X ⊗ Z]i j =

⊕n
l=1([X]il⊗ [Z]l j). For the unit matrices, ε is a matrix whose

elements are all ε, while e is a matrix with diagonal ele-
ments set to e and off-diagonal elements to ε. Operator ⊗
has higher precedence than ⊕.

Let X ∈ Rn×n
max be a DAG weighted adjacency matrix.

Our target algorithm is the computation of:

X∗ = ⊕r−1
l=0 X⊗l = e ⊕ X ⊕ · · · ⊕ X⊗(r−1),

where [X]i j = {wi j : if there is an arc j → i, else ε}, and
wi j is the weight of arc j → i. If we denote the number of
nodes by n, there is an instance r that satisfies X⊗(r−1) � ε
and X⊗r = ε (1 ≤ r ≤ n). It is known that [X∗]i j gives the
maximum value of the cumulative weights for paths from
node j to node i.

Amongst the most efficient algorithms for computing
the Kleene star in terms of time complexity, the method in
[5] is attractive, since the work matrix can be partitioned
into arbitrary column major blocks and each block can be
processed independently. The essential procedures and time
complexities are given below.

• Topological sort, O(m+n): sort the nodes in topological
order based on a depth first search (DFS) algorithm [9]
by inspecting the elements of X.
• Initialization, O(n2): prepare and initialize a work ma-

trix W ∈ Rn×n
max.

• Update, O(m · n): update the work matrix according to
[W]i : ⇐ [W]i : ⊕ [X]il ⊗ [W]l: for all succeeding nodes
i of source node l̄, where l̄ represents the original node
number of sequence l in the topologically sorted graph.
Then, repeat this for all l (1 ≤ l ≤ n − 1) in ascending
order.

On completion of these procedures, the values in the result-
ing matrix are given by the elements in W. We note here

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



372
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.2 FEBRUARY 2011

Fig. 1 CUDA hardware model.

that the third process corresponds to an elementary transfor-
mation in conventional algebra.

3. CUDA Architecture

The basic structure of a CUDA GPU is depicted in Fig. 1.
We suppose here that only a single GPU card is installed on
the target PC. In CUDA terminology, the PC and GPU card
are called the host and device, respectively. On the device
side, there can be either a single or multiple processing units,
referred to as the streaming multi-processor (SM). Each SM
has eight scalar processors (SPs), a 16 KB shared memory,
registers, and two types of caches. The number of SPs in an
SM is not always eight; in recent high-end GPUs there are
32 SPs. The 16 KB shared memory is shared between the
SPs and has small latency. Computational programs for the
SPs are referred to as kernels, with each SP in charge of a
task identified by a thread.

In the video unit, depicted in the lower part of the fig-
ure, there are three types of memories: global, constant, and
texture memories, which are shared between all SMs. To
communicate data between the host and device, we must
use the global memory, but its latency is quite large. On the
other hand, the texture and constant memories are read-only
for SMs and accessed data are cached. Thus, the latency can
be significantly reduced by accessing the same or adjacent
data multiple times. Owing to there being various types of
memories in CUDA GPUs, we have to consider well in ad-
vance which memories to use, in order to exploit the benefits
for computation speed.

4. Implementation

First, we improve the algorithm to reduce the required mem-
ory. In existing methods, the update process is performed
using [X]il in the original adjacency matrix X. This implies

allocating sufficient memory to store two n × n matrices: X
and W. On the other hand, the number of non-ε (non-zero,
in conventional algebra) elements, denoted by m, follows
m ≤ n · (n − 1)/2 because we are focusing on DAGs. Thus,
using a full matrix workspace is redundant for large scale
systems.

In view of this, we first convert X to a compressed form
and the remaining procedures are performed using the com-
pressed data. It should be noted that the target algorithm
occasionally needs the list of succeeding nodes for a given
source node. As a format suited to this, we adopt the com-
pressed column storage (CCS) format [10]. Let the integer
field be denoted by Z, then the compression result yields
the following three arrays.

• Val (∈ Rm
max): stores the values of non-ε elements in X

in column major order.
• Idx (∈ Zm

max): stores the corresponding row numbers of
the elements in array ‘Val’.
• Ptr (∈ Zn+1

max): stores the start positions of each column
in arrays ‘Val’ and ‘Idx’.

Once the memory space for these arrays has been prepared,
if the original matrix X is not needed after the Kleene star
computation, this space can be reused for the work matrix
W.

We now implement the code for CUDA. As shown in
the next section, the bottleneck in the Kleene star computa-
tion lies in the update process. Thus, we optimize this part
extensively.

In preparation, floating point memory storage for the
work matrix W is prepared in global memory. This matrix
is initialized to e, where we use (-FLT MAX) to represent
ε. Moreover, we prepare two arrays for storing ‘Val’ and
‘Ptr’ in texture memory. As pointed out in the previous sec-
tion, several alternative memories are available. In fact, we
experimented with code that used the shared and constant
memories, but the performance thereof was not good. Thus,
we opted to use texture memory.

Then, W is updated sequentially in topological order
from upstream source nodes to downstream ones. Figure 2
depicts the update process for source node l̄. The list of suc-
ceeding nodes, in other words destination nodes, is obtained
from Idx(S), where S = Ptr(l̄) : (Ptr(l̄ + 1) − 1). Let an el-
ement from S and the number of elements of S be denoted
as ik ∈ S and |S| = s, respectively. First, the values of [X]ikl

and ik (1 ≤ k ≤ s), which are obtained from Val(S) and
Idx(S), respectively, are transferred from host memory to
texture memory. Next, the values of [W]l j (1 ≤ j ≤ n) are
transferred to texture memory. Then, we invoke a kernel to
update [W]ik j (1 ≤ k ≤ s, 1 ≤ j ≤ n).

On the kernel side, each invoked thread retrieves the
value of the target element [W]ik j from the global mem-
ory, and [X]ikl and [W]l j from the texture memory. Then,
the thread compares [W]ik j with [X]ikl ⊗ [W]l j and updates
the former if the latter value is greater. Here it should be
noted that the comparison and update must not be executed



LETTER
373

Fig. 2 Update process for source node l̄.

Fig. 3 Hierarchy structure of blocks and threads in a kernel.

if [W]l j = ε. As implied by the above, a huge number of
conditional branches occur in max-plus algebra operations.
Since there is no branch predictor in GPU processors, this
feature may be disadvantageous; dissimilar to floating point
computations in conventional algebra.

The kernel is invoked for every source node with one
or more succeeding nodes. We illustrate the allocation of
blocks and threads in the kernel in Fig. 3. The kernel in-
cludes c × b two-dimensional blocks, with each block hav-
ing C × B two-dimensional threads, where b = �n/B and
c = �s/C. In current NVIDIA GPUs, B · C ≤ 512 must
be followed, and B should be a multiple of 16 for efficient
access to global memory, known as coalescing [3]. Thus, B
and C should be set with care. We should also note here
that the update location for W is continuous with respect to
row order, but scattered with respect to column order. Af-
ter all updates for the source nodes l̄ (1 ≤ l ≤ n − 1) have
been completed, the values of X∗ are stored in W, and the
resulting array is transferred from device to host.

For simplicity, we assume that only a single GPU is
available in the current explanation. However, if multiple
GPUs are available simultaneously, the work matrix can be
partitioned column-wise into an arbitrary number of differ-
ent sized blocks, and the update process can be executed
independently in parallel.

5. Performance Evaluation

The performance of the proposed algorithm is measured us-
ing a PC equipped with CUDA GPUs. We use a PC in-
stalled with (a) an AMD AthlonTM 64 X2 Dual Core 5600+
2.90 GHz running Linux Fedora 13 for x86-64, and two
NVIDIA GPU cards, namely (b) a GeForce GTS 250 and
(c) a Quadro NVS 420.

Table 1 shows the specifications of the two GPU cards,
noting that cards (b) and (c) have one and two GPUs on a
single card, respectively. The compilation and execution en-
vironments are: CUDA driver version: 195.36.31; software
development kit (SDK) version: 3.0; gcc version 4.4.4 with
‘-march=athlon64-sse3 -O3’ compilation options; and nvcc
for CUDA version V0.2.1221 with the ‘-O3’ option.

Now we prepare an adjacency matrix X and compute
the Kleene star X∗. For X, we first attach arcs i→ i+1 for all
i (1 ≤ i ≤ n− 1), and then append arcs j→ i (1 ≤ j ≤ n− 1,
j + 1 ≤ i ≤ n) with 1/2 probability. The weights of these
arcs obey a [0, 1] normal distribution. Then, we sort the
indices of the nodes randomly, and swap the correspond-
ing rows and columns. Each experiment is performed three
times with the same random seed, and the median computa-
tion time is adopted.

First, we measure the performance using only the CPU
(a). Table 2 shows the computation times in milliseconds
with a varying number of nodes n = 500, 1000, 2000, and
4000. As the results clearly indicate, the procedure for up-
dating W is the bottleneck and this part requires extensive
fine-tuning. Recalling that the time complexity for the up-
date is O(m · n) and noting m � n2/4 holds in this exper-
iment, the computation time would increase eight fold if n
were doubled. This estimation actually holds true for larger
n.

Table 3 shows the computation times for updating W
with varying block sizes B and C for n = 4000 using GPU
(b) or (c). It appears that setting B = 64 or B = 32 is ac-
ceptable, although the times are not remarkably different for
each B.

Table 4 shows the computation times for computing
X∗ and the speedup effect compared with CPU (a). The
speedup is defined as (computation time using a CPU) /
(computation time using GPU(s)). Cases 1 and 2 use a sin-
gle GPU, whereas case 3 uses two GPUs simultaneously. In
using multiple GPUs simultaneously, we must invoke mul-
tiple threads on the CPU side, known as the POSIX thread,
and this requires some overhead for invocation and termina-
tion.

In case 1, the speedup is evident as n increases, but it
seems to level off between 17 and 18. In cases 2 and 3, the
speedup appears to level off around 1.2 and 2.3, respectively.
From Table 1, the theoretical computation performance can
be estimated by multiplying the number of cores by the SP
clock speed. In this context, the ratio of the computations
speed for case 1 to case 2 should be approximately 17.1, but
the actual ratio was approximately 13.7 for n = 4000. This



374
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.2 FEBRUARY 2011

Table 1 Specifications of the two GPU cards.

(b) GeForce (c) Quadro
GTS 250 NVS 420

Number of cores 128 8 (x 2)
SP clock (MHz) 1,500 1,400
Memory size 512 MB 256 MB (x 2)
- interface 256-bit 64-bit (x 2)
- bandwidth (GB/s) 115.2 11.2 per GPU
- clock (MHz) 1,800 700

Table 2 Computation times using only CPU (a) (ms).

Nodes n = 500 1,000 2,000 4,000
Arcs m = 62,496 250,014 1,001,134 4,001,435

Convert CCS 2.0 16.0 83.2 653.3
Topological sort 0.4 1.6 5.8 23.2
Initialize W 0.6 1.6 6.6 26.4
Update W 123.0 1,117.4 9,136.3 72,934.2

Total 126.0 1,136.6 9,231.9 73,637.1

Table 3 Computation times for updating W with varying B and C sizes
(ms).

B 16 32 64 128 256 512
C 32 16 8 4 2 1

(b) 3,981 3,788 3,771 3,796 3,795 3,793
(c) ×1 62,440 60,678 61,027 61,740 61,831 62,186

Table 4 Computation times (ms) and speedup effects using GPUs.

GPU(s) n = 500 1,000 2,000 4,000
1 (b) 32.3 124.8 649.8 4,509.3

Effect 3.90 9.11 14.21 16.33
2 (c) × 1 156.1 1,023.5 8,068.8 61,763.3

Effect 0.81 1.11 1.14 1.19
3 (c) × 2 168.7 630.4 3,978.7 32,286.8

Effect 0.75 1.80 2.32 2.28

difference may be due to the relatively higher time to convert
X to the CCS format in case 1 compared with case 2.

We note here that the results using GPUs matched those
using the CPU exactly, which indicates that the computation
precision of GPUs conforms to standard single precision.

6. Conclusion

In this research, we focused on accelerating the computation

of the Kleene star in max-plus algebra using CUDA GPUs.
The primary target was updating the work matrix, the pro-
cess of which is similar to elementary transformations of
a matrix in conventional algebra. Since the SPs do not
have a branch predictor, they are not naturally efficient for
max operations. Nevertheless, we accomplished a speedup
greater than 16-fold with a reasonable GPU, compared with
an Athlon 64 X2 including the SSE3 optimization option.
Accordingly, it is expected that the speedup would be much
more significant using high-end GPUs.

References

[1] B. Heidergott, G.J. Olsder, and L. Woude, Max Plus at Work: Mod-
eling and Analysis of Synchronized Systems, Princeton University
Press, New Jersey, 2006.

[2] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat, Synchro-
nization and Linearity, John Wiley & Sons, New York, 1992.
http://maxplus.org

[3] NVIDIA Corporation, “CUDA programming guide version 3.0,”
Aug. 2010. http://developer.nvidia.com/cuda/

[4] H. Goto, “Efficient calculation of the transition matrix in a max-
plus linear state-space representation,” IEICE Trans. Fundamentals,
vol.E91-A, no.5, pp.1278–1282, May 2008.

[5] H. Goto and H. Takahashi, “Fast computation methods for the
Kleene star in max-plus linear systems with a DAG structure,” IEICE
Trans. Fundamentals, vol.E92-A, no.11, pp.2794–2799, Nov. 2009.

[6] P. Harish and P.J. Narayanan, “Accelerating large graph algorithms
on the GPU using CUDA,” Proc. 14th Int. Conf. High Performance
Comput. (HiPC ’07), pp.197–208, 2007.

[7] Y. Munekawa, F. Ino, and K. Hagiwara, “Accelerating Smith-
Waterman algorithm for biological database search on CUDA-
compatible GPUs,” IEICE Trans. Inf. & Syst., vol.E93-D, no.6,
pp.1479–1488, June 2010.

[8] A. Buluç, J.R. Gilbert, and C. Budak, “Solving path problems on the
GPU,” Parallel Comput., vol.36, no.5–6, pp.241–253, 2010.

[9] T. Cormen and C. Leiserson, Introduction to Algorithms, MIT Press,
Massachusetts, 2001.

[10] Y. Saad, “SPARSKIT: A basic tool kit for sparse matrix computa-
tions,” Tech. Rep. 90-20, Research Institute for Advanced Computer
Science, NASA Ames Research Center, Moffet Field, CA, 1990.


