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Lighting Condition Adaptation for Perceived Age Estimation

Kazuya UEKI†a), Nonmember, Masashi SUGIYAMA††, and Yasuyuki IHARA†, Members

SUMMARY Over the recent years, a great deal of effort has been made
to estimate age from face images. It has been reported that age can be ac-
curately estimated under controlled environment such as frontal faces, no
expression, and static lighting conditions. However, it is not straightfor-
ward to achieve the same accuracy level in a real-world environment due
to considerable variations in camera settings, facial poses, and illumination
conditions. In this paper, we apply a recently proposed machine learning
technique called covariate shift adaptation to alleviating lighting condition
change between laboratory and practical environment. Through real-world
age estimation experiments, we demonstrate the usefulness of our proposed
method.
key words: face recognition, age estimation, covariate shift adaptation,
lighting condition change, Kullback-Leibler importance estimation proce-
dure, importance-weighted regularized least-squares

1. Introduction

In recent years, demographic analysis in public places such
as shopping malls and stations is attracting a great deal of at-
tention. Such demographic information is useful for various
purposes including designing effective marketing strategies
and targeted advertisement based on customers’ gender and
age. For this reason, a number of approaches have been ex-
plored for age estimation from face images [2], [3], and sev-
eral databases became publicly available recently [1], [6].

The recognition performance of age prediction systems
is significantly influenced by such factors as the type of
camera, camera calibration, and lighting variations, and the
publicly available databases were mainly collected in semi-
controlled environments. For this reason, existing age pre-
diction systems built upon such databases tend to perform
poorly in a real-world environment.

The situation where training and test data are drawn
from different distributions is called covariate shift [8],
[11], [12]. In this paper, we formulate the problem of
age estimation in a real-world environment as a supervised
learning problem under covariate shift. Within the covari-
ate shift framework, a method called importance-weighted
least-squares allows us to alleviate the influence of environ-
mental changes, by assigning higher weights to data samples
having high test input densities and low training input den-
sities. We demonstrate through real-world experiments that
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age estimation based on covariate shift adaptation achieves
higher accuracy than baseline approaches.

2. Proposed Method

In this section, we formulate the problem of age estimation
as a supervised learning problem under covariate shift, and
then describe our proposed method.

2.1 Formulation

Throughout this paper, we perform age estimation based not
on subjects’ real age, but on their perceived age. Thus, the
‘true’ age of the subject y is defined as the average perceived
age evaluated by those who observed the subject’s face im-
ages (the value is rounded-off to the nearest integer).

Let us consider a regression problem of estimating the
age y∗ of subject x (face features). We use the following
model for regression.

f (x;α) =
ntr∑
i=1

αiK(x, xtr
i ), (1)

where α = (α1, . . . , αntr )
� is a model parameter, � denotes

the transpose, and K(x, x′) is a positive definite kernel [7].
Suppose we are given labeled training data {(xtr

i , y
tr
i )}ntr

i=1.
A standard approach to learning the model parameter α
would be regularized least-squares [4].

min
α

⎡⎢⎢⎢⎢⎢⎣ 1
ntr

ntr∑
i=1

(ytr
i − f (xtr

i ;α))2 + λ‖α‖2
⎤⎥⎥⎥⎥⎥⎦ , (2)

where ‖ · ‖ denotes the Euclidean norm, and λ(> 0) is the
regularization parameter to avoid overfitting.

Below, we explain that merely using regularized least-
squares is not appropriate in real-world perceived age pre-
diction, and show how to cope with this problem.

2.2 Incorporating Age Perception Characteristics

Human age perception is known to have heterogeneous
characteristics, e.g., it is rare to misjudge the age of a 5-year-
old child as 15 years old, but the age of a 35-year-old person
is often misjudged as 45 years old. In order to quantify this
phenomenon, a large-scale questionnaire survey was carried
out in [15]: Each of 72 volunteers were asked to give age la-
bels y to approximately 1000 face images. Figure 1 depicts
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Fig. 1 The relation between subjects’ perceived age y∗ (horizontal axis)
and its standard deviation (vertical axis).

the relation between subjects’ perceived age y∗ and its stan-
dard deviation. This shows that the perceived age deviation
tends to be small in younger age brackets and large in older
age brackets.

In order to match characteristics of our age prediction
system to those of human age perception, we weight the
goodness-of-fit term in Eq. (2) according to the inverse vari-
ance of the perceived age:

min
α

⎡⎢⎢⎢⎢⎢⎣ 1
ntr

ntr∑
i=1

(ytr
i − f (xtr

i ;α))2

wage(ytr
i )2

+ λ‖α‖2
⎤⎥⎥⎥⎥⎥⎦ , (3)

where wage(y) is the standard deviation of the perceived age
(see Fig. 1 again).

2.3 Coping with Lighting Condition Change

When designing age estimation systems, the environment
of recording training face images is often different from
the test environment in terms of lighting conditions. Typ-
ically, training data are recorded indoors such as a studio
with appropriate illumination. On the other hand, in a real-
world environment, lighting conditions have considerable
varieties, e.g., strong sunlight might be cast from a side of
faces or there is no enough light. In such situations, age
estimation accuracy is significantly degraded.

Let ptr(x) be the training input density and pte(x) be the
test input density. When these two densities are different, it
would be natural to emphasize the influence of training sam-
ples (xtr

i , y
tr
i ) which have high similarity to data in the test

environment. Such adjustment can be systematically carried
out as follows [8], [11], [12]:

min
α

⎡⎢⎢⎢⎢⎢⎣ 1
ntr

ntr∑
i=1

wimp(xtr
i )

(ytr
i − f (xtr

i ;α))2

wage(ytr
i )2

+ λ‖α‖2
⎤⎥⎥⎥⎥⎥⎦ , (4)

i.e., the goodness-of-fit term in Eq. (3) is weighted according
to the importance function:

wimp(x) =
pte(x)
ptr(x)

.

The solution of Eq. (4) can be obtained analytically by

α̂ = (KtrWtr Ktr + ntrλIntr )
−1KtrWtr ytr, (5)

where Ktr is the kernel matrix whose (i, i′)-th element is de-
fined by

Ktr
i,i′ = K(xtr

i , x
tr
i′ ),

Wtr is the ntr-dimensional diagonal matrix with (i, i)-th di-
agonal element defined by

Wtr
i,i =

wimp(xtr
i )

wage(ytr
i )2
,

Intr is the ntr-dimensional identity matrix, and ytr is the ntr-
dimensional vector with i-th element defined by ytr

i .
When the number of training data ntr is large, we may

reduce the number of kernels in Eq. (1) so that the inverse
matrix in Eq. (5) can be computed with limited memory; or
we may compute the solution numerically by a stochastic
gradient-decent method.

2.4 Importance-Weighted Cross-Validation (IWCV)

In supervised learning, the choice of models (for exam-
ple, the basis functions and the regularization parameter) is
crucial for obtaining better performance. Cross-validation
(CV) would be one of the most popular techniques for model
selection [9]. CV has been shown to give an almost unbiased
estimate of the generalization error with finite samples [7],
but such almost unbiasedness is no longer fulfilled under co-
variate shift.

To cope with this problem, a variant of CV called
importance-weighted CV (IWCV) has been proposed [11].
Let us randomly divide the training set

Z = {(xtr
i , y

tr
i )}ntr

i=1

into T disjoint non-empty subsets {Zt}Tt=1 of (approxi-
mately) the same size. Let fZt (x) be a function learned from
Z\Zt (i.e., without Zt). Then the T-fold IWCV (IWCV)
estimate of the generalization error is given by

1
T

T∑
t=1

1
|Zt |

∑
(x,y)∈Zt

wimp(x)

wage(y)2
( fZt (x) − y)2,

where |Zt | denotes the number of samples in the subsetZt.
It was proved that IWCV gives an almost unbiased

estimate of the generalization error even under covariate
shift [11].

2.5 Kullback-Leibler Importance Estimation Procedure
(KLIEP)

In order to compute the solution (5) or performing
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IWCV, we need the importance weights wimp(xtr
i ) =

pte(xtr
i )/ptr(xtr

i ), which include two probability densities
ptr(x) and pte(x). However, since density estimation is a
hard problem, a two-stage approach of first estimating ptr(x)
and pte(x) and then taking their ratio may not be reliable.
Here we describe a method called Kullback-Leibler Impor-
tance Estimation Procedure (KLIEP) [12], which allows us
to directly estimate the importance function wimp(x) without
going through density estimation of ptr(x) and pte(x).

Let us model wimp(x) using the following model:

ŵimp(x) =
b∑

k=1

βk exp

(
−‖x − ck‖2

2γ2

)
, (6)

where β = (β1, . . . , βb)� is a parameter, and {ck}bk=1 is a sub-
set of test input samples {xte

j }nte

j=1. Using the model ŵimp(x),
we can estimate the test input density pte(x) by

p̂te(x) = ŵimp(x)ptr(x). (7)

We determine the parameter β in the model (7) so that the
Kullback-Leibler divergence from pte to p̂te is minimized:

KL(pte‖ p̂te) =
∫

pte(x) log
pte(x)
p̂te(x)

dx

=

∫
pte(x) log

pte(x)
ptr(x)

dx −
∫

pte(x) log ŵimp(x)dx.

We ignore the first term (which is a constant) and impose
ŵimp(x) to be non-negative and normalized. Then we obtain
the following convex optimization problem:

max
β

⎡⎢⎢⎢⎢⎢⎢⎣
nte∑
j=1

log

⎛⎜⎜⎜⎜⎜⎜⎝
b∑

k=1

βk exp

⎛⎜⎜⎜⎜⎜⎝−‖xte
j − ck‖2
2γ2

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ ,

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
βk ≥ 0 for k = 1, . . . , b,

1
ntr

ntr∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
b∑

k=1

βk exp

⎛⎜⎜⎜⎜⎝−‖xtr
i − ck‖2
2γ2

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ = 1.

A pseudo code of KLIEP is described in Table 1. The
tuning parameter γ can be optimized based on likelihood
cross-validation (LCV) [12].

Table 1 Pseudo code of KLIEP. ‘./’ indicates the element-wise division.
Inequalities and the ‘max’ operation for vectors are applied in an element-
wise manner.

Input: {xtr
i }ntr

i=1, {xte
j }nte

j=1
Output: ŵ(x)
Choose {ck}bk=1 as a subset of {xte

j }nte
j=1;

A j,k ← exp
(
−‖xte

j − ck‖2/(2γ2)
)
;

bk ← 1
ntr

∑ntr
i=1 exp

(
−‖xtr

i − ck‖2/(2γ2)
)
;

Initialize β(> 0) and ε (0 < ε 
 1);
Repeat until convergence

β← εA�(1./Aβ);
β← β + (1 − b�β)b/(b�b);
β← max(0,β);
β← β/(b�β);

end

3. Empirical Evaluation

In this section, we experimentally evaluate the performance
of the proposed method using in-house face-age datasets.

We use the face images recorded under 17 different
lighting conditions: for instance, average illuminance from
above is approximately 1000 lux and 500 lux from the front
in the standard lighting condition, 250 lux from above and
125 lux from the front in the dark setting, and 190 lux from
left and 750 lux from right in another setting (see Fig. 2).
Note that these 17 lighting conditions are diverse enough to
cover real-world lighting conditions. Images were recorded
as movies with camera at depression angle 15 degrees. The
number of subjects is approximately 500 (250 for each gen-
der). We used a face detector for localizing the two eye-
centers, and then rescaled the image to 64 × 64 pixels. The
number of face images in each environment is about 2500
(5 face images × 500 subjects).

As pre-processing, a neural network feature extrac-
tor [14] was used to extract 100-dimensional features from
64 × 64 face images. The kernel regression model (1) with
the following Gaussian kernel was employed for the ex-
tracted 100-dimensional data:

Kσ(x, x′) = exp

(
−‖x − x′‖2

2σ2

)
.

We constructed the male/female age prediction models only
using male/female data, assuming that gender classification
had been correctly carried out.

We split the 250 subjects into the training set (200 sub-
jects) and the test set (50 subjects). The training set was
used for training the kernel regression model (1), and the test
set was used for evaluating its generalization performance.
For the test samples {(xte

i , y
te
i )}nte

i=1 taken from the test set in
the environment with strong light from a side, age-weighted
mean square error (WMSE)

WMSE =
1

nte

nte∑
i=1

(yte
i − f (xte

i ; α̂))2

wage(yte
i )2

was calculated as a performance measure. The training test
sets were shuffled 5 times in such a way that each subject
was selected as a test sample once. The final performance
was evaluated based on the average WMSE over the 5 trials.

We compared the performance of the proposed method
with the two baseline methods:

Baseline method 1: Training samples were taken only from

Fig. 2 Examples of face images under different lighting conditions (left:
standard lighting, middle: dark, right: strong light from a side).
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Table 2 The test performance measured by WMSE.

Male Female
Baseline method 1 2.83 6.51
Baseline method 2 2.64 4.40
Proposed method 2.54 3.90

the standard lighting condition and age-weighted regu-
larized least-squares (3) was used for training.

Baseline method 2: Training samples were taken from all
17 different lighting conditions and age-weighted reg-
ularized least-squares (3) was used for training.

The importance weights were not used in these baseline
methods. The Gaussian width σ and the regularization pa-
rameter λwere determined based on 4-fold CV over WMSE,
i.e., the training set was further divided into a training part
(150 subjects) and a validation part (50 subjects).

In the proposed method, training samples were taken
from all 17 different lighting conditions (which is the same
as the baseline method 2). The importance weights were es-
timated by KLIEP using the training samples and additional
unlabeled test samples; the hyper-parameter γ in KLIEP
was determined based on 2-fold LCV [12]. We then com-
puted the average importance score over different samples
for each lighting condition and used the average importance
score for training the regression model. The Gaussian width
σ and the regularization parameter λ in the regression model
were determined based on 4-fold IWCV [11].

Table 2 summarizes the experimental results, showing
that, for both male and female data, the baseline method 2 is
better than the baseline method 1 and the proposed method
is better than the baseline method 2. This illustrates the ef-
fectiveness of the proposed method. Note that WMSE for
female subjects is substantially larger than that for male sub-
jects. The reason for this would be that female subjects
tend to have more divergence such as short/long hair and
with/without makeup, which makes prediction harder [16].

4. Conclusion and Future Works

Lighting condition change is one of the critical causes of
performance degradation in age prediction from face im-
ages. In this paper, we proposed to employ a machine learn-
ing technique called covariate shift adaptation for alleviat-
ing the influence of lighting condition change. We demon-
strated the effectiveness of our proposed method through
real-world perceived age prediction experiments.

In the experiments in Sect. 3, test samples were col-
lected from a particular lighting condition, and samples
from the same lighting condition were also included in the
training set. Although we believe this setup to be practical,
it would be interesting to evaluate the performance of the
proposed method when no overlap in the lighting conditions
exists between training and test data.

In principle, the covariate shift framework allows us
to incorporate not only lighting condition change but also
various types of environment change such as face pose vari-
ation and camera setting change. In our future work, we will

investigate whether the proposed approach is still useful in
such challenging scenarios.

Recently, novel approaches to density ratio estima-
tion for high-dimensional problems have been explored [5],
[10], [13], [17]. In our future work, we would like to incor-
porating these new ideas into our framework of perceived
age estimation, and see how the prediction performance can
be further improved.
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