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Moving Object Detection Based on Clausius Entropy

Jonghyun PARK†a), Wanhyun CHO††, Nonmembers, Gueesang LEE††, Member,
and Soonyoung PARK†, Nonmember

SUMMARY This paper proposes a novel image segmentation method
based on Clausius entropy and adaptive Gaussian mixture model for de-
tecting moving objects in a complex environment. The results suggest that
the proposed method performs better than existing methods in extracting
the foreground in various video sequences composed of multiple objects,
lighting reflections, and background clutter.
key words: moving object detection, adaptive Gaussian distribution, Clau-
sius entropy, foreground extraction

1. Introduction

Detecting and tracking moving objects, representing the
core technology of any surveillance system, have attracted
considerable interest from computer vision researchers.
However, because of dynamic changes in natural scenes,
such as sudden illumination, weather changes, and repet-
itive motions causing clutter, reliable motion detection has
been considered to be a difficult problem. Hence, the robust-
ness of motion detection technology needs to be improved
for applications in complex environments. Several tech-
niques have been widely for detecting moving objects [1],
[2]. The background subtraction method is a well-known
technique for the motion segmentation of static scenes [3].
However, this technique is typically sensitive to dynamic
changes when stationary objects uncover the background
or when there are sudden illumination changes. In terms
of typical statistical methods, Stauffer et al. [4] proposed an
adaptive background mixture model for real-time tracking.
In their model, every pixel is separately modeled by a mix-
ture of Gaussians that are updated online by incoming image
data. Another example of the statistical model is Rittscher
et al.’s [5] probabilistic background model based on the hid-
den Markov model. This method can easily adapt to dy-
namic environments but has considerable difficulty extract-
ing the complete shapes of certain types of moving objects.
To overcome the shortcomings of two-frame differencing,
improved methods have been proposed for three-frame dif-
ferencing. For instance, Collins et al. [6] proposed a hy-
brid method that combines three-frame differencing with
an adaptive background subtraction model for their VSAM
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project. Optical flow methods make use of flow vectors of
moving objects over time to detect moving regions in an im-
age. Barron et al. [7] compared the accuracy and reliability
of different optical flow techniques for both real and syn-
thetic image sequences. Several authors have proposed a
new variational framework for detecting and tracking mul-
tiple moving objects in image sequences. Paragios et al. [8]
considered Geodesic active contours or regions and level-
set methods to address various tasks associated with opti-
cal flow estimation and to track moving objects in motion
analysis. Bao et al. [9] presented a novel segmentation ap-
proach based on the spatial-temporal curve evolution frame-
work for multiple moving objects. Lu et al. [10] proposed an
improved motion detection method that integrates the tem-
poral differencing method, the optical flow method, and the
double-background filtering method. Tian et al. [11] pro-
posed a real-time algorithm that can detect salient move-
ments in complex environments by combing the temporal
difference imaging and temporal filtered optical flow meth-
ods. E.J. Koh, et al. [13] proposed a motion segmentation
method based on Clausius normalized field that can detect
salient motion in complex scenes by Clausius entropy the-
ory. The paper presents a new technique based on the Clau-
sius entropy and background subtraction methods for de-
tecting moving objects. The main goal of this algorithm is
to more effectively separate the background from the fore-
ground and detect moving objects accurately. First, we
transform the initial region of moving objects into the Clau-
sius entropy domain. Second, a technique for moving object
detection is based on Clausius entropy. It is a background
subtraction method that can model energy values in the en-
tropy domain as finite Gaussian mixture.

2. Moving Object Detection Based on Clausius En-
tropy

2.1 Clausius Entropy

Entropy is a function of a quantity of heat in a system that
is capable of doing work. Under maximum entropy, there is
a minimum amount of energy available for work, whereas
under minimum entropy, there is a maximum amount of en-
ergy available for work. Entropy S is not defined directly; it
is defined by an equation reflecting changes in the entropy
of the system as a result of changes in the heat of the system.
A change in entropy (ΔS ) is defined by
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ΔS =
ΔQ
T

(1)

where ΔQ is the amount of heat absorbed in an isothermal
and reversible process in which the system goes from one
state to another and T is the absolute temperature at which
the process occurs [12]. If the temperature of the system is
not constant, then this relationship is represented by the dif-
ferential equation dS = dQ /T . To understand this equation,
suppose that temperature T can be expressed as a function
T (Q) of heat Q. The total change in entropy is

ΔS =
∫

A

1
T (Q)

dQ, (2)

where A is the set defining the range of heat values.

2.2 Computation of Clausius Entropy

The original Clausius entropy computation method was de-
veloped for motion detection and the equations in this sec-
tion were derived by E.J. Koh et al. [13]. To compute Clau-
sius entropy for pixel values in each frame of an image se-
quence, we need to define three items: the system or field
F, energy or heat Q, and temperature T . First, we define
the system or field F as an input video sequence I com-
posed of gray-scales of a color image It. Each pixel in the
frame image It of a video has a W ∗ W rectangular neigh-
borhood or spatial window. To maintain Eq. (1), the system
has to satisfy the following rules: (i) all responses are re-
versible; (ii) during a response, the system expends at the
same temperature; and (iii) when the response is completed,
the temperature changes before the next response. Second,
we can define the absorbed energy from the input image It

as follows:

ΔQ(t)
k =

∑
l:all of pixels in window

wk

(
X(t)

kl − M(t)
kl

)2
, (3)

where Xkl is the color value of the kth channel at the lth pixel
in the window, M(t)

kl is the mean of all color values of the kth

channel for pixels, and wk is the weight function for each
channel. Moreover, to adapt the system to time, we have to
update the mean value M(t)

kl for each frame image I(t). It is
adjusted as follows:

M(t)
kl = (1 − λ)M(t−1)

kl + λ · X(t)
kl , (4)

where λ is the learning factor for adopting current means.
Third, we define the absolute temperature of the system. At
the microscopic level, temperature T can be defined as the
average energy of each particle in the system. Hence, if we
denote the proportional constant between heat Q and tem-
perature T as κ, then the change in the temperature of the
thermodynamic area can be defined as follows:

ΔT = κ
ΔQ
n
, (5)

where n is the total number of particles belonging to some
object. Here we can define the temperature in each frame as

T (t)
k = (1 − ρ)T (t−1)

k + κ
ΔQ
n
, (6)

where ρ is a constant proportional to the amount of heat loss
in every frame. Here temperature T satisfies the rule of the
heat system, that is, the greater the difference in temperature
between two objects, the greater the movement of energy is.
Fourth, we can define the entropy variation for each channel
as follows:

ΔS (t)
k =

ΔQ(t)
k

T (t)
k

(7)

Thus, we obtain the total entropy variations for each pixel
(x, y) in the tth frame by taking the sum of entropy variations
in each channel:

ΔS (t)(x, y) =
∑

k:channel

ΔS (t)
k (x, y) (8)

Finally, the Clausius entropy method, based on the frame
change in entropy, attempts to detect moving regions by
making use of the sum of entropy variations for consecu-
tive frames in a video sequence. It is well known that this
method can be easily adapted to the static environment.

3. Background Substraction Model

Here we consider the changeable amount of the entropy of
a particular pixel over time as a pixel process. At any given
time t, what is known about a particular pixel (x, y) the his-
tory of its entropy variation:

{X1, · · · , Xt} = {ΔS (i)(x, y) : 1 ≤ i ≤ t}, (9)

where ΔS (i) is the changeable amount of the entropy of the
ith frame image. The recent history of each entropy varia-
tion, {X1, · · · , Xt}, is modeled by a mixture of K Gaussian
distributions [4], [14]. The probability of observing the cur-
rent entropy variation at time t is

P(Xt) =
K∑

i=1

ξi,t · ϕ
(
Xt; μi,t, σ

2
i,t

)
(10)

where K is the number of distributions, ξi,t is the weight of
the ith Gaussian in the mixture ϕ(·), μi,t is the mean value,
and σ2

i,t is the variance. The prior weight ξi,t of K distribu-
tions at time t is adjusted as follows:

ξi,t = (1 − α)ξi,t−1 + α(Mi,t), (11)

where α is the learning rate and Mi,t is 1 for the distribu-
tion that match the new observation and 0 for other cases.
In general, ξi,t works as a low-pass filtered average of the
posterior distribution that pixel values have matched model
k given observations from 1 to t [4]. The parameters μi,t and
σ2

i,t of the distribution that does not match the new obser-
vation maintain the same values. However, the parameters
of the distribution that matches the new observation are up-
dated as follows:

μi,t = (1 − ρ)μi,t−1 + ρ · Xt,

σ2
i,t = (1 − ρ)σ2

i,t−1 + ρ(Xt − μi,t)
2 (12)
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where ρ = αϕ(Xt |μi,k, σi,k) works as the same type of the
low-pass filter, except that only the data which matches the
model is included in the estimation. Therefore, if an ob-
ject is stationary just long enough to become part of the
background and then it moves, the distribution describing
the previous background still exists with the same μ and
σ2; however, it has lower ξ and is quickly reincorporated
into the background [4]. We need to identify the Gaussian
in the mixture that is most likely to be produced by back-
ground processes. The Gaussians are ordered by the value
of ξ/σ. After the reestimation of the parameters of the mix-
ture, it is sufficient to sort from the matched distribution
to the most probable background distribution because only
matched models’ relative values would be changed. This or-
dering of models is effectively an ordered, open-ended list,
where the most likely background distributions are found
at the top and the less probable transient background distri-
butions gravitate toward the bottom and are eventually re-
placed by new distributions. Then the first B distributions
are chosen as the background model:

B = arg min
b

(∑b

k=1
ξk > T

)
, (13)

where T is the measure of the minimum portion of the data
that should be accounted for by the background. This pro-
cess takes the best distributions until a certain portion, T , of
the recent data can be accounted for. If T is low then the
background model is likely to be unimodal. In this case,
the most probable distribution will use to extract the back-
ground. If T is higher, then a multimodal distribution from
a repetitive background motion can result in the inclusion
of more than one color in the background model. This can
in turn result in the transparency effect, which allows the
background to accept two or more colors.

4. Experimental Results

We compared the performance of our method with that of
the intensity-based method [4] for indoor/outdoor video se-
quences. Figure 1 shows the experimental results for the

Fig. 1 Results for the indoor video: (a) the 445th input sequence; (b) the
entropy-dense image by the proposed approach; (c) the detection result for
the AGMM; (d) the detection result for the proposed approach.

indoor video: (a) is the 445th frame of the input sequence;
(b) is the entropy-dense image of our approach; (c) is the
detection result based on the intensity component; and (d)
is the detection result obtained using our method. Note that
Fig. 1 (c) shows noise components because of lighting re-
flections of moving pedestrians on the well and the floor.
However, as shown in Fig. 1 (d), the proposed method was
able to detect moving objects without picking up any arti-
facts. Figure 2 shows the salient moving objects that were
detected by the proposed method. The upper images (a)–(c)
of Fig. 2 show the captured input sequence image, and the
images (d)–(f) show the entropy-dense image generated by
the Clausius entropy approach. The images (g)–(i) display
noise components, and the images (h) and (i) do not per-
fectly segment the human region. However, as shown in the
images (j)–(l), the proposed method was able to perfectly
segment the images. Finally, to evaluate the performance of
the proposed approach, we compared the segmentation pre-
cision ratios of the proposed and intensity-based methods.
The precision ratio pixel is defined as

precision =
N(S m ∩ S a)

N(S m)
× 100 (14)

where N(S m) is the number of pixels in the ground truth
and N(S m ∩ S a) denotes the number of identical pixels be-
tween the ground truth and the extracted foreground region.
Figure 3 shows the performance of these methods. The av-

Fig. 2 Segmentation results: (a)–(c) input sequence images for the 240th,
288th, and 353rd frames; (d)–(f) dense maps generated by Clausius entropy
for the 240th, 288th, and 353rd frames; (g)–(i) subtracted background im-
ages for the 240th, 288th, and 353rd frames; (j)–(l) the salient motion de-
tected by the proposed method for the 240th, 288th, and 353rd frames.
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Fig. 3 Comparison of segmentation precision ratio to ground truth.

erage value of the precision rates of each frame for the pro-
posed method was 81.36 %. These results suggest that our
method is more efficient in detecting moving objects than
the intensity-based method.

5. Conclusions

The results suggest that the Clausius entropy method, to-
gether with the adaptive Gaussian mixture method, can sub-
stantially improve the detection of moving objects in video
sequences. The proposed approach can transform the ini-
tial region of moving objects into the Clausius entropy do-
main, which can decompose images into the background un-
der stable conditions and into the foreground under unstable
conditions. The proposed method that can model entropy
variations in the background as a mixture of Gaussians, is
more reliable and robust than conventional methods in de-
tecting moving objects both indoor and outdoor image se-
quences. Future research should develop more sophisticated
methods that could detect moving objects in more complex
scenes.
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