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LETTER

Hole-Filling by Rank Sparsity Tensor Decomposition for Medical
Imaging

Lv GUO†a), Student Member, Yin LI†, Jie YANG†, Nonmembers, and Li LU†, Student Member

SUMMARY Surface integrity of 3D medical data is crucial for surgery
simulation or virtual diagnoses. However, undesirable holes often exist
due to external damage on bodies or accessibility limitation on scanners.
To bridge the gap, hole-filling for medical imaging is a popular research
topic in recent years [1]–[3]. Considering that a medical image, e.g. CT or
MRI, has the natural form of a tensor, we recognize the problem of medical
hole-filling as the extension of Principal Component Pursuit (PCP) prob-
lem from matrix case to tensor case. Since the new problem in the tensor
case is much more difficult than the matrix case, an efficient algorithm for
the extension is presented by relaxation technique. The most significant
feature of our algorithm is that unlike traditional methods which follow a
strictly local approach, our method fixes the hole by the global structure
in the specific medical data. Another important difference from the pre-
vious algorithm [4] is that our algorithm is able to automatically separate
the completed data from the hole in an implicit manner. Our experiments
demonstrate that the proposed method can lead to satisfactory results.
key words: tensor analysis, hole-filling, medical image processing

1. Introduction

Surface integrity of 3D medical image sets is important
for modern medical operations such as surgery simulation,
model processing and virtual diagnosis [5]–[7]. Unfortu-
nately, undesired holes are often brought to the surface be-
cause of imperfection of prototypes or accessibility limita-
tion of scanning devices. Therefore it is of significant impor-
tance to design efficient approaches for detecting and filling
holes on the surface from 3D medical image sets.

Essentially, the problem of hole-filling is to build up the
relationship between the known elements and the unknown
ones. So far, the problem is still an open question [1]–[3].
Traditional methods usually follow a strictly local approach,
by the assumption that the missing entries mainly depend
on their neighbors and the dependency decay fast as the dis-
tance increases. However, the global structure indeed plays
a key role in estimating the missing entries. Thus, it is ad-
vantageous to develop a tool to directly fill holes according
to the global information in medical data.

Typically, the medical data, either the CT or the MRI
data, has the natural form of a multi-dimensional array,
namely the tensor. For the 2D case, i.e. a matrix, the “rank”
provides useful cues to capture the global information. The
“rank” itself is non-convex, but it can be approximated by
its convex envelop, namely the trace norm. Another use-
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ful prior for hole-filling is “sparsity”, since the hole usu-
ally occupies a small portion of the data. It is until recently
that much attention have been focused on the rank-sparsity
problem [8], [9], [12], namely the Principal Component Pur-
suit (PCP). These works seek to directly decompose the data
into a low-rank part plus a sparse part.

[4] proposes tensor completion for missing value esti-
mation. However, their method is not applicable in medical
imaging, since tensor completion requires the locations of
missing data while in many real world medical cases, the
location of the hole is unknown. Inspired by the work of
[4] and [8], and based on the previous work of [12], we ex-
tend the PCP problem for matrix case to tensor case as a
solution to the problem of hole-filling for medical data. Our
solution could automatically detect the location of the miss-
ing values and recover the completed data, In addition, the
problem of tensor PCP is formulated as a convex optimiza-
tion as in [12] and a block coordinate descent (BCD) based
algorithm is presented to efficiently solve this problem.

The paper is organized as follows: In Sect. 2, we in-
troduce the PCP problem in the tensor case and present our
algorithm. In Sect. 3, we show the experiment of our algo-
rithm and provide our analysis on the results. Finally, Sect. 4
concludes the paper.

2. Algorithm Description

In this section, we consider the hole-filling problem as an
extension of PCP problem from matrix to tensor. By our
method, the original medical data is recognized as a 3-mode
tensor and decomposed into a recovered “low-rank” data
plus a small (sparse) hole. And we use the relaxation tech-
nique towards an efficient solution.

2.1 Hole-Filling by Tensor Decomposition

In general, the medical data (CT or MRI) has the form of
a three dimensional array, with each slice as a grey level
image. Such a format follows the natural form of a three-
mode tensor. Formally, a three-mode tensor is defined as
X ∈ RI1×I2×I3 , with its elements xi1i2i3 ∈ R. A basic operation
for the tensor is to convert a tensor into a matrix, also called
matricizing or unfolding. The “unfold” operation along the
k-th mode on a tensor X is defined as un f old(X, k) := X(k) ∈
RIk×(I1···Ik−1Ik+1···I3). Accordingly, its inverse operator f old can
be defined as f old

(
X(k), k

)
:= X. Moreover, denote ‖X‖F =

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



LETTER
397

⎛⎜⎜⎜⎜⎜⎜⎝
∑

i1,i2,i3

∣∣∣xi1i2i3

∣∣∣2
⎞⎟⎟⎟⎟⎟⎟⎠

1
2

and ‖X‖1 :=
∑

i1,i2,i3

∣∣∣xi1i2i3

∣∣∣ as the Frobenius

norm and l1 norm of a tensor. Then, we have ‖X‖F =
∥∥∥X(k)

∥∥∥
F

and ‖X‖1 =
∥∥∥X(k)

∥∥∥
1

for any 1 ≤ k ≤ 3.
The ultimate goal of hole-filling is to identify the hole

and recover the completed data. A reasonable assumption
is that the original corrupted data is an addition of the com-
pleted data and the (possible) hole. Thus, we could seek to a
direct decomposition as proposed in [12]. Since the tensor is
a higher dimensional extension of matrix, the PCP algorithm
can be extended to the tensor case by solving the following
optimization:

min
L,S

‖L‖tr + λ ‖S ‖1
s.t. L + S = X

(1)

where X, L and S are three-mode tensors with identical size
in each mode. X is the original data tensor. L and S rep-
resent the correspondent low rank part (the recovered data)
and sparse part (the hole) respectively.

However, the notion of trace norm for tensors of three-
mode tensor is subtle. For example, there are alternative
approaches for tensor decompositions [10], [11], leading to
different definition of the trace norm. We propose the fol-
lowing definition for the tensor trace norm as in [4], [12]

‖X‖tr :=
1
n

n∑
i=1

∥∥∥X(i)

∥∥∥
tr

(2)

Essentially, the trace norm of a tensor is the average of the
trace norms of all matrixes unfolded along each mode. In
particular, when the mode n = 2 (i.e. the matrix case), this
definition is consistent with the matrix trace norm, since
XT

(1) = X(2). Under this definition, the optimization in (1)
can be rewritten as:

min
L,S

3∑
i=1

∥∥∥L(i)

∥∥∥
tr
+ λ ‖S ‖1

s.t. L + S = X
un f old

(
L(i), i

)
= L ∀i

(3)

2.2 Simplified Formulation

Problem (3) is hard to solve due to the interdependent trace
norm and l1 norm constraint. To simplify the problem, we
adopt similar optimization scheme as in [12] by introducing
additional auxiliary matrix Mi = L(i) and Ni = S (i). Thus,
the formulation is rewritten as

min
L,S ,Mi

3∑
i=1

‖Mi‖tr + λ
3∑

i=1

‖Ni‖1
s.t. L + S = X

Mi = L(i) Ni = S (i) ∀i

(4)

In (4), the constraints Mi = L(i) and Ni = S (i) still en-
force the consistency of all Mi and Ni. Thus, we could fur-
ther relax the equality constrains Mi = L(i) and Ni = S (i) by

∥∥∥Mi − L(i)

∥∥∥
F
≤ ε1 and

∥∥∥Ni − S (i)

∥∥∥
F
≤ ε2. Furthermore, if we

allow a dense noise term over X, we can relax L+ S = X by
‖L + S − X‖F ≤ ε3 . Therefore, we get the relaxed form:

min
L,S ,Mi

3∑
i=1

‖Mi‖tr + λ
3∑

i=1

‖Ni‖1
s.t.

∥∥∥Mi − L(i)

∥∥∥
F
≤ ε1 ∀i∥∥∥Ni − S (i)

∥∥∥
F
≤ ε2 ∀i

‖L + S − X‖F ≤ ε3

(5)

For certain αi, βi and γi, (5) can be converted to its
equivalent form by Lagrange multiplier.

min
L,S ,Mi

1
2

3∑
i=1

αi

∥∥∥Mi − L(i)

∥∥∥
F

+
1
2

3∑
i=1

βi

∥∥∥Ni − S (i)

∥∥∥
F

+
1
2

3∑
i=1

γi

∥∥∥Mi + Ni − X(i)

∥∥∥
F

+

3∑
i=1

‖Mi‖tr + λ
3∑

i=1

‖Ni‖1

(6)

Intuitively, the weights αi, βi and γi indicate the preference
towards different ‘unfold’ operation, i.e. the configuration
of the tensor. For example, we would prefer to explain
the tensor representation of the CT data as the collection of
slices. The optimization problem in (6) is convex but non-
differentiable. Next, we focus on its solution.

2.3 The Proposed Algorithm

The alternative direction strategy is presented for the opti-
mization (6), leading to a block coordinate descent (BCD)
algorithm. The core idea of the BCD is to optimize a group
of variables while fixing the other groups. Thus, to achieve
the optimum solution, we estimate Ni, Mi, L and S se-
quentially in each iteration. For clarity, we first define the
“shrinkage” operator Dτ (x) by

Dτ (x) = max{sgn(x)(|x| − τ), 0} (7)

where sgn(x) is the sign function. The operator is extended
to the tensor case by performing the shrinkage towards each
element.

Computing Ni: The optimal Ni with all other variables fixed
is the solution to the following sub-problem

min
Ni

βi

2

∥∥∥Ni − S (i)

∥∥∥
F

+
γi

2

∥∥∥Mi + Ni − X(i)

∥∥∥
F
+ λ ‖Ni‖1

(8)

By the well-known l1 minimization [13], the global mini-
mum of the optimization problem in (8) is given by
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N∗i = D λ
βi+γi

(
βiS (i) + γi

(
X(i) − Mi

)
βi + γi

)
(9)

where Dτ is the “shrinkage” operation.

Computing Mi: The optimal Mi with all other variables
fixed is the solution to the following sub-problem

min
Mi

αi

2

∥∥∥Mi − L(i)

∥∥∥
F

+
γi

2

∥∥∥Mi + Ni − X(i)

∥∥∥
F
+ ‖Mi‖tr

(10)

From current trace norm minimization literature [14], the
global minimum of the optimization problem in (10) is given
by

M∗i = UD 1
αi+γi

(Λ) VT (11)

where UΛVT is the singular value decomposition given by

UΛVT =
αiL(i) + γi

(
X(i) − Ni

)
αi + γi

(12)

Computing S i: The optimal S with all other variables fixed
is the solution to the following sub-problem

min
S

1
2

n∑
i=1

βi

∥∥∥Ni − S (i)

∥∥∥
F

(13)

It is easy to show that the solution to (13) is given by

S ∗ =

n∑
i=1

βi f old (Ni, i)

n∑
i=1

βi

(14)

Computing Li: The optimal L with all other variables fixed
is the solution to the following sub-problem

min
L

1
2

n∑
i=1

αi

∥∥∥Mi − L(i)

∥∥∥
F

(15)

Similar to (13), the solution to (15) is given by

L∗ =

n∑
i=1

αi f old (Mi, i)

n∑
i=1

αi

(16)

The algorithm is called Rank Sparsity Tensor Decom-
position (RSTD) [12]. The pseudo-code of RSTD is sum-
marized in Algorithm 1. We choose the difference of L and
S in consecutive iterations as the stopping criterion. We can
further show that BCD for RSTD is guaranteed to reach the
global optimum, since the first three terms in (6) are differ-
entiable and the last two terms are separable [15].

Algorithm 1 (RSTD: Rank Sparsity Tensor )
Decomposition)

Input: X

Output: L, S

1. Set L = X, S = 0, Mi = L(i), Ni = 0

2. while no convergence
3. for i = 1 to 3

4. N∗i = D λ
βi+γi

(
βiS (i) + γi

(
X(i) − Mi

)
βi + γi

)

5. M∗i = UD 1
αi+γi

(Λ) VT

6. end for

7. S ∗ =

n∑
i=1

βi f old (Ni, i)

n∑
i=1

βi

8. L∗ =

n∑
i=1

αi f old (Mi, i)

n∑
i=1

αi

9. end while

3. Experiments

We have implemented the hole-filling algorithm using C++
and tested the algorithm on different real world medical
data. Two of the cases are shown in Fig. 1. Due to the
fact that a good initialization would greatly benefit the ef-
ficiency of the iterations, the local hole-filling algorithm [1]
is first performed for the initialization of our method. More-
over, for better visual effect, a surface reconstruction al-
gorithm [16] is used to re-mesh the model after the tensor
data is completed. Since deformation often exists on the
surrounding region of the hole in medical images, leading
to deformed result in recovered data, a point-deletion algo-
rithm [17] is used to eliminate the influence by removing the
deformed points from the surrounding region.

The top two rows show the result of RSTD on a CT
data and the bottom two rows show the results on a MRI
data. From the experiments, we can see that the algorithm
can blindly separate a reasonable low-rank completed data
from the hole. To highlight the effect of RSTD, we show the
result data from different viewpoints in the first and fourth
rows. Notice that the hole in the upper rows is fairly large
(approximately 120 cm2) and the one in the lower rows lo-
cates in the region of high curvature (brow ridge). These two
kinds of data are representative in real world application and
our algorithm demonstrates a surprising result.

Since the proposed method follows a global approach,
the algorithm deals with all data in each iterations, yielding
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Fig. 1 Hole-filling by RSTD for medical imaging. The top two rows
show the result on a CT data and the bottom two rows show the result on a
MRI data. To highlight the effect of our algorithm, we show the result data
from different viewpoints in the first and fourth rows.

a slow solution. However, during the experiments, we find
that for most of the cases, the algorithm is able to converge
reasonably fast in dozens of iterations with the tolerance of
1 × 10−6.

4. Conclusion and Future Work

In this paper, we propose a hole-filling solution for medical
imaging by extending the Principal Component Pursuit to
the tensor case and designing a highly efficient algorithm for
the extension. To our best knowledge, we are the first to use
global information for medical hole-filling problem. Both
the theoretical derivation and practical experiment have
demonstrated that the extension is suitable for filling holes
in medical imaging. We are working on the efficiency of our
algorithm, e.g. numerical approximations of a few largest
singular values, since large-scale full SVD is slow and un-
necessary. We would also like to evaluate the effectiveness
of the different methods on synthetic data in future work.
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