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Learning to Generate a Table-of-Contents with
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SUMMARY In the text summarization field, a table-of-contents is a
type of indicative summary that is especially suited for locating informa-
tion in a long document, or a set of documents. It is also a useful sum-
mary for a reader to quickly get an overview of the entire contents. The
current models for generating a table-of-contents produced relatively low
quality output with many meaningless titles, or titles that have no overlap-
ping meaning with the corresponding contents. This problem may be due
to the lack of semantic information and topic information in those mod-
els. In this research, we propose to integrate supportive knowledge into
the learning models to improve the quality of titles in a generated table-
of-contents. The supportive knowledge is derived from a hierarchical clus-
tering of words, which is built from a large collection of raw text, and a
topic model, which is directly estimated from the training data. The rela-
tively good results of the experiments showed that the semantic and topic
information supplied by supportive knowledge have good effects on title
generation, and therefore, they help to improve the quality of the generated
table-of-contents.
key words: text summarization, supportive knowledge, semi-supervised
learning

1. Introduction

A table-of-contents is a list of divisions (chapters or articles)
and the pages on which they start ∗. In the text summariza-
tion field, a table-of-contents is a kind of indicative sum-
mary, which is especially suited for locating information in
a long document, or a set of documents. For instance, a
table-of-contents could play a role as a navigation tool for
accessing information in a long document on a mobile de-
vice [1], or understanding a long, unstructured transcript of
an academic lecture or a meeting [2]. A reader could use
a table-of-contents to locate all the parts in a set of docu-
ments that are relevant to his/her interests. In addition to
the above functions, a table-of-contents with its meaning-
ful titles, could help a reader get an overview of the entire
contents very quickly.

Given a long document, or more generally, a set of doc-
uments, our goal is to generate a tree, wherein a node rep-
resents a title that summarizes the content of a segment (in
a long document), or segments that have similar content (in
a set of documents). That tree—a hierarchical structure—
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can be seen as a table-of-contents [2]. This process involves
three tasks: (1) separating every document into a hierarchi-
cal structure of segments (a tree of segments), (2) merging
all the tree of segments to form a unique tree, and (3) gen-
erating titles for every segment in the above tree to form
a table-of-contents. In this research, we mainly focus on
the third task, with the assumption that the first and sec-
ond tasks could be done using one of a series of exist-
ing methods, such as TextTiling [3], C99 [4], MinCutSeg [5],
SenOrder [6], CST [7].

So far, the literature on the title generation task is rel-
atively sparse [2], [8], [9]. Angheluta, et al. [8] presents an
unsupervised approach to generating a title for a segment.
The title is the best noun phrase extracted from the segment.
Their method uses some simple grammatical rules to iden-
tify the noun phrases, and uses term frequencies to score the
noun phrases. This approach usually produces well-formed
titles. However, the extracted titles are usually too short,
with very low quality in reflecting the meaning of the seg-
ments. Furthermore, every title is made independently, and
therefore, the generated table-of-contents lacks coherence.
Branavan, et al. [2] presents a supervised learning model
for generating a table-of-contents. Their model intends to
address most of the problems of the previous approaches.
Their model captures most important features at the word
level and the word sequence level in generating titles, such
as position of a word, its TF*IDF, part-of-speech informa-
tion, language model score, and so on. They also propose
an additional model, which captures the relations between
titles, to generate a more coherent table-of-contents. How-
ever, in their experimental results, in spite of better scores
in comparison to other baseline models, a large number of
titles in the generated table-of-contents are meaningless or
not related to the content of the corresponding segments.

In this research, we try to generate a table-of-contents
with meaningful titles with the following idea: a good ti-
tle should have a topic relation to the text. Therefore,
we should use as much semantic or topic information as
possible to help the model to generate a meaningful title
that has strong relation to the content. The semantic and
topic information, which are supportive knowledge, used in
this research are derived from a hierarchical clustering of
words [10], and a topic model [11]. We follow a two-stage
semi-supervised approach to use supportive knowledge in a
discriminative learning model, which is a perceptron-based
learning model [12]–[14]. The supportive knowledge is de-
rived from un-annotated texts using unsupervised learning
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Fig. 1 A portion of a table-of-contents generated by our model.

algorithms, which are Brown clustering algorithm [10] and
Latent Dirichlet Allocation [11].

Our experimental results on the public dataset show
that our approach could help the model to produce a table-
of-contents with well-formed and meaningful titles. The
evaluation results also show that the titles generated by
our model have higher quality than those of the baseline
model [2]. Figure 1 shows a portion of a table-of-contents
generated by our model.

The next section presents the structured learning model
for generating a table-of-contents. Section 3 describes the
supportive knowledge used in this research, how to derive
items, and how to use them. Section 4 explains features
used for the learning model. Section 5 presents our exper-
iments on the public dataset, with results and some discus-
sions. Section 6 gives some conclusions.

2. Structured Learning Model for Generating a Table-
of-Contents

In this research, we mainly focus on the third task: generat-
ing a table-of-contents from a hierarchical structure of seg-
ments. In other words, we try to generate a tree of titles from
a tree of segments. To formalize this task, we employ the ap-
proach used in [2] with some modifications in the learning
algorithm.

This task is formalized as a structured learning prob-
lem, in which the learning algorithm produces a model that
will be used to generate a tree of titles T from a tree of
segments S. This model is, in turn, decomposed into two
components, the local model and the global model. The lo-
cal model is used to generate a list of candidate titles for
every segment s ∈ S. If the size of that list is one, we have
a one-best model that generates a title t ∈ T for a segment
s ∈ S. The global model is mainly used for capturing the
relations between the candidate titles generated by the local
model to form a coherent table-of-contents.

We begin the presentation of the models with some
common notations. A tree of segments S and its tree of titles
T are provided as training data. Every segment s ∈ S has a
corresponding title t ∈ T to form a pair (segment, title). All
the pairsD = {(s, t)} are provided as the training data for the
local model. |D| is the size of D, and |t| is the length of t.
f (s, z) is feature vector of a segment s and a partial title z.
wl and wg are the weight vectors of the local model and the
global model, respectively.

Fig. 2 Training algorithm for the local model.

2.1 The Local Model

The local model aims to generate a list of candidate titles
given a segment of text. As is common in text summa-
rization, it assumes that a title could be generated from
the words inside the text [15]. There are two common ap-
proaches based on this assumption: extraction and genera-
tion. The former approach normally extracts the most im-
portant clause or the most important noun phrase from the
text to form a title. The latter approach normally chooses
words inside the text to form a title in a generational style.
In this model, the latter approach is employed.

In the training step, a vine-growth strategy [16] is em-
ployed to learn a model for generating a title of a segment
of text by a perceptron-based algorithm. The training pro-
cess simulates the process of building a title t incrementally
by appending words inside the given segment s at each it-
eration (as in Fig. 2). By following this strategy, the size
of the search space is exponential to the length of the de-
sired title, therefore, a beam search algorithm is used. At
each iteration, the beam B keeps up to the k most promising
partial titles. This strategy has been successfully applied in
other NLP tasks, such as parsing [17] and chunking [16]. In
comparison to the original version, we use an averaged per-
ceptron model, and update the parameters of the model at
the end of each iteration.

In the algorithm in Fig. 2, N is the number of iterations
of the perceptron-based learning algorithm. At each itera-
tion, by using function PartialGen, B is grown by append-
ing every word in s to each partial title in B to make a list of
partial titles of length j. After that, by using function Get-
Top, B is pruned to contain k top-ranked titles based on the
score wl · f (s, z),∀z ∈ B. In this score, wl used in iteration i
is the weight vector of the iteration i − 1. The weight vector
is updated whenever B does not contain the prefix t[1.. j] of
the true title t. At the same time, B is pruned to contain only
t[1.. j].

In the decoding step of the local model, the algorithm
in Fig. 3 produces a list of candidate titles by incrementally
generating titles from the words inside the segment of text.
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Fig. 3 Generating a list of candidate titles for a text segment.

The length of the desired title is provided as a parameter of
the algorithm [2]. This algorithm uses the same strategy as
in training to reduce the size of the search space.

In the algorithm in Fig. 3, s is the set of words w of the
input text segment; l is the length of the desired title of that
segment; and B is a beam containing the k top promising
partial titles, which is similar to B in the training algorithm.
Q is a sorted list of the titles made by appending every word
w ∈ s to each partial title z ∈ B. The output of this algorithm
is the top k candidate titles in the last beam B, which are
used in the global model.

2.2 The Global Model

Normally, we can use the best title from among the candi-
date titles, which are produced by the local model, to form a
title of a node in the table-of-contents. However, the process
of generating candidate titles for a segment is independent
of the other segments. Therefore, we need a global model
to build a coherent table-of-contents, which can capture the
relations between titles.

In the global model, the input is a tree T , wherein a
node contains a list of k candidate titles of the correspond-
ing segment s ∈ S. The output of this model is a tree with
the same structure, wherein a node contains only one ti-
tle. In this model, the input and the output are hierarchi-
cal structures (trees). This is different from the local model,
in which the input and the output are sequences of words
(a segment of text and a title). However, we can still em-
ploy the learning and decoding algorithms used in the lo-
cal model. The technique used here is to traverse the tree
of titles in pre-order—the order of titles will appear in the
table-of-contents. By using this technique, we can also in-
crementally build the output tree using beam search, as in
the local model. The differences here are the elements used
in extending and pruning the beam. In the global model, at
a node in the pre-order traversing, a beam, which contains
a list of K partial trees, is grown by appending every can-
didate title of that node. After that, the beam is pruned to
contain a list of the K top-ranked partial trees. Similar to
the local model, partial trees are ranked by score, which is

the output value of the perceptron-based model.
The output of the decoding algorithm of the global

model is a tree of titles, which is also the desired table-of-
contents.

3. Supportive Knowledge

In this research, we aim to use supportive knowledge to
make the learning model take into account semantic and
topic information. Supportive knowledge could help the
model to improve the quality of the generated titles, and
therefore, the generated table-of-contents. To reduce the
cost of the training process, the supportive knowledge
should be easily derived from un-annotated text in an un-
supervised way. After that, we incorporate that knowledge
as features in a supervised learning model, which is de-
scribed in Sect. 2. This approach is called a two-stage semi-
supervised approach, which was previously used in [12]–
[14].

To achieve this goal, we, firstly, try to use word classes,
which have two advantages in our task [18]. First, because
the classes are created for use in a language model, they
should be useful in predicting subsequent words. This is
useful in title generation. However, at the same time, it
is natural to think of such classes as semantic in nature.
This could reduce the effects of the data sparsity. To get
word classes, which could help the model to exploit both
the above advantages, the word clustering algorithm should
use a similarity measure based on contextual properties of
words. In this research, we use the Brown clustering algo-
rithm [10], which is detailed in Sect. 3.1. The Brown algo-
rithm gets a large collection of raw text as an input and pro-
duce a hierarchical clustering of words. This hierarchical
structure allows us to choose an arbitrary number of clusters
with an arbitrary level of abstraction. This is the main ad-
vantage of this algorithm in comparison to K-Means based
algorithms.

We, secondly, try to use topic modeling, which could
provide topic information in title generation. This is based
on the idea: a good title should reflect most important top-
ics mentioned in the given segment of text. This relation
could be modeled by the similarity between topic distribu-
tion of the candidate titles and the text. Thereby, our model
could choose the title that best reflects topic information in
the text. In this research, we choose the most popular topic
modeling method, Latent Dirichlet Allocation [11], [19], to
estimate and infer the topics from the data. This method is
briefly introduced in Sect. 3.2.

Both word clustering and topic modeling are used to
produce clusters of words from a large collection of raw text.
However, word clustering normally produces hard clusters,
in which a word can belong to only one cluster. It is different
from topic modeling, in which a word can belong to many
clusters with different probabilities.
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Fig. 4 An example of a hierarchical clustering. Each word at a leaf is
encoded by a bit string with respect to the path from the root, where 0
indicates an “up” branch and 1 indicates a “down” branch.

3.1 The Brown Algorithm

The Brown algorithm is a hierarchical agglomerative word
clustering algorithm [10]. The input of this algorithm is a
large sequence of words w1,w2, . . . ,wn, which are extracted
from raw texts. The output of this algorithm is a hierar-
chical clustering of words—a binary tree—wherein a leaf
represents a word, and an internal node represents a clus-
ter containing the words in the sub-tree, whose root is that
internal node.

This algorithm uses contextual information—the next
word information—to represent properties of a word. More
formally, C(w) denotes the vector of properties of w (or w’s
context). We can think of our vector for wi as counts, for
each word wj, of how often wj followed wi in the corpus:

C(wi) = (|w1|, |w2|, . . . , |wn|)

C(wi) is normalized by the count of wi, and then we would
have a vector of conditional properties P(wj|wi). The clus-
tering algorithm used here is HAC-based, therefore, at each
iteration, it must determine which two clusters are combined
into one cluster. The metric used for that purpose is the min-
imal loss of average mutual information [18].

Figure 4 shows a portion of a hierarchical clustering,
which is derived from a small portion of text, which con-
tains 11 sentences and 116 words. This portion of text is
about tree and graph data structures in computer science.
From this tree, we can freely get a cluster of words by col-
lecting all words at the leaves of the sub-tree, whose root
is a chosen internal node. For instance, some clusters are:
{trees, capacity, length}, {structure, data, tree, graph, sepa-
rate, node}, {in, of }, {widely, hierarchical}, and so on.

To use word clustering information in our model at sev-
eral levels of abstraction, we encode each word cluster by a
bit string that describes the path from the root to the chosen

Fig. 5 The generative graphical model of LDA.

internal node. The path is encoded as follows: we start from
the root of the hierarchical clustering, “0” is appended to
the binary string if we go up, and “1” is appended if we go
down. For instance, to encode above four clusters, we use
the following bit strings “100”, “110”, “010”, and “1111”,
respectively. If we want to use a higher level of abstraction,
we can simply combine the clusters that have the same pre-
fix. For instance, if we need only two clusters, we can use
the prefix with the length of 1. In that situation, all the words
in the left sub-tree are in a cluster encoded by “1”, and all
the words in the right sub-tree are in another cluster encoded
by “0”.

3.2 Topic Modeling with LDA

Latent Dirichlet Allocation (LDA) [11], [19] is a probabilis-
tic generative model that can be used to estimate the proper-
ties of multinomial observations by unsupervised learning.
With respect to text modeling, LDA is a method to perform
so-called Latent Semantic Analysis (LSA). It is shown that
the co-occurrence structure of terms in text documents can
be used to recover this latent topic structure, notably with-
out any usage of background knowledge. Latent-topic rep-
resentations of text, in turn, allows modeling of linguistic
phenomena like synonymy and polysemy. This could help
our model to capture the relations between the titles and the
text at the semantic level, rather than by lexical overlapping.

The generative graphical model of LDA is shown in
Fig. 5. This generation process can be interpreted as fol-
lows [11]: a document containing Nm words �wm = {wm,n}Nm

n=1

is generated by first picking a distribution over topics �θm
from a Dirichlet distribution Dir(�α), which determines topic
assignments for words in that document. Then the topic as-
signment for each word placeholder [m, n] is performed by
sampling a particular topic zm,n from multinomial distribu-
tion Mult(�θm). Finally, a particular word wm,n is generated
for the word placeholder [m, n] by sampling from multino-
mial distribution Mult(�ϕzm,n ). The topics �ϕk are sampled once
for the entire corpus. K is the number of topics, M is the
number of documents in the corpus, and Nm is the number
of words in document m.

In the title generation process of our model, the topic
distribution of a segment of text is used as a type of feature.
The topics of words �zm inside that segment are used to com-
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Table 1 Baseline features of the local model for capturing selection con-
straints at the word level and contextual constraints at the word sequence
level.

Features Type
Word level

Is it a stop word or an auxiliary word? binary
Its TF*IDF score real
Its part-of-speech binary
Its first occurrence in segment by word real
Its first occurrence in segment by sentence real
Does it occur in the sibling or the parent segments? binary

Word sequence level
Uni-gram, bi-gram and tri-gram language model scores real
The frequency of noun phrases in the word sequence at
segment level and corpus level

real

pute the topic distribution of every candidate title. The topic
distribution information helps our model capture the topic
relations between the segment of text and the candidate ti-
tles.

4. Features

The model is decomposed into two components, the local
model and the global model. Therefore, the feature set is
also divided into two subsets for use in the local model and
the global model, respectively.

4.1 Local Features

The goal of the local model is to generate a list of candi-
date titles for a given segment of text. It involves indentify-
ing interest words in the text, and combining them into the
title [20]. Therefore, the feature set for this model should
capture selection constraints at the word level, and the con-
textual constraints at the word sequence level. More specif-
ically, the features at word level plays as a filter to select
appropriate words to be included in the candidate titles. The
features at word sequence level plays as a filter to select and
rank the candidate titles via their fluency in language or the
relevance between title and the segment of text.

The local features are summarized in Table 1. These
features are used in the baseline models. As described in Ta-
ble 1, some types of features are normalized. For instance,
“Its first occurrence in segment by sentence” is the relative
position of the first sentence containing the word, which is
normalized by the number of sentences in the given seg-
ment.

4.2 Supportive Knowledge Features

The supportive knowledge is incorporated into the local
model in the form of features.

For using the word clustering information, each clus-
ter of words is represented by a bit string as described in
Sect. 3.1. To exploit various levels of abstraction of the word
clustering, we use corresponding prefixes of the bit string of
a word as features. Then, an indicator function is created for
each type of prefix and is used as a feature. In experiments,

we use three levels of abstraction with three types of the pre-
fix length 4, 6, and 8, respectively. For instance, a indicator
function f 4

0110 can be defined as follows:

f 4
0110(w) =

{
1 if the 4-bits-prefix of w is 0110,
0 otherwise.

For the word “language” with bit string “10110111100”, the
following indicator functions are activated: f 4

1011, f 6
101101,

and f 8
10110111. With this representation method, we can limit

the number of word clustering features regardless of the
cluster size.

To exploit topic information, we use it at both word
level and word sequence level. At the word level, the topic
distribution information of a word is used. For instance, if
the vector of topic counts of a word wi in a given segment
of text is �zi = (|z1

i |, |z2
i |, . . . , |zK

i |), we normalize that vector
by the number of occurrences of wi in that segment. The
normalized vector is directly incorporated into the feature
set as a selection feature.

At the word sequence level, for each partial title at each
iteration of the training and decoding algorithms, the topic
distribution is easily computed by normalizing the sum of
the vectors of topic counts of all the words in that partial
title by the total number of occurrences of all the words in
the given segment s. For instance, topic distribution of a
partial title t = w1w2 . . .wl is computed as:

p(zi
t |t, s) =

∑l
j=1 |zi

j|∑l
j=1 |wi

j|
, i = 1 . . .K

To take into account the relevance between the partial title
and the segment of text, we measure the similarity between
the topic distribution of the partial title pt and the topic dis-
tribution of the segment of text ps:

sim(pt, ps) = 10−βIRad(pt ,ps)

where β is a scale parameter, which is normally set to 1 in
practice, and IRad(p, q) is the information radius between
two distribution p and q [21]. IRad(p, q), in turn, is defined
via Kullback–Leibler divergence KL(p, q) as follows:

IRad(p, q) = KL
(
p
∥∥∥∥∥ p + q

2

)
+ KL

(
q
∥∥∥∥∥ p + q

2

)

where

KL(p‖q) =
∑

i

pi log
pi

qi

The above similarity score is incorporated into the feature
set as a contextual feature.

4.3 Global Features

The goal of the global model is to make a coherent table-
of-contents by choosing the most appropriate title for each
node in the tree of titles. This model has to account for the
relations between titles in a hierarchical structure. Given a
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partial tree of titles and a candidate title of the next node in
the pre-order traversing, three types of features are used to
capture that relation:

1. Whether the title is redundant at various levels of the
tree: at the sibling nodes, at the parent node.

2. The rank of the title provided by the local model via its
score. With this feature, the global model can exploit
the preferences of the local model in the title generation
process.

3. The parallel structure of titles that have the same par-
ent node. This phenomena is popular in a table-of-
contents. For instance, in the dataset used in this re-
search, a section titled “Performance of Quicksort”
has three subsections titled “Worst case partitioning”,
“Best case partitioning”, and “Balanced partitioning”.

5. Experiments

5.1 Data

In experiments, we use a public dataset † for training and
testing the model [2]. This dataset is, actually, the table-of-
contents of the textbook “Introduction to Algorithms” [22].
This book contains 564 sections in 39 chapters. The depth
of the table-of-contents is 4. The authors of this dataset
treated the fragment of table-of-contents of each chapter as
a small table-of-contents with depth of 3. Thereby, we have
39 table-of-contents used for training and testing. We di-
vided this dataset into a development set and a test set at
a ratio of 80/20. For tuning the parameters of the model,
we divided the development set into a training set and a de-
velopment test set (dev-test set) for training and testing the
model before application to the test set. The ratio was also
80/20. Similar to [2], in our experiments, we use ten dif-
ferent randomizations to compensate for the small number
of available trees. For each randomization, we have done a
5-fold cross-validation to get the average score.

At the preprocessing step, the dataset is tokenized and
tagged by Stanford Log-linear Part-Of-Speech Tagger ††.
The noun phrases are extracted using regular expressions
chunking tool in NLTK †††. SRILM Toolkit †††† is used to
train the language model on the training set.

To build a hierarchical cluster of words, we use an
external corpus, the BLLIP corpus [23], which is a collec-
tion of raw text with approximately 30 million words. The
Brown algorithm implementation of Liang ††††† [13] ran on
that corpus to produce 1,000 word clusters. Some clus-
ters are shown in Table 2. The number 1,000 is the de-
fault setting for large corpora and has been widely used in
other research [12]–[14]. On the other hand, as described in
Sect. 4.2, we only use the prefixes of the bit string represen-
tation of the word cluster. Therefore, the number of cluster
features is limited regardless of the size of word clustering.

To estimate the topic model, we use the raw data in the
training set, in which each section is treated as an indepen-
dent document. After that, we infer the topic distribution

Table 2 Sample word clusters derived from BLLIP corpus and their bit
strings.

101010010010 101010010000 101101101011110
sorting construction review

partitioning restoration journal
labelling conversion selection
metering implementation survey
clustering execution encyclopedia
formatting installation encyclopaedia
tunnelling renovation timeline

. . . . . . . . .

Table 3 Most likely words of some sample topics.

Topic 1 Topic 5 Topic 23 Topic 81
circuit vertex tree section
input search minimum chapter

output edge spanning present
combinational vertices edge method

element directed algorithm application
gate breadth weight basic

boolean discovered set finally
figure white edges material
gates edges prim practical
clock gray safe based
wire reachable trees examine

register source section discusses
. . . . . . . . . . . .

for every section in the training set and the test set. Only
the inferred topic information of the training set is used in
the learning process as described in Sect. 4. To estimate and
infer the topic model, we use the LDA implementation of
Blei †††††† [11]. In each run, we re-estimate the topic model
with 100 topics on the training set. Some topics with their
most likely words are shown in Table 3. To choose the num-
ber of topics, we manually tuned on a development set. Sim-
ilar to the results in [24], the performance of the model be-
comes stable when we increase the number of topics, and
100 is a relatively good number of topics.

5.2 Evaluation

The baseline models used in evaluation are the flat discrimi-
native model (Baseline FD) and the hierarchical discrimina-
tive model (Baseline HD), which are the best models in [2].

The difference between the flat discriminative (FD)
models and the hierarchical discriminative (HD) models
is that the hierarchical discriminative models account for
global features, which capture the relations between titles
in the hierarchical structure. The flat discriminative model
omits those relations and simply chooses the highest ranked
title from the local model to form the title of a node in the
table-of-contents.

We compare the quality of the baseline model to our
†http://people.csail.mit.edu/branavan/
††http://nlp.stanford.edu/software/tagger.shtml
†††http://www.nltk.org
††††http://www.speech.sri.com/projects/srilm/
†††††http://www.eecs.berkeley.edu/˜pliang/software/
††††††http://www.cs.princeton.edu/˜blei/lda-c/
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Fig. 6 Fragments of the reference table-of-contents, along with baseline generated table-of-contents
and our generated table-of-contents.

Table 4 Results of experiments on public dataset.

Rouge-1 Rouge-L Rouge-W Match
Baseline FD 0.235 0.215 0.169 10.35
Baseline HD 0.246 0.226 0.178 11.75
FD+WC 0.252 0.231 0.182 10.60
HD+WC 0.301 0.290 0.229 12.80
FD+TM 0.302 0.290 0.252 13.40
HD+TM 0.322 0.327 0.269 13.60

four models. The first model denoted by FD+WC is a flat
discriminative model, which uses the local feature set and
word clustering based features. The second model denoted
by FD+TM is a flat discriminative model, which uses the
local feature set and topic model features. The third model
denoted by HD+WC is a hierarchical discriminative model,
which is based on the FD+WC model with the global fea-
tures set. The last model, denoted by HD+TM, is a hierar-
chical discriminative model, which is based on the FD+TM
model with global feature set.

The experimental results are evaluated using ROUGE
metrics [25], which is commonly used to assess the qual-
ity of machine-generated headlines [26]. All the scores are
averaged over ten randomizations of the dataset. Table 4
shows the experimental results with three scores ROUGE-
1, ROUGE-L, ROUGE-W, and the number of matched ti-
tles, which is the number of generated titles having the same
word sequence as original titles.

5.3 Discussion

Table 4 indicates that HD models achieve higher quality
than FD models. The reason is that HD models use the
global model that captures some useful information about
candidate titles, such as the rank of the most matched title
generated by the local model, the relations between titles in
the same tree (duplication, parallel structure). It is difficult
for the local model to take into account that information. On
the other hand, when the supportive knowledge is used, the
candidate titles are much more relevant to the content of the
segment of text. Specifically, 10-best candidate titles con-
tain about 50% matched titles, and 5-best candidate titles
contain about 20% matched titles. This means the global
model has bigger chance of choosing good title. Therefore,
the HD models generally have higher quality than the FD
models.

As described in Sect. 3, one of the advantages of word
clustering is the prediction the next word, which is naturally
appropriate to the title generation mechanism used in this
research. The experimental results and logs show that it has
good effects on choosing words for the candidate titles. Fig-
ure 6 shows a fragment of a table-of-contents generated by
the model HD+WC, in comparison to the same fragment
generated by the baseline model, and the reference frag-
ment. In that fragment, HD+WC chose the word “dictio-
nary” followed by “operations” to make a title for the seg-
ment describing the hash table rather than “many dictionar-
ies” by the baseline model. Another advantage of word clus-
tering is the various levels of abstraction of words, which
could help the model to reduce the effects of data sparsity.
Table 4 shows that FD+WC model can achieve higher qual-
ity than the baseline model without capturing the relations
between titles. On the other hand, word clustering is similar
to the part-of-speech in terms of grouping words by func-
tionality. Furthermore, word clustering can group words by
the category or topic. Some examples are shown in Table 2.
These characteristics of the word clustering affects the ti-
tle generation model in a similar way as the part-of-speech
does. In other words, some clusters have the higher impact
than others. For instance, the 6-bits-prefix cluster “100100”
containing “introduction”, “conclusion”, “overview”. . . has
a higher weight score than others, because they tend to be
occurred in the title more frequently than other words. That
is one of the advantages of our approach in comparison to
the baseline method. However, it also negatively affects the
ranking of candidate titles by promote titles containing com-
mon words, especially when the desired length of title is
short or the title locate at high level in the table-of-contents.
For instance, instead of choosing “recurrences” or some re-
lated words as the title of the chapter “Recurrences”, the
model chose “introduction”.

The topic modeling is even better in support of the
table-of-contents generation process. Table 4 shows the im-
provement of 0.083 averaged ROUGE-L score in compari-
son to the baseline model. This is the effect of topic-based
similarity score between the title and the given segment of
text. By using this similarity score as a feature in a linear
learning model, the model could put a title in a higher posi-
tion if the topic distribution of that title is closer to the topic
distribution of the given segment than the others. For in-
stance, in experiments, our model ranked the candidate title
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Table 5 Results of experiments that remove some type of feature.

Remove Rouge-1 Rouge-L Rouge-W Match
Lang. model 0.167 0.143 0.106 1.10
Position 0.173 0.156 0.118 6.10
TF-IDF 0.203 0.185 0.152 8.35
Sibling 0.219 0.200 0.156 9.10
POS Tag 0.220 0.202 0.158 9.15
NP Freq. 0.232 0.212 0.166 10.00
None 0.235 0.215 0.169 10.35

“computing the minimum cost” (score: −4.39, position: 1st)
in a higher position than the other “computing the matrix
product” (score: −7.69, position: 4th) in a segment with the
reference title “computing the optimal costs”. The reason
is that “matrix product” is only an example of computing
the optimal costs, and therefore, the candidate title contain-
ing that phrase is further than the first one in terms of topic.
However, the use of topic modeling is also noise sensitive.
For instance, in a segment of text discusses on a topic with
an example of another topic at the end, titles that are close to
the main topic usually have low ranks in comparison to gen-
eral meaning titles. For example, in segment titled “longest
common subsequence”, the 2-best candidate titles are “rep-
resenting the problem” and “the dna strands”.

To compare the impacts of word clustering and topic
modeling on the title generation task with the other feature
types in Table 1, we did some additional experiments, in
which we removed some type of feature from the baseline
model. Table 5 shows that the most important feature is
the language model score with −0.072 point of ROUGE-L
score. At the word level, the position of a word and its TF-
IDF are very important. The impact of POS tag is approxi-
mate the impact of the word clustering in Table 4, which is
suitable to our analysis on the use of word clustering. The
impact of frequency of noun phrases is very small and not
significant. Table 4 and Table 5 also show the high impact
of topic modeling on the title generation task with +0.075
point of ROUGE-L score.

6. Conclusion

In this paper, we proposed a supportive knowledge approach
for supporting the table-of-contents learning model. We also
proposed a method of integrating supportive knowledge into
the learning model to help the model capture semantic and
topic information at both the word level and the word se-
quence level. The supportive knowledge used in this re-
search is derived from the word clustering, which is acquired
from a large collection of raw text by an unsupervised learn-
ing algorithm. Another type of supportive knowledge is de-
rived from a topic model, which is directly estimated from
the training dataset. We performed experiments on a public
dataset and obtained relatively good results in comparison
to the current state-of-the-art model.

Our approach is general enough to be applied to other
tasks in text summarization that need semantic or topic in-
formation, such as summary generation, sentence extrac-

tion, or sentence compression.
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