
440
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

PAPER Special Section on Knowledge Discovery, Data Mining and Creativity Support System

Probabilistic Treatment for Syntactic Gaps in Analytic Language
Parsing

Prachya BOONKWAN†,††, Nonmember and Thepchai SUPNITHI†a), Member

SUMMARY This paper presents a syntax-based framework for gap res-
olution in analytic languages. CCG, reputable for dealing with deletion
under coordination, is extended with a memory mechanism similar to the
slot-and-filler mechanism, resulting in a wider coverage of syntactic gaps
patterns. Though our grammar formalism is more expressive than the
canonical CCG, its generative power is bounded by Partially Linear In-
dexed Grammar. Despite the spurious ambiguity originated from the mem-
ory mechanism, we also show that its probabilistic parsing is feasible by
using the dual decomposition algorithm.
key words: combinatory categorial grammar, mildly context-sensitive
grammar, syntactic gap resolution, analytic language, probabilistic pars-
ing, dual decomposition

1. Introduction

Syntactic gap has been a nontrivial issue in natural lan-
guage parsing. It manifests a challenge of dealing with non-
standard constituent coordination. Combinatory Categorial
Grammar [1], [2], a near context-free grammar formalism,
accounts for this problem as a major concern. Its combina-
tory operations resolve deletion under coordination, such as
right-node raising (e.g. “Mary likes but John dislikes pota-
toes.”) and gapping (e.g. “Mary bought potatoes, and John,
tomatoes.”). However, the issues of zero pronouns and gap-
ping in coordination become more challenging when con-
sidering languages with a higher degree of analyticity.

In this paper, we explain how we can deal with zero
pronouns and gapping in coordinate construction by incor-
porating a memory mechanism and how we restrict the gen-
erative power of the resulted hybrid. The integrated memory
mechanism is motivated by anaphoric resolution mechanism
in modern thoerem proving [3]–[8] and categorial gram-
mar [9], [10]. These mechanisms are designed for associ-
ating fillers and gaps found in an input sentence.

Theoretically, we discuss how this hybrid efficiently
helps us deal with zero pronouns and gapping and how far
the generative power grows from CCG after incorporating
the memory mechanism. We will also introduce a proba-
bilistic parsing model which separates the memory mecha-
nism from the syntactic derivation and explain how its infer-

Manuscript received June 1, 2010.
Manuscript revised September 30, 2010.
†The authors are with Human Language Technology Lab-

oratory, National Electronics and Computer Technology Cen-
ter (NECTEC), 112 Thailand Science Park, Phaholyothin Road,
Khlong 1, Pathumthani 12120, Thailand.
††The author is with School of Informatics, University of

Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK.
a) E-mail: thepchai.supnithi@nectec.or.th

DOI: 10.1587/transinf.E94.D.440

ence can be done in polynomial time using dual decomposi-
tion [11].

The rest of the paper is organized as follows. We will
explain CCG in Sect. 2 and then motivate the need of the
memory mechanism in dealing with zero pronouns and gap-
ping in Sect. 3. We will describe the hybrid model of CCG
and the filler-gap memory in Sect. 4. In Sect. 5, we will
elaborate a probabilistic parsing model for the hybrid and
explain the inference. Finally, we will conclude the paper in
Sect. 6.

2. CCG

CCG is a lexicalized grammar; i.e. a grammar is encoded in
terms of lexicons assigned with one or more syntactic cate-
gories. Each syntactic category may be an atomic element or
curried functions specifying linear directions in which they
seek for their arguments. A word is assigned with a syn-
tactic category by the turnstile operator �. For example, a
simplified English CCG is given in Eq. (1).

John � np (1)

sandwiches � np
eats � s\np/np

The categories X\Y (and X/Y) denotes that X seeks for the
argument Y from the left (right) side.

Combinatory rules are used to combine words into a
phrase, forming a derivation of a sentence. For basic com-
bination, forward (>) and backward (<) functional applica-
tions, defined in Eq. (2), are used.

X/Y Y ⇒ X [>]
Y X\Y ⇒ X [<]

(2)

We can derive the sentence “John eats sandwiches.” by
the rules and the grammar in Eq. (1) as illustrated in Fig. 1.
For ease of understanding, a type of combination is also at-
tached to each syntactic derivation.

Fig. 1 A CCG derivation of “John eats sandwiches”.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

BOONKWAN and SUPNITHI: PROBABILISTIC TREATMENT FOR SYNTACTIC GAPS
441

For coordination of two constituents, the coordination
rules are used. There are two types of coordination rules
regarding their directions: forward coordination (> &) and
backward coordination (< &), defined in Eq. (3).

& X ⇒ X [> &]
X [X]& ⇒ X [< &]

(3)

Beyond functional application and coordination, CCG
also makes use of rules motivated by combinators in com-
binatory logics: functional composition (B) and type rais-
ing (T). Classified by directions, the functional composition
and type raising rules are defined in Eqs. (4) and (5), respec-
tively.

X/Y Y/Z ⇒ X/Z [> B]
Y\Z X\Y ⇒ X\Z [< B]

(4)

X ⇒ Y/(Y\X) [> T]
X ⇒ Y\(Y/X) [< T]

(5)

These rules permit associativity in derivation resulting in
that coordination of non-standard constituents with similar
types is possible.

CCG also allows functional composition with permu-
tation called disharmonic functional composition to handle
constituent movement such as heavy NP shift and dative
shift in English. These rules are defined in Eq. (6).

X/Y Y\Z ⇒ X\Z [> B×]
Y/Z X\Y ⇒ X/Z [< B×]

(6)

To cope with gapping in coordination SVO&SO, the
decomposition rule was proposed as a separate mechanism
from CCG and is therefore not taken into account when con-
sidering CCG’s generative power [2]. It decomposes a com-
plete constituent into two parts for being coordinated with
another incomplete constituent. The decomposition rule is
defined in Eq. (7).

X ⇒ Y X\Y [D] (7)

where Y and X\Y must be seen earlier in the derivation; that
is, this rule yields a derivation only if it has access to the
gap interpretation via discourse anaphor. The decomposi-
tion rule, together with syntax-external/anaphoric process,
allows us to derive the sentence “John eats sandwiches, and
Mary, noodles” as in Fig. 2. [2] stated that English is a for-
ward gapping language because gapping always takes place
at the right conjunct.

3. Zero Pronouns

CCG deals with deletion under coordination by the combi-
natory rules: functional composition, type raising, dishar-
monic functional composition, and decomposition. This en-
ables CCG to handle a number of coordination patterns such
as SVO&VO, SV&SVO, and SVO&SO.

However, CCG is challenged by some patterns of coor-
dinate structures in analytic languages such as Chinese and

Fig. 2 A CCG derivation of “John eats sandwiches, and Mary, noodles”.
VP is short for s\np.

Thai in which the use of zero pronouns in a coordinate struc-
ture is prevalent. A zero pronoun may appear in the posi-
tions of the subject and the object. This computationally
complicates the parsing of coordinate structures containing
zero pronouns as it possibly leads us to the use of zero cat-
aphora in the object position. Let us consider the following
Thai sentence.

chā:Vbâ:n PǑ:k tā:mhã: ei tE:
villager go-out seek but
mÊ: phóp [lû:kchā:j]i nŌ:nlàp
mother find son sleep
‘Villagers seek for a boy, but his mother
finds him sleeping.’

(8)

The sentence in Eq. (8) exhibits the use of zero cataphora in
the object position. Two conjuncts are juxtaposed with the
connective tÈ: ‘but’. In the first conjunct, a zero pronoun is
used to refer to the word lû:kchā:j ‘son’ in the second con-
junct. This example is a challenge for CCG because CCG
fails to parse it as illustrated in Fig. 3.

The issue of zero pronouns in coordinate structures can
be resolved by incorporating a memory mechanism that as-
sociates fillers to their gaps. We will show how the memory
mechanism improves CCG’s capability in dealing with of
zero pronouns and gapping in the next section.

4. Memory Mechanism

The notion of memory mechanism in natural language pars-
ing can be traced back to HOLD registers in ATN [12]
in which fillers (antecedents) are held in registers for be-
ing filled to gaps found in the rest of the input sentence.
These registers makes parsing equivalent to a Turing ma-
chine which recognizes the entire class of context-sensitive
grammars and is too powerful for any natural languages.

This attempt was drawn into modern theorem proving.
In Type Logical Grammar (TLG) [5]–[8], Gentzen’s sequent
calculus was incorporated with variable quantification to re-
solve pro-forms and VP ellipses to their antecedents. The
variable quantification in TLG is comparable to the use of
memory in storing antecedents and anaphora. In Catego-
rial Type Logic (CTL) [3], [4], gap induction was incorpo-
rated. Syntactic categories were modified with modalities

442
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

Fig. 3 An unsuccessful derivation of the sentence “Villagers seek for a boy, but his mother finds him
sleeping”.

which permit or prohibit gap induction in derivation. How-
ever, logical reasoning obtained from TLG and CTL is an
NP-complete problem.

In CCG, [9] attempted to explicitly denote non-
local anaphoric requirement whereby she introduced the
anaphoric slash (|) and the anaphoric connective (Z) to con-
nect anaphors to their antecedents. However, this frame-
work does not support anaphora whose argument is not its
antecedent, such as possessive adjectives. Recently, a filler-
gap memory mechanism was again introduced to Catego-
rial Grammar, called Memory-Inductive Categorial Gram-
mar (MICG) [10]. Fillers and gaps, encoded as memory
modalities, are attached to syntactic categories and they are
associated by the gap-resolution connective when coordina-
tion and serialization take place. Though their framework is
successful in resolving a wide variety of gapping, its gener-
ative power falls between LIG and Indexed Grammar, theo-
retically too powerful for natural languages.

4.1 Filler-Gap Association

The memory mechanism introduced in this paper deals with
fillers and gaps in coordinate structures. It is similar to
anaphoric resolution in ATN, Jacobson’s model, TLG and
CTL. However, it also has prominent distinction from
them. The anaphoric mechanisms aforementioned are deal-
ing with unbounded dependency or even inter-sentential el-
lipses, while the memory mechanism is dealing with only
intra-sentential bounded dependency in coordinate struc-
tures. Moreover, choices of filler-gap association can be
pruned out by the use of combinatory directionality because
the word orders of analytic languages are fixed. It is notice-
able that we can simply determine the grammatical function
(subject or object) of arbitrary noun phrases from the direc-
tionality (e.g. the subject is always on the left and the object
is always on the right of the verb). With these reasons, the
notion of MICG’s memory modalities and gap-resolution
connective [10] are adapted for the backbone of the mem-
ory mechanism.

In CCG with memory mechanism extension
(CCG+MM), syntactic categories are modalized with mem-
ory modalities. For each functional application, a syntactic
category can be stored, or memorized, into the filler stor-

age and the result category is modalized with the modality
� (read ‘square’). A syntactic category can also be induced
as a gap in a unary derivation called induction and the result
category is modalized with the modality ♦ (read ‘diamond’).

There are two constraint parameters for each modality:
a combinatory directionality d ∈ {<, >} and the syntactic
category of a filler/gap c, resulting in the filler and the gap
denoted in the forms �d

c and ♦d
c , respectively. For example,

the syntactic category �<np♦>nps has a filler of type np on the
left side and a gap of type np on the right side.

The filler �d
c and the gap ♦d

c of the same directionalities
d and syntactic categories c are said to be symmetric under
the gap-resolution connective ⊕; i.e. they are matched and
canceled in the gap resolution process. Unlike MICG, the
associative power of ⊕ of CCG+MM is restricted to match
only a filler and a gap, not between two gaps, so that the
generative power can be preserved linear. Given two strings
of modalities m1 and m2, the gap resolution connective ⊕ is
recursively defined in Eq. (9).

Recurrence: �d
c m1 ⊕ ♦d

c m2 = m1 ⊕ m2

♦d
c m1 ⊕ �d

c m2 = m1 ⊕ m2

Base case: ε ⊕ ε = ε

(9)

The notation ε denotes an empty string. It means that a syn-
tactic category modalized with an empty modality string is
simply unmodalized; that is, any modalized syntactic cate-
gories εX are equivalent to the unmodalized ones X.

Since the syntactic categories are modalized by a
modality string, all combinatory operations in the canoni-
cal CCG must preserve the modalities after each derivation
step. However there are two conditions to be satisfied:

Condition 1: At least one operand of functional application
must be unmodalized.

Condition 2: Both operands of functional composition and
disharmonic functional composition, and the operand
of type raising must be unmodalized.

From Condition 1, we modify CCG’s functional application
rules into Eq. (10).

mX/Y εY ⇒ mX [>]
εX/Y mY ⇒ mX [>]
mY εX\Y ⇒ mX [<]
εY mX\Y ⇒ mX [<]

(10)

BOONKWAN and SUPNITHI: PROBABILISTIC TREATMENT FOR SYNTACTIC GAPS
443

These conditions are introduced to preserve the generative
power of CCG.

4.2 Memorization

A filler modality is pushed to the top of the memory when a
functional application rule is applied, where the filler’s syn-
tactic category must be unmodalized. Let m be a modality
string, the memorization operation is defined in Eq. (11).

εX/Y mY ⇒ �<
X/YmX [>MF]

mX/Y εY ⇒ �>YmX [>MA]
εY mX\Y ⇒ �<YmX [<MA]
mY εX\Y ⇒ �>

X\YmX [<MF]

(11)

The operations MF and MA are read ‘memorize the functor’
and ‘memorize the argument’, respectively.

4.3 Induction

A gap modality is pushed to the top of the memory when
a gap of such type is induced at either side of the syntactic
category. Let m be a modality string, the induction operation
is defined in Eq. (12).

mX/Y ⇒ ♦>YmX [> IA]
mY ⇒ ♦<

X/YmX [> IF]
mX\Y ⇒ ♦<YmX [< IA]

mY ⇒ ♦>
X\YmX [< IF]

(12)

The operations IF and IA are read ‘induce the functor’ and
‘induce the argument’, respectively.

4.4 Coordination

Because the use of memory mechanism elucidates fillers and
gaps hidden in the derivation, we can extend the generative
capacity of CCG with the gap resolution. Fillers and gaps
are associated in the coordinate structures by the gap reso-
lution connective ⊕. For any given modality strings m1 and
m2 such that m1 ⊕ m2 = ε, we modify CCG’s coordination
rules into Eq. (13).

Fig. 4 A CCG+MM derivation of the sentence “Villagers seek for a boy, but his mother finds him
sleeping”.

& m2X ⇒ m2[X]& [> &]
m1X m2[X]& ⇒ X [< &]

(13)

With the memory mechanism and the coordination rules,
several patterns of coordinate structures with zero pronouns
and gapping can be simply resolved.

Zero pronoun: The memory mechanism is especially
designed for dealing with zero pronouns in coordinate struc-
tures. Let us consider the use of zero cataphora in the object
position aforementioned in Eq. (8). The syntactic derivation
of this can be illustrated in Fig. 4. The zero cataphora in the
first conjunct can be seen as a gap and it corresponds to the
antecendent lû:kchā:j ‘son’ in the second conjunct. Since the
gap has the syntactic category np, we can simply induce the
gap ♦>np from the zero cataphora and attach it to the first con-
junct. In the same time, we memorize its antecedent as the
filler �>np when combining the verb with it and attach this
filler to the second conjunct. We then use the coordination
rules to juxtapose both conjuncts and associate the filler and
the gap. This results in a complete syntactic derivation.

Gapping: We can solve gapping in a coordinate struc-
ture by memorizing the verb in the first conjunct as a filler
and inducing a gap in the second conjunct. The filler and the
gap will be associated by the coordination rules in Eq. (13).
For example, let us consider the CCG+MM derivation of
the sentence “John eats sandwiches, and Mary, noodles” in
Fig. 5. We memorize the transitive verb “eat” in the first
conjunct as �<

s\np/np and induce a gap of the verb in the sec-
ond conjunct as ♦<

s\np/np. Since the filler and the gap share

Fig. 5 A CCG+MM derivation of “John eats sandwiches, and Mary, noo-
dles”.

444
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

Fig. 6 A CCG+MM derivation of “Time believes Agnew to have been guilty, and Newsweek, Nixon”.

the directionality < and the syntactic category s\np/np, we
can associate them with the coordination rules.

The memory mechanism can also resolve more com-
plex phenomena, including discontinuous gapping. For
example, let us consider the CCG+MM derivation of the
sentence “Time believes Agnew to have been guilty, and
Newsweek, Nixon” in Fig. 6. In this case we memorize the
verb “believe” and the infinitive phrase “to have been guilty”
in the first conjunct as fillers and induce gaps for them in the
second conjunct. We then resolve these fillers and gaps with
the coordination rules.

4.5 Generative Power

When incorporating with the memory mechanism, CCG be-
comes flexible enough to handle zero pronouns and gapping
in coordinate structures. Boonkwan [13] showed that the in-
tegration of memory mechanism into CCG extends the gen-
erative power to Partially Linear Indexed Grammar [14]. An
interesting trait of PLIG is that it can generate the language
{wk |w is in a regular language and k ∈ N}. This is similar to
the pattern of coordinate structures which perhaps contain
zero pronouns and gapping. From [13]–[15], we can posi-
tion CCG+MM in Chomsky’s hierarchy as follows. Regular
Language < CFG < CCG = TAG = HG = LIG < CCG+MM
≤ PLIG < LCFRS < CSG < Recursively Enumerable Lan-
guage (recognizable by Turing Machine).

5. Probabilistic Parsing

5.1 Parse Tree with Memory Trace

Probabilistic parsing of CCG+MM is a challenging task re-
garding the computational complexity of the inference al-
gorithm. With the memory mechanism we can push fillers
and gaps into the memory (stack) and resolve them by the
pop operation. However PCFG, widely used in the NLP
community, becomes impractical if we directly adapt it to
CCG+MM, because the stack can be unbounded resulting
in an infinite search space of grammar rules. We therefore
need to devise a new notion of parse tree with the memory
capability and a finite search space.

Our parse tree is defined as follows. Let N be a set of

Fig. 7 An example parse tree with memory operations.

nonterminals (i.e. syntactic categories) and V be a set of ter-
minals (i.e. words). To limit the size of the search space,
we annotate into each node a memory operation instead of
a stack content. Let D be the set of 17 derivational types
containing those of CCG {<, >, < B, > B, < B×, > B×, <
T, > T}, those of the memory extension {< MF , < MA, >
MF , > MA, < IF , < IA, > IF , > IA}, and the lexical deriva-
tion {⊥}. Each node label is therefore a member of the set
(N × D) ∪ V . As exemplified in Fig. 7, this parse tree corre-
sponds to the CCG+MM derivation in Fig. 5. This definition
results in O(|N|3|D|3) possible rule productions in the search
space.

This kind of parse tree however seems problematic for
parsing inference to a CKY-based algorithm, such as Inside-
Outside algorithm. In such algorithm, the chart for a sen-
tence of length n composes of a set of rule productions in
the form:

〈c : d → c1c2 : d1d2, i, k, j〉 (14)

where c, c1, c2 ∈ N, d, d1, d2 ∈ D, and 1 ≤ i ≤ k < j ≤ n.
The derivational type d is the combinatory operation that is
used for combining c1 and c2 to obtain c, and c1 and c2 are
produced by the combinatory operations d1 and d2, respec-
tively. There are thus O(|N|3|D|3n3) such rule productions in
the chart. Computing this large volume of productions re-
quires extensive time and space, while training requires as

BOONKWAN and SUPNITHI: PROBABILISTIC TREATMENT FOR SYNTACTIC GAPS
445

much data as a multiple of O(|N|3|D|3) to efficiently cope
with the data sparsity issue. This limitation has hindered
many complex statistical models from practical use.

On the one hand, we can approximate the inference
of CCG+MM using the dual decomposition algorithm [16].
We simplify the parsing problem by decomposing its model
into two less complex interweaving subproblems: CCG
derivation model and memory operation model, and then
separately train these models with the same data set. The
inference of CCG+MM can be done by intersection of the
inference of each model; that is, we are finding the most
likely parse tree such that both models agree with each other.
By doing so, we can reduce the complexity of the inference
from O(|N|3|D|3) to O(|N|3 |D| + |D|3).

5.2 Split Models

We have learned that the canonical PCFG is too complex for
CCG+MM’s parse trees. One way to tackle this limitation
is to decompose the parsing model into several subproblems
and solve them with the dual decomposition algorithm [16].

We develop this idea by perceiving the parse trees in
two different perspectives. In the first perspective, we per-
ceive a CCG+MM’s parse tree as an ordinary CCG tree.
We then obtain that we choose to generate a new syntac-
tic category and the derivational type used for combination
from two syntactic categories. In the second perspective, we
perceive it as a series of memory operations used to build
the parse tree. We then obtain that we choose to generate
a new derivational type from two syntactic categories and
the derivational types used to generate them. By projecting
the trees from both perspectives onto each other, they agree
upon the derivational type of each node. This results in the
agreement of derivational types on each span of correspond-
ing trees.

Let us formalize our models as follows. We will fol-
low [11]’s modeling method in defining the parsing models.

Model 1: CCG Derivation Model

Model 1 is a generative model for CCG derivation. For each
step it predicts a syntactic category and a derivational type
from daughter syntactic categories. Hierarchically struc-
tured as a context-free grammar, it contains all rules of the
forms c : d → c1c2 and c : d → c1, where c, c1, . . . , cm ∈ N
are syntactic categories and d ∈ D is a derivational type.

Now let us define the notion of parse tree in Model
1. Suppose we have a sentence of n words, w1 . . .wn,
a parse tree is a set of rule productions of the forms
〈c : d → c1c2, i, k, j〉 and 〈c : d → c1, i, k〉, where 1 ≤ i ≤
k < j ≤ n, resulting in O(|N|3 |D|n3) such rule produc-
tions. Let us define the search space of parsing, or index
set, I1 such that it contains all possible rule productions at
any spans (i, j) of the sentence. Each parse tree x = {xr} is
a binary vector in {0, 1}|I1 |, where all xr, the value of a rule
production r used in the parse tree, are set to 1 while the rest
are set to 0. LetX ⊆ {0, 1}|I1 | denote the set of all valid parse

trees.
For the statistical part of Model 1, we define a weight

vector θccg = {θccg(r)|r ∈ I1} that specifies a real-valued
weight for each rule production. For a given sentence
w1 . . .wn, we are finding the optimal parse tree x∗, such that

x∗ = arg max
x∈X

x · θccg (15)

where x·θccg is the inner product between x and θccg. We will
use the notation θccg(r) to represent the weight of the rule
production r. Under PCFG, we define θccg(r) as follows.

θccg(c : d → c1c2, i, k, j)
= log P(c : d → c1c2)

+δki log P(c1 :⊥→ wi)
+δ

j
k+1 log P(c2 :⊥→ wj)

θccg(c : d → c1, i, j)
= log P(c : d → c1)

+δ
j
i log P(c1 :⊥→ wi)

(16)

where P(r) is the probability (parameter) of the rule r and
δ

j
i is the Kroneker’s notation defined as δ j

i = 1 if i = j, 0
otherwise.

Model 2: Memory Operation Model

Model 2 is a generative model for memory operations.
For each step it predicts a derivational type from previ-
ous derivational types. It contains all rules of the forms
d → d1d2 and d → d1, where d, d1, d2 ∈ D are derivational
types.

We define the notion of derivation tree in Model 2 as
follows. Suppose we have a sentence of n words, w1 . . .wn,
a derivation tree is a set of rule productions of the forms
〈d → d1d2, i, k, j〉 and 〈d → d1, i, k〉, where 1 ≤ i ≤ k <
j ≤ n, resulting in O(|D|3n3) such rule productions. Let us
define the search space of parsing I2 such that it contains all
possible rule productions at any spans (i, j) of the sentence.
Each derivation tree y = {yr} is a binary vector in {0, 1}|I2 |,
where all yr, the value of a rule production r used in the
derivation tree, are set to 1 while the rest are set to 0. Let
Y = {0, 1}|I2 | denote the set of all valid derivation trees.

We also define a weight vector θmem = {θmem(r)|r ∈ I2}
that specifies a real-valued weight for each rule production.
For a given sentence w1 . . .wn, we are finding the optimal
derivation tree y∗, such that

y∗ = arg max
y∈Y

y · θmem (17)

where y · θmem is the inner product between y and θmem. We
will use the notation θmem(r) to represent the weight of the
rule production r. Under PCFG, we define θmem as follows.

θmem(d → d1d2, i, k, j) = log P(d → d1d2) (18)

θmem(d → d1, i, j) = log P(d → d1)

where P(r) is the probability of the rule r.

446
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

5.3 Inference with Dual Decomposition

We are now going to incorporate Models 1 and 2 using the
dual decomposition algorithm. We unify the search spaces
of the two models and mutually optimize each model itera-
tively until they all converge. We extend the search spaces
I1 and I2 with the extension set Iuni, where

Iuni = {(d, i, j)|1 ≤ i ≤ j ≤ n} (19)

Each (d, i, j) represents a span (i, j) having a derivational
type d ∈ D. We choose (d, i, j) because it is a common
part for both models. By extending the search spaces, each
CCG derivation and memory operation trees will have addi-
tional components, called marginal polytopes, x(d, i, j) and
y(d, i, j) conveying the same semantics as (d, i, j) on each
type of parse trees, respectively.

We then formalize the parsing as a linear programming
problem in which Models 1 and 2 are mutually used. We
first define the search space of the integrated model Q as
follows.

Q = {(x, y)|x ∈ X, y ∈ Y,
and x(d, i, j) = y(d, i, j)}

(20)

That is, every (x, y) ∈ Q agrees on their memory operations
on each span. We then have that our parsing problem is to
solve the following objective function:

(x∗, y∗) = arg max
(x,y)∈Q

(x · θccg + y · θmem) (21)

As a linear programming problem, we also define the linear
constraints for the marginal polytopes in Eq. (22).

x(d, i, j) =
j−1∑

k=i

∑

c,c1,c2

x(c : d → c1c2, i, k, j) (22)

+
∑

c,c1

x(c : d → c1, i, j)

y(d, i, j) =
j−1∑

k=i

∑

c,d1,d2

y(c : d → d1d2, i, k, j)

+
∑

c,d1

y(c : d → d1, i, j)

The objective function in Eq. (21) can be optimized
by the dual decomposition algorithm illustrated in Fig. 8.
In this approach, we iteratively solve the two parsing sub-
problems separately. We solve the parsing problems for
CCG derivation model (line 5) and memory operation model
(line 6) by using a simple dynamic-programming-based de-
coding algorithm such as Inside-Outside algorithm. At the
end of each iteration (lines 10–12), we update the Lagrange
multipliers u(k)(d, i, j) with the difference between the corre-
sponding marginal polytopes of the two models. The more
diverging the models, the more increased the Lagrange mul-
tipliers. These multipliers are then used for endorsing the
two models to converge in the next iteration. The algo-
rithm iterates until all the marginal polytopes converge or it

Fig. 8 The decoding algorithm for solving the parsing problem for
CCG+MM. K is the maximum number of iterations, and each parameter
αk specifies step sizes for each iteration.

reaches the maximum number of iterations. In case that the
algorithm terminates before the models converge, x(K) and
y(K) are heuristically chosen as the solution, as suggested by
[11], [17]. The validity and convergence of the algorithm
were guaranteed in [11].

By splitting the parsing model into two polynomial
subproblems, we can parse CCG+MM in a polynomial time
complexity. This leads us to the possibility of statistically
solving the syntactic gaps in analytic languages.

6. Conclusion

We have presented a syntax-based framework called
CCG+MM for probabilistically solving deletion under co-
ordination in analytic languages. We extended Combina-
tory Categorial Grammar with a memory mechanism sim-
ilar to the slot-and-filler concept. In this framework, gaps
and their antecedents are identified and associated in par-
allel with syntactic derivation. Its generative power was
proven to be bounded by Partially Linear Indexed Grammar.
CCG+MM is also shown practical for probabilistic parsing
because it can be parsed in polynomial time using the dual
decomposition algorithm.

Acknowledgement

The authors are grateful for the help of Prof. Mark
Steedman, University of Edinburgh, for invaluable discus-
sion about Combinatory Categorial Grammar and his guide
for the proof of the generative power. We appreciate the
help of Prof. Michael Collins, MIT, for a discussion about
his application of the dual decomposition algorithm in de-
pendency parsing which motivated the parsing method pro-
posed in this paper. We also would like to thank the anony-
mous reviewers for their comments and suggestions.

References

[1] M. Steedman, The Syntactic Process, The MIT Press, Cambridge,
Massachusetts, 2000.

[2] M. Steedman, “Gapping as constituent coordination,” Linguistics
and Philosophy, vol.13, pp.207–263, 1990.

BOONKWAN and SUPNITHI: PROBABILISTIC TREATMENT FOR SYNTACTIC GAPS
447

[3] P. Hendriks, “Ellipsis and multimodal categorial type logic,” Proc.
Formal Grammar Conference, pp.107–122, Barcelona, Spain, 1995.

[4] M. Moortgat, “Categorial type logics,” in Handbook of Logic and
Language, ed. van Benthem and ter Meulen, ch. 2, pp.163–170,
Elsevier/MIT Press, 1997.

[5] G. Morrill, “Type logical grammar,” in Categorial Logic of Signs,
Kluwer, Dordrecht, 1994.

[6] G. Jäger, “Anaphora and ellipsis in type-logical grammar,” Proc.
11th Amsterdam Colloquium, pp.175–180, ILLC, Universiteit van
Amsterdam, Amsterdam, the Netherland, 1997.

[7] G. Jäger, “Anaphora and quantification in categorial grammar,” Lect.
Notes Comput. Sci.; Selected papers from the 3rd International Con-
ference, on Logical Aspects of Computational Linguistics, pp.70–
89, 2001.

[8] R.T. Oehrle, Non-Transformational Syntax: A Guide to Cur-
rent Models, ch. Multi-modal Type Logical Grammar, Oxford:
Blackwell, 2007.

[9] P. Jacobson, “Towards a variable-free semantics,” Linguistics and
Philosophy, vol.22, pp.117–184, Oct. 1999.

[10] P. Boonkwan and T. Supnithi, “Memory-inductive categorial gram-
mar: An approach to gap resolution in analytic-language transla-
tion,” Proc. 3rd International Joint Conference on Natural Language
Processing, pp.80–87, Hyderabad, India, Jan. 2008.

[11] A.M. Rush, D. Sontag, M. Collins, and T. Jaakkola, “On dual de-
composition and linear programming relaxations for natural lan-
guage processing,” Proc. EMNLP 2010, 2010.

[12] W.A. Woods, “Transition network grammars for natural language
analysis,” Commun. ACM, vol.13, no.10, pp.591–606, Oct. 1970.

[13] P. Boonkwan, “A memory-based approach to the treatment of serial
verb construction in combinatory categorial grammar,” EACL ’09:
Proc. 12th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Student Research Workshop,
pp.10–18, Association for Computational Linguistics, Morristown,
NJ, USA, 2009.

[14] B. Keller and D. Weir, “A tractable extension of linear indexed gram-
mars,” Proc. 7th European Chapter of ACL Conference, 1995.

[15] K. Vijay-Shanker and D.J. Weir, “The equivalence of four extensions
of context-free grammars,” Mathematical Systems Theory, vol.27,
no.6, pp.511–546, 1994.

[16] G.B. Dantzig and P. Wolfe, “Decomposition principle for linear pro-
grams,” Oper. Res., vol.8, pp.101–111, 1960.

[17] N. Komodakis, N. Paragios, and G. Tziritas, “MRF optimization via
dual decomposition: Message-passing revisited,” International Con-
ference on Computer Vision, 2007.

Prachya Boonkwan was born in August
1981. He obtained his bachelor degree (with
honors) and master degree in Computer Engi-
neering from Kasetsart University, Thailand. He
is working as a research fellow at Human Lan-
guage Technology Lab at NECTEC in Thailand.
He is now on leave to pursue his Ph.D. in In-
formatics at University of Edinburgh in United
Kingdom since September 2008. His interest
includes grammar induction, formal syntax, and
probabilistic parsing.

Thepchai Supnithi received the B.S. degree
in Mathematics from Chulalongkorn University
in 1992. He received the M.S. and Ph.D. de-
grees in Engineering from the Osaka University
in 1997 and 2001, respectively. Since 2001, he
has been with the Human Language Technology
Lab at NECTEC in Thailand.

