
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011
525

PAPER Special Section on Data Engineering

SAWSDL Service Discovery Based on Fine-Grained Data Semantics

Dengping WEI†, Member, Ting WANG†a), and Ji WANG††, Nonmembers

SUMMARY With the aim to improve the effectiveness of SAWSDL
service discovery, this paper proposes a novel discovery method for
SAWSDL services, which is based on the matchmaking of so-called fine-
grained data semantics that is defined via sets of atomic elements with
built-in data types. The fine-grained data semantics can be obtained by
a transformation algorithm that decomposes parameters at message level
into a set of atomic elements, considering the characteristics of SAWSDL
service structure and semantic annotations. Then, a matchmaking algo-
rithm is proposed for the matching of fine-grained data semantics, which
avoids the complex and expensive structural matching at the message level.
The fine-grained data semantics is transparent to the specific data structure
of message-level parameters, therefore, it can help to match successfully
similar Web services with different data structures of parameters. More-
over, a comprehensive measure is proposed by considering together several
important components of SAWSDL service descriptions at the same time.
Finally, this method is evaluated on SAWSDL service discovery test collec-
tion SAWSDL-TC2 and compared with other SAWSDL matchmakers. The
experimental results show that our method can improve the effectiveness of
SAWSDL service discovery with low average query response time. The re-
sults imply that fine-grained parameters fit to represent the data semantics
of SAWSDL services, especially when data structures of parameters are not
important for semantics.
key words: SAWSDL, service discovery, data semantics, fine-grained

1. Introduction

The number of the Web services on the Internet has been
increasing rapidly since the Service-Oriented Computing
(SOC) was proposed. SOC aims to provide a set of meth-
ods and tools to support the construction of new applica-
tions based on Web services. Service discovery as the first
task in the Service-Oriented architecture is to find and se-
lect the suitable Web services that satisfy the requirements
of the application context at design-time or run-time. The
success or failure of the applications based on Web services
depends a lot on the effectiveness of service discovery, that
is, whether the service discovery agent can find suitable ser-
vices for the application. Service discovery, therefore, has
become the key challenge in the context of Service-Oriented
Computing and attracted increasing attention [1]–[7].

The methods of service discovery depend on the con-
sidered service description languages, since various service
description languages provide different specifications to rep-

Manuscript received June 7, 2010.
Manuscript revised October 3, 2010.
†The authors are with School of Computer, National University

of Defense Technology, 410073, Changsha, China.
††The author is with National Laboratory for Parallel and Dis-

tributed Processing, 410073, Changsha, China.
a) E-mail: tingwang@nudt.edu.cn

DOI: 10.1587/transinf.E94.D.525

resent the functional and non-functional semantics of Web
services. As a W3C recommendation, Web service descrip-
tion language (WSDL) has become the mainstream XML
standards for the inter-operation of Web services. It can
specify the operations available together with the structure
of data received and output during the execution. How-
ever, WSDL can not specify the semantic meanings of the
data exchanged between the client and the service. Thus
the matchmaker based on WSDL document often returns
several useless services to users due to the poor expres-
siveness of semantics. Fortunately, Semantic Web service
(SWS) technique provides a mechanism to describe Web
services through explicit semantic meanings. Several SWS
ontologies have been proposed since Semantic Web was
proposed by Tim Berners-Lee et al. in 2001 [8], like OWL-
S [9], WSMO [10], etc. Besides, several semantic-enabled
specifications for Web services have also been proposed
on top of industry-standard WSDL, e.g., WSDL-S [11],
SAWSDL [12]. These various representations lead to ap-
pearances of different SWS matchmakers, such as OWLS-
iMatcher [13], OWLS-MX [14], WSMO-MX [15], etc.

This paper focuses on the discovery of SAWSDL (Se-
mantic Annotation for WSDL and XML Schema) services
for two reasons. First, SAWSDL is a W3C recommendation
and bound to be a popular SWS in academic community.
Second, SAWSDL is a simple extension of WSDL using
two kinds of extensibility elements (i.e., modelReference
and schema mapping), and it is easy to be adopted by in-
dustry community who follows WSDL as the standard of
Web service description.

One of the most important differences with other Se-
mantic Web service ontologies/specifications (e.g., OWLS,
WSMO) is that SAWSDL supports various data structure
definitions for parameters of operations. However, most
matchmakers perform the matching using only selected
parts of the SAWSDL description. Taking the matchmakers
based on the matching of signature as example, they con-
sider only the matching of input/output parameters at mes-
sage level. In these matchmakers, a bipartite graph matching
is used to measure the similarity between two sets of param-
eters at message level and a pair of parameters are compared
as a whole no matter what kinds of data structures they use.
However, similar data may be represented by different data
structures in XML Schema, and thus their mismatching may
be caused.

In order to overcome these limitations, this paper
presents a new matching algorithm for SAWSDL services,

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

526
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

which is based on the matchmaking of so-called fine-grained
data semantics. Fine-grained data semantics represents the
semantics of all the basic data units that services receive
and output, which is transparent to the specific data struc-
tures by which the parameters are represented. A transfor-
mation algorithm is proposed to decompose the data struc-
tures of message-level parameters into a set of atomic el-
ements. After the transformation, the matchmaking prob-
lem of SAWSDL service signature reduces to the match-
making problem of corresponding fine-grained data seman-
tics. Meanwhile, a matching algorithm is also proposed
for the fine-grained data semantics, in which several match-
ing strategies are given for each kind of description respec-
tively. Finally, this method is evaluated on the SAWSDL
service discovery test collection SAWSDL-TC2. The evalu-
ation results show that this method is an effective discovery
method for SAWSDL services, with lower computational
cost than the discovery methods based on the matching of
XML Schema structure.

The paper is organized as follows. Section 2 sum-
marizes related work. Section 3 describes formal defini-
tions for SAWSDL services and depicts the characteristics
of SAWSDL services. Section 4 presents the fine-grained
data semantics of SAWSDL services and describes the al-
gorithm to generate them. Section 5 presents the similarity
measure that is used to compare fine-grained data semantics.
Section 6 shows the evaluation of our discovery method,
including test collections, evaluation measures and experi-
mental results. Finally, concluding remarks together with
future work are presented.

2. Related Work

Current methods for Web service discovery can be mainly
categorized into three kinds [16] with respect to the differ-
ent description used in matchmaking: syntactic, semantic
and hybrid methods. Syntactic methods mainly exploit var-
ious similarity measures to measure the similarity between
the user’s requirement and the description of Web service,
such as service name, description text, structure descrip-
tion, etc [2]. Semantic discovery methods mainly exploit
logic reasoning technique to match semantic annotations of
Semantic Web services [1]. Our previous work [3] and [4]
proposed a method to enhance the semantic description of
Semantic Web service by using the semantic constraints ex-
tracted from the description text. The enriched semantic de-
scription can improve the effectiveness of discovery. Hy-
brid methods take into account the semantic matchmaking
as well as the syntactic matchmaking, and then rank Web
services according to the integrated matching results.

The service search engine Woogle [17] combines mul-
tiple sources of evidence to determine the similarity between
a pair of Web service operations. The key idea is to cluster
parameter names in the collection of Web services into se-
mantically meaningful concepts, which are then compared
by using TF/IDF measure. However, the matching of the
clustering concepts in Woogle belongs to syntactic meth-

ods since there is no logic reasoning used. The method
proposed in [5] exploits bipartite graph to match the input
and output annotations of services respectively without con-
sidering the syntactic descriptions. The work in [18] con-
siders only the matching of WSDL structures and ignores
the matching of semantic annotations. The hybrid match-
maker SAWSDL-MX2 [6] uses machine learning technique
to integrate both the matching results of structure and se-
mantic signature. URBE [2] proposes a matching algorithm
which takes both syntactic and semantic descriptions into
account. However, it ignores some specific characteristics
from SAWSDL specification and simplifies the matching of
data types.

The method in this paper is a kind of hybrid meth-
ods, which makes use of both the syntactic and semantic
descriptions. The most difference between our method and
other methods described above lies in that the granularity
of our matching is based on fine-grained parameters rather
than the message-level parameters. Compared to URBE [2]
and SAWSDL-WA [18] which also consider the structural
matching of SAWSDL services, our method abstracts the
structural matching into the set-matching of the fine-grained
parameters, and it works well when the compared param-
eters have similar data semantics but are not organized in
similar data structures. Although structure may indeed rep-
resent some kinds of meanings, similar data may not be
matched by the structure matching method when different
structures are used to organize the similar data.

3. SAWSDL Services

3.1 Definition of SAWSDL Services

There are three extension attributes defined in SAWSDL,
i.e., modelReference, liftingSchemaMapping and lower-
ingSchemaMapping. A model reference may be used as
an attribute in every element within WSDL and XML
schema. However, SAWSDL defines its meaning only
for these components, like wsdl:interface, wsdl:operation,
wsdl:fault, xs:element, xs:complexType, xs:simpleType and
xs:attribute [12]. In general, model references can be used
to help to determine if a service meets the requirements of
a client, and schema mappings can be used to address post-
discovery issues when the Web service is invoked.

We first introduce the formal notation of a SAWSDL
service interface, which describes the most important ele-
ments of a SAWSDL service and will be used in the match-
making algorithm.
Definition 1 (Interface). A SAWSDL service interface is
represented as a 4-tuple interface = 〈iName, iDoc, iAnnota-
tion, OP〉, where iName is the unique name, iDoc is the de-
scription text, iAnnotation is the semantic annotation that is
the value of attribute modelReference of Interface compo-
nent and OP is the set of abstract operations defined in this
interface. Each operation in OP represents a simple interac-
tion between the client and the service.
Definition 2 (Operation). An operation is represented as

WEI et al.: SAWSDL SERVICE DISCOVERY BASED ON FINE-GRAINED DATA SEMANTICS
527

a 5-tuple op = 〈oName, oDoc, oAnnotation, In,Out〉, where
oName is the unique name, oDoc is the description text,
oAnnotation is the semantic annotation that is the value
of attribute modelReference of Interface Operation compo-
nent, In = {i1, i2, . . . , in} and Out = {o1, o2, . . . , om} represent
respectively the input and output parameters of this opera-
tion. These input/output parameters are usually defined by
top-level elements in type system in WSDL document.
Definition 3 (Parameter). A parameter is represented as a
4-tuple p = 〈pName, pDoc, pAnnotation, pType〉, where

• pName is the unique name,
• pDoc is the description text,
• pAnnotation is the semantic annotation,
• pType = 〈tName, tAnnotation, tType, SE, baseType〉 is

the data type defined in the type system (〈types〉 con-
tainer element) in WSDL document, where

– tName is the unique name of the data type,
– tAnnotation is the semantic annotation,
– tType ∈ {bt,st,ct} represents the type of the data

type, which can be either built-in data type bt, sim-
ple type st or complex type ct in XML Schema,

– SE = {se1, se2, . . . , sek} represents the set of sub-
elements of the data type defined in the type sys-
tem. If the type is not a complex type, there is no
sub-element defined in this type, and thus SE = ∅.

– baseType is the base data type of the data type. If
the data type is a built-in XSD data type, then its
base type is the corresponding built-in XSD data
type; If the data type is a complex type, then its
base type is null; If the data type is a simple type,
then its base type is the data type of this simple
type.

Each operation takes a set of inputs and produces a set of
outputs, which are represented in the signature of the oper-
ation in a WSDL document. The signature of an operation,
however, provides only the syntactic and structural details
(like data types, XML Schemas) of the input/output data.
The work in [19] defined the data semantics of Web service
as the semantics of the input/output data.
Definition 4 (Data Semantics of Operation). The
data semantics of an Operation op is represented by
a 2-tuple DS (op) = 〈DS (op.In),DS (op.Out)〉 =

〈⋃pi∈op.In{pi.pAnnotation},⋃po∈op.Out{po.pAnnotation}〉

3.2 Characteristics of SAWSDL Services

As an extension of WSDL, SAWSDL service description
combines the structural features of WSDL and semantic de-
scription capabilities of Semantic Web service. Specifically,
it has the following features.

• Diversity of data structure. If the data type of a param-
eter is a complex type, then this parameter may con-
tain several sub-elements which can be encapsulated
in different structures. Most matchmakers consider the
parameters themselves as the basic units of matching.

Thus, similar parameters are often mismatched, since
they are represented by different definitions of struc-
tures. Furthermore, it is difficult to compare two pa-
rameters with different types of data types.

• Uncertainty of semantic annotations. In SAWSDL
specification, several components in WSDL can be op-
tionally annotated with semantics using the extension
attribute modelReference. Different publishers or an-
notators of Semantic Web service may annotate the
same Web service in different ways. For example,
some users may annotate only the interface and the op-
erations of WSDL description, while other users may
not annotate the interface and the operation. These un-
certain annotating styles will make the same Web ser-
vice have diverse semantic annotations, and thus bring
challenges to the matchmaking of services.

• Unspecified annotating styles. There are two princi-
pal techniques for annotating complex types with mod-
elReference attribute, i.e., bottom level and top level
annotation. In bottom level annotation, all the mem-
ber elements and attributes of a complex type will be
annotated by adding a modelReference attribute. In
top level annotation, the complex types themselves are
annotated with a modelReference attribute as a whole.
Moreover, a complex type can be annotated at both the
top and bottom levels, and these annotations are inde-
pendent of each other.

• Propagation of model reference. The modelReference
properties can be propagated from a type definition
component to all element declaration components that
are defined with that type, i.e., the modelReference
property of an element/attribute declaration also con-
tains the values of the modelReference property from
the type definition component referenced by this ele-
ment/attribute declaration. Therefore, the semantic an-
notations of a parameter in an operation would contain
not only the semantic annotations that annotated on the
parameter element itself but also the semantic annota-
tions propagated up to it.

The above characteristics of SAWSDL service make
the matchmaking of SAWSDL service different from that
of WSDL services and other Semantic Web services. Next,
this paper will propose a matchmaker based on the so-called
fine-grained data semantics considering all the above fea-
tures.

4. Fine-Grained Data Semantics

4.1 Parameter-Level Data Semantics and Data Structure

From definition 3, one parameter of an operation is usually
defined by the type system in WSDL. Figure 1, for exam-
ple, shows the output parameters of two operations, in which
the top level box “output parameters” represents the set of
output parameters, while the bottom level box “types” repre-
sents the type system defined in the WSDL document. And

528
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

Fig. 1 Examples of output parameters.

the edge between a vertex in “output parameters” and a ver-
tex in “types” shows the data type of parameter. Operation1
has output parameters {address, city, country,Person} and
Operation2 has output parameters {Address,Person}. Pa-
rameter Person is a complex type PersonInfo and contains
sub-elements FirstName and LastName; Parameter Address
is a complex type AddressInfo and contains sub-elements
address, city and country. Obviously, these two operations
have very similar semantics, although their output param-
eters are represented in different data structures due to the
flexibility of XML schema definitions.

Most service matchmakers are based on the match-
ing of signatures of operations. In other words, the ba-
sic unit considered during matchmaking is the input/output
parameters, no matter what kinds of data structures they
are. The output matchmaking between Operation1 and
Operation2 is determined by the matching of two sets of
output parameters, i.e., {address, city, country, Person} and
{Address,Person}. The matching is usually 1:1 matching,
which computes the similarity between each pair of param-
eters. This kind of matching can not satisfy the requirement
of the matching of actual semantics. Taking URBE [2] as an
example matchmaker, the similarity between the output pa-
rameters shown in Fig. 1 is 0.25 (i.e.,1/4×(0+0+0+1)). The
matching value between the parameters address, city and
country in Operation1 and every parameter in Operation2
is 0, due to the different types of data types used.

However, the good match of the above example is that
three parameters address, city and country in Operation1 are
mapped to Address in Operation2. This is actually a m : n
matching. Usually, each parameter can be represented by
a XML tree structure and the signature can be represented
by a forest. The leaf elements in each tree represent the ba-
sic units of data that the operation handles. The complex
type, however, is usually used to encapsulate data. Since the
structure information of these elements is often transparent
to the semantics, we assume in this paper that the semantics
of Web service signature can be represented by all the leaf
elements in the parameter trees.
Definition 5 (Fine-Grained Parameter).A fine-grained pa-
rameter is represented as a 5-tuple fp = 〈pName, pDoc,
pAnnotation, pType, SC〉, where pName is the unique name,
pDoc is the description text, pAnnotation is the semantic an-
notation, and pType is the data type of this parameter satis-
fying pType.type == bt and SE = ∅. SC represents the
semantic context of that leaf element, which is represented

by a set of semantic annotations.
From the above definition, every leaf element in the pa-

rameter tree of an operation is a basic data unit that the op-
eration receives and produces, which is called fine-grained
parameter. A fine-grained parameter is a extension of the
parameter defined in Definition 3 with the constraint that
the data type of the fine-grained parameter is a built-in data
type. Meanwhile, if the parent node of the leaf element has a
semantic annotation, then the semantic context contains this
semantic annotation. If the complex types of SAWSDL ser-
vice are annotated using Top level annotation, the semantic
context can help to enrich the semantics of the leaf elements.
Otherwise, these semantic annotation in complex types may
be lost after it is decomposed.

In the following, we employ fine-grained parameters
to represent the semantics of the signature by transforming
each parameter into a set of fine-grained parameters.
Definition 6 (Transformation of Fine-Grained Parame-
ter). A transformation from a parameter p ∈ P to a set of
fine-grained parameters is defined as a function τ : P →
P(FP), where FP is the set of fine-grained parameters.

Example 1. In Fig. 1 (a), the set of output parameters
at message level is {address, city, country,Person}. Af-
ter transformation, the set of fine-grained output param-
eters is {address, city, country, firstName, lastName}, since
τ(Person) = {firstName, lastName}.
Definition 7 (Fine-Grained Data Semantics). The fin-
grained data semantics of an Operation op is represented by
a 2-tuple FGDS (op)= 〈⋃pi∈op.In{⋃fpi∈τ(pi){fpi.pAnnotation}},⋃

po∈op.Out{⋃fpo∈τ(po){fpo.pAnnotation}}〉
In this paper, we consider a more generalized data se-

mantics of operation, which contains not only the explicit
data semantics represented by the annotated concepts, but
also the implicit semantics represented by the syntactic de-
scriptions of the parameters, like name, description text and
data type.

4.2 Fine-Grained Data Generation

By looking into the relationships between data semantics
and data structure, it is easy to find that the data semantics of
operation is significantly represented by the parameters that
the operation receives or produces. The data structure only
provides a way to encapsulate data into well-formed data. In
this sense, this paper ignores the influence of the data struc-
ture and considers only the matching of fine-grained data
semantics. To this end, we propose several heuristic rules
to decompose the complex-type data structures and trans-
form them into a set of several fine-grained parameters (see
Definition 6).

In WSDL 2.0 specification, an Interface Operation
component describes an abstract operation defined in a
given interface. An operation is an interaction with the ser-
vice, consisting of a set of messages exchanged between the
service and the other parties involved in the interaction. And
an operation has two required attributes (i.e., name and pat-

WEI et al.: SAWSDL SERVICE DISCOVERY BASED ON FINE-GRAINED DATA SEMANTICS
529

tern) and several element children (i.e., input, output, in-
fault, and outfault) that specify the ordinary or fault mes-
sage types to be used by that operation. The data semantics
of the Web service is usually represented by the ordinary
message types (i.e., input and output). The number of mes-
sages is decided by the used message exchange pattern, and
each input/output sub-element represents one message cor-
responding to the message exchange pattern. The “element”
attribute of the input/output element is used to specify the
message content that can be either a XML Schema or a non-
XML type system. By default, the content model is defined
using XML Schema that is defined in the types component
in WSDL.

Besides the attributes “name” and “modelReference”,
an element has another important attribute “type” that de-
fines it’s data type. A data type [20] can be built-in, sim-
pleType or complexType. The built-in type includes simple
data types (e.g., xs:string, xs:decimal, xs:dataTime) as well
as derived data types (e.g., xs:integer, xs:short, xs:byte).
simpleType is derived from the build-in data type by one of
the three means: by restriction, by list and by union. com-
plexType is built by the model group, which can include all
the data types (either built-in, simpleType or complexType).
There are three kinds of model group elements available:
xs:sequence (i.e., the element information items match the
particles in sequential order), xs:choice (i.e., the element in-
formation items match one of the particles) and xs:all (i.e.,
the element information items match the particles, in any
order).

Definition 6 defines the function of transformation
from parameters into fine-grained parameters. The pseudo-
code of the transformation process is given in Algorithm 1.
There are three types of transformations according to the
possible data type of the parameter:

• Built-in. If the data type of the transformed parameter
is one of the built-in data types (lines 2-9), there is no
child element in this parameter. Thus, no transforma-
tion is needed for this parameter.

• Simple type. If the data type of the transformed pa-
rameter is a simpleType, a simple transformation is
needed (lines 10-17). The simpleType element often
specifies constraints and information about the values
of attributes or the values of text-only elements. The
data type of the new fine-grained parameter p′ is set
as the base type of the original simple data type (line
14). Because of the propagation feature of modelRef-
erence attribute, the semantic annotations of the fine-
grained parameter p′ is set as the logic AND between
the semantic annotation of original parameter p and the
semantic annotations of the simple type that p refers
to(line 15).

• Complex type. In this case, the process of transforma-
tion is dependent on the types of group the complex
type uses (lines 18-32).

– sequence (lines 20-23). The sub-elements of the
instance of this complex type must appear in se-

Algorithm 1 τ(p): Transformation of Fine-Grained Parameter
Input: a parameter p
Output: a set of fine-grained parameters FP
1: FP← ∅,SC ← ∅
2: if p.pType.type == “bt” then
3: p′ ← create a new fine-grained parameter
4: p′.pName← p.pName
5: p′.pDoc← p.pDoc
6: p′.pType← p.pType
7: p′.pAnnotation← p.pAnnotation
8: p′.SC ← SC
9: FP.add(p′)

10: else if p.pType.type == “st” then
11: p′ ← create a new fine-grained parameter
12: p′.pName← p.pName
13: p′.pDoc← p.pDoc
14: p′.pType.tName← p.pType.baseType
15: p′.pAnnotation← p.pAnnotation
 p.pType.tAnnotation
16: p′.SC ← SC
17: FP.add(p′)
18: else if p.pType.type == “ct” then
19: SC.add(p)
20: if p.pType.constraint == “sequence” then
21: for each subelement sube ∈ e.eType.SE do
22: FP.addAll(τ(sube))
23: end for
24: else if p.pType.constraint == “choice” then
25: p′ ← create a new fine-grained parameter
26: select a subelement sube ∈ p.pType.SE randomly
27: p′.pAnnotation← sube.pAnnotation
 p.pType.pAnnotation
28: p′.pName← p.pName
29: p′.pType← sube.pType
30: p′.pDoc← p.pDoc.Concat(sube.pDoc)
31: p′.SC ← SC
32: FP.add(p′)
33: else if p.pType.constraint == “all” then
34: for each subelement sube ∈ e.eType.SE do
35: FP.addAll(τ(sube))
36: end for
37: end if
38: SC.delete(p)
39: end if
40: return FP

quential order. This order information does not
impact the semantics of the set of sub-elements,
i.e., the semantics of a complex type definition
can be represented by the semantics of all the sub-
elements. For example, if two complex type def-
initions A and B have the same set of child el-
ements but in different orders, the semantics of
these two complex types are considered as simi-
lar. In other words, the semantics of complex type
is transparent to the order of the sub-elements.
Therefore, this algorithm will handle each sub-
element sube defined in the complex type recur-
sively.

– choice (lines 24-32). The sub-elements of the in-
stance of this complex type can occur zero or one
time and the semantics of this complex type is
represented by one of the sub-elements. This al-
gorithm takes a hypothesis that the sub-elements
defined in one complex type with model group

530
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

“choice” have very similar semantics in SAWSDL
document. Note that if the hypothesis is not true,
then different instances of this complex type have
different semantics. If an output parameter of
a Web service is a complex type t1 with model
group “choice”, in which there are two child ele-
ments e1 and e2 in t1. This Web service may pro-
duce different instances of e1 or e2 for clients. The
different semantics of e1 and e2 make the seman-
tics of Web service uncertain (different semantics
of output parameters). That is a paradox. Based
on this hypothesis, this algorithm decomposes this
kind complex type into one element randomly.
The semantic annotation of the new fine-grained
parameter is the semantic annotation of the se-
lected sub-element and has the same name as the
selected sub-element.

– all (lines 33-35). The “all” element specifies that
child elements can appear in any order and that
each child element can occur zero or one time.
The attribute “minOccurs” specifies that the min-
imum number of times the element should occur.
The default value is 1, although it can be 0 or 1.
For simplicity, this algorithm does not distinguish
the values of this attribute. The semantics of this
kind of complex types is represented by the se-
mantics of all the child elements. Therefore, this
algorithm will handle each sub-element sube de-
fined in the complex type recursively.

After all the parameters of an operation have been
transformed, the signature of the operation can be repre-
sented as a set of fine-grained parameters. Next, the match-
making algorithm will be proposed for the matchmaking of
fine-grained parameters.

5. Matchmaking via Fine-Grained Data Semantics

As described in Definition 2 in Sect. 3.1, each operation def-
inition in a service description includes several aspects (such
as name, text description, input/output parameters, etc.),
which are independent and complementary to each other.
To get a comprehensive comparison result, we consider to-
gether all these kinds of descriptions for service operation
in our matchmaking strategy. And we use and combine sev-
eral similarity measures to calculate the similarity for oper-
ations since different methods fit for comparison of different
aspects of service description. For two operations opr and
ops, the similarity between them is defined as

S im(opr, ops) =
1∑5
i=1
· (x1 · Sname(opr.oName, ops.oName)

+ x2 · Stext(opr.oDoc, ops.oDoc))
+ x3 · Sannotation(opr.oAnnotation, ops.oAnnotation)
+ x4 · SimP(opr.Out, ops.Out)
+ x5 · SimP(ops.In, opr.In)

)

(1)

where xi (i ∈ {1, 2, . . . , 5}) is a binary variable (0 or 1) that
indicates whether both the request operation opr and service
operation ops have this part of description information. For
example, if both opr and ops have description text, then the
value of x2 is 1, otherwise 0. Each similarity measure will
be discussed in following sections.

5.1 Similarity of Fine-Grained Parameter

Different kinds of descriptions in Definition 2 have their own
specific characteristics and data formats, therefore, different
kinds of similarity measures are needed to compute the sim-
ilarity values. For example, the name is usually a concate-
nated string and thus string similarity measures are needed
for the comparison of operation names, while set similar-
ity measures are needed to compare the set of input/output
parameters. Furthermore, there may exist several similarity
measures available for the comparison of a certain kind of
description, e.g., average string and Jaro coefficient for the
comparison of strings. Besides, the effectiveness of different
similarity measures is usually dependent on the application
context [21]. Therefore, we make use of different similarity
measures for the comparison of different aspects of service
description.

5.1.1 Name Similarity

The attribute ‘name’ may appear in every component
in SAWSDL definition, such as service name, interface
name, operation name, element name. From our previous
work [22], we find that Dice’s Coefficient similarity measure
fits for the matching of names and works well on the Web
service discovery test collection SAWSDL-TC2 and Jena
Geography Dataset 50. Therefore, this paper also employ
Dice’s Coefficient to measure the name similarity of each
component. The computational formula of name similarity
is defined as

S name(x, y) =
2 × |BS (x) ∩ BS (y)|
|BS (x)| + |BS (y)|

where BS (x) returns the set of character bigrams (sequential
pairs) in string x, for example, BS (hello) = {he, el, ll, lo}.

5.1.2 Text Similarity

Each component in SAWSDL description may have a sub-
element “document”, and the value of the element “docu-
ment” is the natural language description text of that com-
ponent. Therefore, it needs to compare the description text.
The similarity between text text1 and text text2 is measured
by the sets of key words found in the text. After the pre-
processing such as tokenization, stemming and stop words
filtering, the key words of a description text can be obtained.
We use Dice’s Coefficient to compute the similarity between
two set of key words Key(t1) and Key(t2). The formula of
text similarity is defined as

WEI et al.: SAWSDL SERVICE DISCOVERY BASED ON FINE-GRAINED DATA SEMANTICS
531

S text(t1, t2) =
2 × |Key(t1) ∩ Key(t2)|
|Key(t1)| + |Key(t2)|

5.1.3 Semantic Annotation Similarity

In SAWSDL document, several components may have
an extension attribute “modelReference” and can be an-
notated with semantic annotations, such as interface
“wsdl:interface”, “wsdl:operation”, “xs:element”. To com-
pare these components, semantic annotations need to be
compared according to the semantic subsumption relation-
ships in the ontology definition. There are several similar-
ity measures for measuring the similarity of semantic an-
notations. This paper selects the most effective measure in
OWLS-MX that is Jeson-Shannon information divergence
similarity [23].

S annotation(S ,R) =
1

2 log2
Σn

i=1h(pi,R) + h(pi,S) − h(pi,R + pi,S)

where pi,R represents the probability of the ith index term
appearing in R, and h(x) = −x log x.

5.1.4 Data Type Similarity

The work in [2] presented a similarity function for compar-
ing the similarity between data types. However, it considers
only a part of built-in data types in XML Schema. In this
paper, we extend it to support more data types. And the
similarity between two data types are calculated as the com-
plement of the information loss. For more details we refer
the reader to [2].

5.1.5 Semantic Context Similarity

To avoid the loss of semantic annotations of the complex
types, Algorithm 1 records the semantic annotations of the
complex types in the fine-grained parameters. The similarity
between two semantic contexts sc1 = {s1, s2, . . . , sm} and
sc2 = {s′1, s′2, . . . , s′k} is defined as

S SC(sc1, sc2) = max
1≤i≤n,1≤ j≤k

S node(si, s
′
j)

where

S node(si, s′j) = λ1 · S text(si.nName, s′j.nName)
+ λ2 · (S annotation(si.nAnnotation, s′j.nAnnotation))

where λ1 + λ2 = 1, λ1, λ2 ∈ [0, 1].

5.1.6 Similarity of Fine-Grained Parameter

The similarity between two fine-grained parameters pr and
ps is defined as

Sime(pr, ps)
= 1
Σ5

j=1 x j
· (x1 · S name(pr.pName, ps.pName)

+ x2 · S text(pr · pDoc, ps · pDoc)
+ x3 · S annotation(pr · pAnnotation, ps · pAnnotation)
+ x4 · S type(pr · pr.pType, ps · pType)
+ x5 · S SC(pr · SC, ps · SC))

Based on this definition, the similarity between two
sets of parameters is defined as

SimP(X,Y) =
1
|X|
∑

x∈X

max
y∈Y

Sime(x, y)

6. Evaluation

6.1 Experimental Dataset

This evaluation uses one of the most popular SAWSDL
service discovery test collection SAWSDL-TC2 †, which is
also used as the test collection in Track 2 of the third Seman-
tic Web Service Selection Contest (S3 Contest) ††. Web ser-
vices and requests in SAWSDL-TC2 are transformed semi-
automatically from the OWLS test collection OWLS-TC
2.2 ††† through the tool OWLS2WSD ††††.

SAWSDL-TC2 includes 894 Semantic Web services
and 26 requests from 7 domains, which are all described
in SAWSDL. Each SAWSDL service or request has only
one interface and each interface contains only one opera-
tion. There is no description text and semantic annotation
for the operation itself in every request, i.e., operation has
only name, input parameters and output parameters accord-
ing to the Definition 2. Each parameter of the operation in
the request has name, semantic annotation and type defini-
tions according to the Definition 3. The top level annota-
tion style is employed to annotate the complex types in all
the services and requests, i.e., only the complex types them-
selves are annotated with model references. However, the
interface, operation and non top-level elements in “types”
definition are not annotated.

The previous work in [6] used a subset of SAWSDL-
TC2, called SAWSDL-TC2 WA, for evaluation. In this pa-
per, we also use this subset for comparison with the previous
work. This subset contains only 14 requests but all the ser-
vices in SAWSDL-TC2.

6.2 Evaluation Measures

The performance of Web service discovery is often mea-
sured by two popular measures in information retrieval,
which are precision and recall. Given a request q with n rel-
evant Web services, precision P is the fraction of retrieved
relevant Web services (k) to the retrieved Web services (m).

P =
|relevantservices ∩ retrievedservices|

|retrievedservices| =
k
m

Recall is the fraction of retrieved relevant Web services (k)
to the total relevant services (n).

R =
|relevantservices ∩ retrievedservices|

|relevantservices| =
k
n

†http://projects.semwebcentral.org/projects/sawsdl-tc/
††http://www-ags.dfki.uni-sb.de/ klusch/s3/html/2009.html
†††http://semwebcentral.org/projects/owls-tc/
††††http://projects.semwebcentral.org/projects/owls2wsdl/

532
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

Precision and recall are single-value metrics based on the
whole list of returned services by the matchmaker. How-
ever, the order is also important to the matchmakers that re-
turn a ranked list of services. Average Precision AP is the
average of precisions computed at each point of the relevant
services in the ranked list, which emphasizes ranking rele-
vant services higher.

AP =
Σm

i=1P@i · rel(si)

Σm
i=1rel(si)

where m is the cardinality of the set of returned services,
P@i is the precision only considering the top i returned ser-
vices, si represents the ith service in the returned services
list, function rel(si) is a binary function on the relevance
(e.g., if si is a relevant service, then rel(si) = 1, otherwise
rel(si) = 0).

Mean Average Precision (MAP) is a metric for the
whole requests. It is a mean value of average precision of
each request in the query set Q.

MAP =
Σ
|Q|
i=1APi

|Q|
In our evaluation, we use macro-averaged precision and re-
call curves to compare the effectiveness of the compared
matchmakers. At each recall level, the average precision
over all queries is the macro-average precision. However,
different queries have various number of relevant services,
and it is, therefore, difficult to compute the average preci-
sion at a certain recall level. Ceiling interpolation is used
to estimate the precision values that are not observed in the
relevant sets for some queries at some levels. The number
of standard recall levels Ri from 0 to 1 we used in this eval-
uation is 20 (i.e., Ri =

i
20). The macro-averaged precision is

defined as follows:

mAPi =
Σq∈Q max{P′|R′ ≥ Ri ∧ (R′, P′) ∈ S }

|Q|
where S is the set of observed (R,P) points, Ri is a standard
recall level.

Besides, query response time (QRT) is also used to
measure the efficiency of the matchmakers, which is the av-
erage time from the request to the response time. Average
query response time (AQRT) is the average response time
over all queries in the test collection.

6.3 Experimental Results and Analysis

Our matchmaker is called FGDSM (Fine-Grained Data Se-
mantics based Matchmaker). The benchmark matchmak-
ers consist of the variants of SAWSDL-MX [6], includ-
ing SAWSDL-WA, SAWSDL-M0, SAWSDL-M0+WA and
SAWSDL-MX1. SAWSDL-WA exploits the method pro-
posed in WSDL-Analyzer [18] to recursively compute the
structural similarity between request and service, which in-
volves the comparison of element name, data types, at-
tributes of structure, etc. SAWSDL-M0 is a pure semantic

Fig. 2 Performance comparison on SAWSDL-TC2 WA.

matchmaker based on the logic matching of the semantic an-
notations of parameters. There are five degrees for the logic
matching, including Exact, Plug-in, Subsumes, Subsumed-
by and Fail. Services are ranked according to their matching
degrees in the following decreasing order: Exact > Plug-in
> Subsumes > Subsumed-by > Fail, and the services that
share the same logical matching degree are ranked at ran-
dom. SAWSDL-M0+WA exploits the similarity value com-
puted by SAWSDL-WA to rank the services in a certain de-
gree which are filtered by the logic matchmaker SAWSDL-
M0. SAWSDL-MX1 applies the logical matching filters
mentioned in SAWSDL-M0 and ranks services that share
the same logical matching degree according to the syntactic
similarity of semantic annotations.

Currently, the matchmaker FGDSM has already been
deployed in our customizable matchmaker SAWSDL-
iMatcher. Meanwhile, a FGDSM plug-in of the general
Semantic Web service matchmaker evaluation environment
(SME2) is also implemented, and all the experimental re-
sults are produced by this plug-in.

Figure 2 shows the macro-averaged precision and re-
call curves of FGDSM and SAWSDL-WA on the test col-
lection SAWSDL-TC2 WA. The results show that FGDSM
outperforms the benchmark matchmaker SAWSDL-WA,
that is, FGDSM has higher precision and recall. Since
FGDSM performs the matchmaking of the fine-grained data
semantics, it works well when the compared parameters
have similar data semantics but are not organized in simi-
lar data structures, which may not be matched in SAWSDL-
WA successfully. Besides, this may indicate that the match-
maker considering both the structure and semantic annota-
tions can improve the effectiveness of matchmaking, com-
pared with the matchmakers that only consider the structure
information.

Table 1 summarizes the average precision (AP) and
average query response time (AQRT) of each benchmark
matchmakers on test collection SAWSDL-TC2 WA. The
experimental results of SAWSDL-MX1 and SAWSDL-

WEI et al.: SAWSDL SERVICE DISCOVERY BASED ON FINE-GRAINED DATA SEMANTICS
533

Table 1 Comparison of AP and ARQT.

FGDSM SAWSDL-WA SAWSDL-MX1 SAWSDL-M0+WA

MAP 0.68 0.31 0.66 0.61

ARQT 2.74s 11.94s 8.17s 15.48s

Fig. 3 Performance comparison on SAWSDL-TC2.

M0+WA are referenced from [6]. The results indicate that
the structure based matchmaker SAWSDL-WA has lower
average precision and higher query response time. FGDSM
has average precision of 0.68, which is slightly better than
that of SAWSDL-MX1 (MAP = 0.66). Furthermore, since
FGDSM transforms the structure information into flatten in-
formation set, it has lower query response time by avoiding
the comparison of structure.

Figure 3 shows the performance of each matchmak-
ers on the test collection SAWSDL-TC2. “Name” repre-
sents the name matching based matchmaker. “IO IR” com-
pares the semantic annotations of interface and explores Eu-
clidean Distance to compare the unfolded concept expres-
sions of semantic annotations. “IO Semantic” exploits logic
matching to measure the similarity between the semantic an-
notations of interface [22]. The experimental results show
that FGDSM outperforms service name based matchmaker
and logic matching based matchmaker. When the recall lev-
els are lower than 20%, FGDSM outperforms IO IR. Oth-
erwise, IO IR slightly outperforms FGDSM.

The above experimental results indicate that fin-
grained data semantics based matchmaker can obtain good
effectiveness and avoid the high computational complex-
ity. This method can satisfy the user’s requirement that the
matchmakers should return the services list as good as pos-
sible and respond the request as soon as possible.

7. Conclusion and Future Work

This paper presents a SAWSDL service matchmaking
method based on fine-grained data semantics. The core of
this method is to transform the message-level parameters

into fine-grained parameters by considering the character-
istics of the SAWSDL structure and annotations. On this
basis, we propose a matching measure for the fine-grained
parameters, which integrates several parts of SAWSDL ser-
vice descriptions (including name, description text, seman-
tic annotations, data types and semantic context). Experi-
mental results show that the fine-grained data semantics can
help to improve the performance of the matchmaking with
low computational cost.

In the future work, we will consider the semantic
matchmaking of precondition and effect of Semantic Web
services at the fine-grained level.

Acknowledgements

The research is supported by National Grand Fundamental
Research Program of China under Grant No.2011CB302603
and the National Natural Science Foundation of China under
Grant No.60873097.

References

[1] M. Paolucci, T. Kamasutra, T.R. Payee, and K.P. Sycara, “Seman-
tic matching of web services capabilities,” ISWC, LNCS, vol.2342,
pp.333–347, Springer, 2002.

[2] P. Plebani and B. Pernici, “Urbe: Web service retrieval based on
similarity evaluation,” IEEE Trans. Knowl. Data Eng., vol.21, no.11,
pp.1629–1642, 2009.

[3] D. Wei, T. Wang, J. Wang, and Y. Chen, “Extracting semantic con-
straint from description text for semantic web service discovery,”
ISWC, LNCS, vol.5318, pp.146–161, Springer, 2008.

[4] D. Wei, T. Wang, J. Tang, and J. Wang, “Reducing semantic bias of
annotations for semantic web service discovery,” J. Southeast Uni-
versity, vol.26, no.1, pp.48–52, 2010.

[5] U. Bellur and R. Kulkarni, “Improved matchmaking algorithm for
semantic web services based on bipartite graph matching,” IEEE In-
ternational Conference on Web Services, pp.86–93, IEEE Computer
Society, 2007.

[6] M. Klusch, P. Kapahnke, and I. Zinnikus, “Hybrid adaptive web ser-
vice selection with sawsdl-mx and wsdl-analyzer,” ESWC, LNCS,
vol.5554, pp.550–564, Springer, 2009.

[7] J. Becker, O. Müller, and M. Woditsch, “An ontology-based natural
language service discovery engine - design and experimental evalu-
ation,” ECIS, 2010.

[8] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Sci-
entific American, 2001.

[9] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S.
Mcllraith, S. Narayanan, M. Paolucci, B. Parsia, P. Terry, E. Sirin,
N. Srinivasan, and K. Sycara, “Owl-s: Semantic markup for web
services,” 2004. http://www.w3.org/Submission/OWL-S/

[10] J.d. Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, M. Kifer,
B. König-Ries, J. Kopecky, R. Lara, E. Oren, A. Polleres, J. Sci-
cluna, and M. Stollberg, “D2v1.3. web service modeling ontology
(wsmo),” 2006. http://www.wsmo.org/TR/d2/v1.3/

[11] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.T. Schmidt,
A. Sheth, and K. Verma, “Web service semantics - wsdl-s,” 2005.
http://www.w3.org/Submission/WSDL-S/

[12] J. Farrell and H. Lausen, “Semantic annotations for wsdl and xml
schema,” 2007. http://www.w3.org/TR/sawsdl/

[13] C. Kiefer and A. Bernstein, “The creation and evaluation of iS-
PARQL strategies for matchmaking,” ESWC, LNCS, vol.5021,
pp.463–477, Springer, 2008.

[14] M. Klusch, B. Fries, and K.P. Sycara, “Owls-mx: A hybrid seman-
tic web service matchmaker for owl-s services,” J. Web Semantics,

534
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

vol.7, no.2, pp.121–133, 2009.
[15] M. Klusch and F. Kaufer, “Wsmo-mx: A hybrid semantic web ser-

vice matchmaker,” Web Intelligence and Agent Systems, vol.7, no.1,
pp.23–42, 2009.

[16] M. Klusch, “Semantic service coordination,” in CASCOM - Intelli-
gent Service Coordination in the Semantic Web, ed. M. Schumacher,
H. Helin, and H. Schuldt, ch. 4, pp.59–104, Springer, 2008.

[17] X. Dong, A.Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Sim-
ilarity search for web services,” VLDB, pp.372–383, 2004.

[18] I. Zinnikus, H.J. Rupp, and K. Fischer, “Detecting similarities be-
tween web service interfaces: The wsdl analyzer,” Second Interna-
tional Workshop on Web Services and Interoperability, 2006.

[19] K. Sivashanmugam, A. Sheth, J. Miller, K. Verma, R. Aggarwal, and
P. Rajasekaran, “Metadata and semantics for web services and pro-
cesses,” in Datenbanken und Informationssysteme (Databases and
Information Systems), pp.245–271, Festschrift zum 60. Geburtstag
von Gunter Schlageter, Publication Hagen, 2003.

[20] A.M.P.V. Biron and K. Permanente, “Xml schema part 2: Datatypes
second edition (w3c recommendation),” Tech. Rep., W3C, Oct.
2004.

[21] A. Bernstein, E. Kaufmann, C. Buerki, and M. Klein, “How sim-
ilar is it? towards personalized similarity measures in ontologies,”
Wirtschaftsinformatik, pp.1347–1366, 2005.

[22] D. Wei, T. Wang, J. Wang, and A. Bernstein, “Sawsdl-imatcher:
A cunstomizable and effective semantic web service matchmaker,”
Journal of Web Semantics: Science, Services and Agents on the
World Wide Web, 2010 (Under Review).

[23] M. Klusch, B. Fries, and K.P. Sycara, “Automated semantic web ser-
vice discovery with owls-mx,” AAMAS, pp.915–922, ACM, 2006.

Dengping Wei was born in 1981, female,
Ph.D. student. The main research interest in-
cludes Semantic Web, Web service and infor-
mation retrieval. School of Computer, National
University of Defense Technology, 410073,
Changsha, China.

Ting Wang was born in 1970, male, profes-
sor. The main research interest includes Seman-
tic Web, information extraction and information
retrieval. School of Computer, National Univer-
sity of Defense Technology, 410073, Changsha,
China.

Ji Wang was born in 1969, male, professor.
The main research interest includes high confi-
dence software technologies, software method-
ology and software engineering. National Lab-
oratory for Parallel and Distributed Processing,
410073, Changsha, China.

