
602
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

PAPER Special Section on Data Engineering

Performance Evaluation of Flash SSDs in a Transaction Processing
System

Yongkun WANG†a), Kazuo GODA††, Nonmembers, Miyuki NAKANO††, Member,
and Masaru KITSUREGAWA††, Fellow

SUMMARY Flash SSDs are being incorporated in many enterprise
storage platforms recently and expected to play a notable role for IO-
intensive applications. However, the IO characteristics of flash SSDs are
very different from those of hard disks. Since existent storage subsystems
are designed on the basis of characteristics of hard disks, the IO perfor-
mance of flash SSDs may not be obtained as expected. This paper pro-
vides an evaluation of flash SSDs in transaction processing systems with
TPC-C benchmark. We present performance results with various configu-
rations and describe our observations of the IO behaviors at different levels
along the IO path, which helps to understand the performance of flash-
based transaction processing systems and provides certain references to
build flash-based systems for IO-intensive applications.
key words: flash SSD, database, transaction processing system

1. Introduction

Flash SSDs are likely to be used in enterprise storage plat-
forms for achieving high performance in data-intensive ap-
plications. Many researchers have proposed solutions to
modify the current applications with consideration of the
characteristics of flash SSDs [1]–[6]. These solutions are ef-
fective to improve the potential performance of flash SSDs
in an experimental system. In current enterprise systems,
storage subsystems are usually virtualized behind a stor-
age network, such as Network Attached Storage (NAS)
and Storage Area Network (SAN), with complex software
stacks. Optimization techniques along such a long IO path
are also important for achieving high performance. The pos-
sibility of this kind of optimizations has been preliminarily
demonstrated in [7] with a log-structured file system.

The stacks of current storage systems have been well
tuned to the characteristics of hard disks for decades.
With different characteristics such as seek-less accesses and
“erase-before-write” design, flash SSDs may not effectively
provide their high performance when they are simply placed
into the existing system.

In order to better utilize flash SSDs in IO-intensive sys-
tems fully, we need to have a comprehensive understanding
of the IO behavior along the IO path. The IO path has been
designed to hide the seek latency and utilize the sequential

Manuscript received June 8, 2010.
Manuscript revised October 4, 2010.
†The author is with the Graduate School of Information Sci-

ence and Technology, The University of Tokyo, Tokyo, 153–8505
Japan.
††The authors are with Institute of Industrial Science, The Uni-

versity of Tokyo, Tokyo, 153–8505 Japan.
a) E-mail: yongkun@tkl.iis.u-tokyo.ac.jp

DOI: 10.1587/transinf.E94.D.602

bandwidth. The whole system has been studied and adjusted
to provide a good performance on thousands of hard disks.
Similar studies based on characteristics of flash SSDs are
also strongly required to achieve expected performance im-
provement. However there are few reports for evaluating
detailed behaviors of SSDs.

This paper provides evaluation on the IO behaviors
of SSDs running an actual database application. The on-
line transaction processing is taken for the examination. A
traditional file system, ext2fs, and a typical log-structured
file system, nilfs2, were adopted. We ran TPC-C bench-
mark with two DBMSs (commercial and open-source), three
high-end flash SSDs (Mtron, Intel and OCZ), and two IO
schedulers (Anticipatory and Noop). The differences of ba-
sic performance of three SSDs have been measured and an-
alyzed. Then, the detailed behavior of IO path has been in-
vestigated. Lastly, we have a comprehensive knowledge that
design of log-structured file system should be carefully con-
sidered for SSDs.

The rest of this paper is organized as follow: Sect. 2
gives a brief introduction to flash SSD and an experimen-
tal study on the basic performance. Section 3 provides the
evaluation that we conducted TPC-C benchmark with two
different DBMSs and three different SSDs. Section 4 will
discuss some SSD-specific features. The related works are
summarized in Sect. 5. Finally, our conclusion and future
works are provided in Sect. 6.

2. Flash SSDs and Basic Performance

2.1 Flash SSDs

NAND flash memory is a kind of EEPROM (Electrically
Erasable Programmable Read-Only Memory). The memory
space can be divided into many blocks, each block being
composed of multiple pages. There are three operations for
NAND flash memory: read, program, and erase. The read
and program operations are conducted on an arbitrary page.
Once the page is programmed, it cannot be re-programmed
directly. An erase operation is required to reset the state
of the whole block before the concerned page can be pro-
grammed with new data. Read and program operations can
complete in tens of microseconds to hundreds, while the
erase operations are slow, often taking over a millisecond.
Table 1 shows the performance parameters of a typical Sam-
sung 4 GB flash memory chip [8]. This “erase-before-write”

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



WANG et al.: PERFORMANCE EVALUATION OF FLASH SSDS IN A TRANSACTION PROCESSING SYSTEM
603

Table 2 Storage devices in our experimental system, with the performance specifications.

Manufacture SLC/MLC Form
Interface Capacity

Cache Heads/
Sustained Rate Performance Value

Model /RPM Factor Size Channels
HGST 7200

3.5′′
SATA

750 GB 300 MB/s1
Seek time:

HDS72107 RPM 3.0 Gbps 32 MB 8 heads 8.2 ms read (typical)
[9] 9.2 ms write (typical)
Mtron

SLC 3.5′′ 32 GB 16 MB2 4 channels3

Sequential Read IOPS(4 KB): 12,000
PRO 7500 SATA Read: 130 MB/s Sequential Write IOPS(4 KB): 21,000
[10] 3.0 Gbps Write: 120 MB/s Random Read IOPS(4 KB): 12,000

Random Write IOPS(4 KB): 130
Intel

SLC 2.5′′ SATA
64 GB 16 MB4 10 channels Read: 250 MB/s Random Read IOPS(4 KB): 35,000

X25-E [11] 3.0 Gbps [12] Write: 170 MB/s Random Write IOPS(4 KB): 3,300
OCZ

SLC 2.5′′
SATA

120 GB Seek Time: less than 0.1 msVERTEX EX 3.0 Gbps 64 MB Not found Read: 260 MB/s
[13] Write: 100 MB/s
1 This bandwidth is connection bandwidth. Sustained transfer rate is not disclosed in the data sheet.
2 Reported by hdparm [14] in our test system.
3 Estimated by the number of Flash Bus Controller (FBC) in the block diagram.
4 Obtained by the memory chip used in the 32 GB model. [15]

Table 1 Parameters of Samsung 4 GB flash memory chip.

Page Read (4 KB) 25 µs
Page Program (4 KB) 200 µs
Block Erase (256 KB) 1500 µs

design leads to the relatively poor performance for random
write.

With the rapid development of NAND flash memory
chips, the flash SSD (Solid State Drive) has appeared in the
markets. The flash SSD is assembled with large-capacity
flash memory chips and a dedicated control system. There
may be a number of flash channels connected in parallel be-
tween the flash chips and the control system. The control
system contains the mapping logic called Flash Translation
Layer (FTL) and the buffer cache, which together provide
disk device emulation. Application running on the server
can use traditional block read/write commands to access the
data stored in the flash SSD as if the data is stored in the
conventional hard disk.

2.2 Basic Performance Study

2.2.1 System Setup

The flash SSD has the capability of disk emulation, but
its internal mechanism is different of that of conventional
hard disk. The performance characteristics should be care-
fully studied when we think about the deployment into data-
intensive systems. In this section, we present our experi-
mental examination with three major SSD products.

We built a Linux server on a DELL Precision 390
workstation, with Dual-core Intel 1.86 GHz CPU and 2 GB
memory. Table 2 describes three high-end flash SSDs used
in our system from the major product lines of Mtron, Intel
and OCZ.† We employed default settings in all the experi-
ments: read-ahead prefetching and write-back caching were
enabled. For comparison, HGST’s hard disk was also stud-
ied in the experiment.

We developed a micro benchmark tool for measuring

the IO performance by issuing several types of IO sequences
(e.g. purely sequential reads or 50% random reads plus 50%
random writes) to a target device. The benchmark tool was
set to bypass the file system and the OS buffer in order to
clarify the pure performance of the concerned device.

2.2.2 IO Throughput

We firstly examined the IO throughput of sequential ac-
cesses. Three cases are compared for each device in Fig. 1.
Higher throughputs were confirmed in most of the cases in
the SSDs than the hard disk, but several exceptions were
also seen. In Fig. 1 (b), the read and write throughputs
of Mtron’s SSD were close to each other and saturated at
around 120 MB/s, which is consistent with the bandwidth
specifications in Table 2. In Fig. 1 (c), the read and write
throughputs of Intel’s SSD were much higher than that of
Mtron’s SSD, but the write throughput decreased when re-
quest size became larger than 32768 bytes. The acclaimed
bandwidth in Table 2 was also confirmed in Fig. 1 (c) when
the request size was set to 1 MB††. In Fig. 1 (d), the read
throughput of OCZ’s SSD was higher too, but the write
throughput was the worst. The confirmed bandwidth here
was lower than that indicated in the Table 2.

Random accesses were next studied. Figure 2 (a) to
2 (d) show the throughputs that were observed for random
accesses when the number of outstanding IOs was set to one.
The read throughput kept untouched as that of sequential

†Table 2 summarizes internal design information such as cache
size and channel number that vendors have disclosed. As is men-
tioned later in Sect. 2.2.2, this limited information is not enough to
explain overall performance of SSDs. The overall performance is
affected by complex of various design factors such as flash chips’
performance characteristics, internal channel latency/bandwidth,
controller processing power, external (device to host) interconnec-
tion latency/bandwidth and even software algorithm employed in
the controller. We could know the basic performance first after we
did the experiments described in Sect. 2.2.
††We do not show the data with the request size larger than

262,144(256 K) bytes in Fig. 1, 2 or 3 for the brevity.



604
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

(a) HGST (b) Mtron (c) Intel (d) OCZ

Fig. 1 IO throughput for sequential access.

(a) HGST (b) Mtron (c) Intel (d) OCZ

Fig. 2 IO throughput for random access. (single thread)

(a) HGST (b) Mtron (c) Intel (d) OCZ

Fig. 3 IO throughput for random access. (thirty threads)

throughput and much higher than that of the hard disk, while
the write and the mixed-access throughputs were drastically
degraded on Mtron’s SSD and OCZ’s SSD. In the case of
mixed access, reads and writes were respectively given 50%
probability. We had expected that the mixed-access through-
put would fall between the read throughput and the write
throughput, but the observation was that the mixed-access
throughput was comparable with the write throughput. Sim-
ilar observations are also confirmed by other researchers and
this characteristic is sometimes called bathtub effect [16].
Only on Intel’s SSD, the write and mixed-access through-
puts were clearly better than that on hard disk.

The same experiment was conducted with 30 outstand-
ing IOs. The results are shown in Fig. 3 (a) to 3 (d). The
read throughput improved clearly on the hard disk, Intel’s
SSD and OCZ’s SSD, while significant improvement was
not confirmed for the read throughput in Mtron’s SSD and
the write and mixed-access throughputs in all the SSDs.

Let us look back at the vendor-disclosed design infor-
mation such as cache size and channel number cited in Ta-
ble 2. Unfortunately we could not find strong relationship
between such design information and the experimental re-
sults above presented. The overall performance is also im-
pacted by more other design factors, yet vendors only dis-
closed limited design information. Figure 1 shows that In-

tel’s SSD has relatively high transfer rate than Mtron’s SSD.
This might be brought by design difference of internal chan-
nels; Intel’s SSD holds ten channels whereas Mtron’s SSD
has only four. But, even bandwidth of internal channels,
namely MB/s, is not disclosed. Further analysis is not pos-
sible for us due to the lack of information. Experiment pre-
sented in this section can be seen as an alternative way for
us to understand the basic performance characteristics.

2.2.3 IO Response Time

Since the random access performance is important to typi-
cal database applications such as the transaction processing
systems, we further studied the response time. The response
time distribution is shown in Fig. 4. We can have the follow-
ing observations:

Random Read The random read response time was
close to each other among three SSDs. Note that we saw a
single sharp cliff in each cumulative frequency curve for the
SSDs. This means that most of random reads could com-
plete in a very small range of response times. Such small
variance in response times was not confirmed in conven-
tional hard disk, where the rotational platter always gives
unpredictability of response times.

Random Write Compared with random read, random



WANG et al.: PERFORMANCE EVALUATION OF FLASH SSDS IN A TRANSACTION PROCESSING SYSTEM
605

(a) HGST (b) Mtron (c) Intel (d) OCZ

Fig. 4 IO response time distribution for random access. (single thread)

write gave more complicated characteristics. Two major
cliffs were confirmed around 100 microseconds and 10,000
microseconds respectively in Mtron’s SSD. Although the in-
side logic is not documented, our conjecture is that the long
response time is caused by the inside flush operations. When
the on-disk buffer is full, the control system will flush some
pages and make room for the new requests. The flush op-
eration is very time-consuming since it may incur the erase
operations. Similarly, multiple cliffs were also confirmed in
Intel’s SSD and OCZ’s SSD.

Random 50% Read 50% Write This pattern is close to
Random Write. Although the pure read performance was
very high and almost predictable, the write performance and
the mixed-access performance were sometimes much poor
and its variance was significant.

3. Performance Evaluation by TPC-C Benchmark

We present our experimental examination of three major
SSDs with a standard benchmark TPC-C.

3.1 Experimental Setup

We built a database server on the same system described in
Sect. 2.2.1. The software stacks can be illustrated in Fig. 5.
We will describe it in a top-down manner.

In Fig. 5, TPC-C [17] benchmark is at the top of our
experimental system. TPC-C is a standard benchmark sim-
ulating real online transaction processing workloads. It is
actually accepted by many hardware and software vendors.
The workload of TPC-C is composed of two read-only and
three update transactions, which together provide many ran-
dom reads and writes to the storage device.

In our TPC-C benchmark application, we started 30
threads to simulate 30 virtual users with 30 warehouses. The
initial database size was 2.7 GB. The Key and Thinking time
was set to zero in order to measure the maximum perfor-
mance. The mix of the transaction types is shown in the
normal column of Table 3. Unless specially stated, we used
this mix for the experiment. Besides the normal mix in Ta-
ble 3, we also configured another two types of workloads:
read intensive and write intensive, in which the read-only
and read-write transactions are dominant respectively.

DBMS serves the requests from TPC-C benchmark. In
the experiment, we set up a commercial DBMS and an open-
source DBMS MySQL. The detailed configuration of these

Fig. 5 Stack of system configuration.

Table 3 Transaction types in TPC-C benchmark.

Transaction
Type

IO Property
% of mix

normal
read write

intensive intensive
New-Order read-write 43.48 4.35 96.00
Payment read-write 43.48 4.35 1.00
Delivery read-write 4.35 4.35 1.00
Stock-Level read-only 4.35 43.48 1.00
Order-Status read-only 4.35 43.48 1.00

Table 4 Configuration of DBMS.

Commercial DBMS MySQL(InnoDB)
Data buffer size 8 MB 4 MB
Log buffer size 5 MB 2 MB
Data block size 4 KB 16 KB
Data file fixed, 5.5 GB, database size is 2.7 GB
Synchronous IO Yes Yes
Log flushing method flushing log at transaction commit

DBMSs is shown in Table 4.
We selected two file systems for evaluation, the tradi-

tional EXT2 file system (ext2fs) and a recent implementa-
tion of log-structured file system, nilfs2 [18]. The block
size was set to 4 KB for both of them. The garbage col-
lection (GC) is disabled by default in nilfs2 for the simplic-
ity of analysis. We will also show the influence of GC in
Sect. 3.2.3.

We also used two IO schedulers, Anticipatory and
Noop in this Linux server. By default, the Anticipatory was
used in the experiment because it is the default one in our
Linux distribution.



606
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

Fig. 6 Transaction throughput.

3.2 Transaction Throughput

3.2.1 Transaction Throughput

Figure 6 shows the transaction throughput in terms of
transactions-per-minute (tpm).

The advantage of flash SSDs over hard disk is clear;
the transaction throughput on the SSDs was higher than that
on HGST in either DBMS.

For Mtron SSD, a noticeable improvement of nilfs2
over ext2fs on commercial DBMS was observed. This
stemmed from the log-structured design that nilfs2 holds.
That is, in nilfs2, every time a write is requested, the file
system allocates a new space for that request. This helps
to avoid the time-consuming erase operation on flash SSDs.
Even if DBMS requests a sequence of random writes to the
file system, it can give a converted sequence of virtually se-
quential writes. See again Section 2.2, where we confirmed
that Mtron’s SSD has higher throughput of sequential writes
rather than random writes. Nilfs2 successfully exploited this
characteristic to derive improved performance. However,
contrary to expectation, the advantage of log-structured file
system is not clear in Intel’s and OCZ’s SSDs. We gives
analysis on this point in later sections.

3.2.2 IO Throughput

So as to understand the system behavior more, we traced in-
kernel IO events by using SystemTap [19]. Figure 7 shows
the throughput of file system access given by DBMS under
the TPC-C execution. For reference, let us call these file sys-
tem accesses logical IOs. The workload nature of TPC-C is
IO intensive. The overall transaction throughput is mainly
determined by the available IO power. Seeing Fig. 6 and
Fig. 7, we could verified that the transaction throughputs ac-
tually followed the logical IO throughputs. Note that the
logical IOs may not directly go to the storage device, but
rather be split, merged or buffered by the file system. Fur-
ther analysis is required on the IOs in the underlying layers.

In order to understand the IO path thoroughly, we also

Fig. 7 Logical IO rate.

Fig. 8 Physical IO rate.

analyzed how these logical IOs are processed in the under-
lying layers. Figure 8 presents the throughputs of storage
device accesses in the same execution. Let us call these ac-
cesses physical IOs. The physical IO rate is the consequence
fueled by the file system capabilities and the device power.
Read throughputs were always higher than write through-
puts in Fig. 7, whereas write throughputs were higher in
Fig. 8. This means that the file system absorbed many read
requests in its buffer.

When ext2fs is used, write throughputs are almost the
same between logical throughput and physical throughput.
It is probably because that write requests are temporarily
stored in the file system buffer, but most are directly flushed
out to the storage device.

In contrast, when nilfs2 is used, write requests are more
eagerly optimized. As is mentioned before, nilfs2 has em-
ployed the log-structured design. Each time a write is re-
quested, a new storage block is allocated and the write re-
quest is routed to the block. This helps avoiding slow erase
operations in the flash SSDs. It is clear in Fig. 9 that the
write size of nilfs2 is larger than that of ext2fs because
nilfs2 has coalesced the random writes into large sequential
writes. Large sequential request is beneficial on hard disks
and some SSDs. Actually, we could improve the transaction
throughput by using nilfs2 in Mtron’s SSD. However, our
observation also suggests that we cannot ignore two possi-



WANG et al.: PERFORMANCE EVALUATION OF FLASH SSDS IN A TRANSACTION PROCESSING SYSTEM
607

Fig. 9 Average IO size.

ble drawbacks of this strategy. First, log-structured strat-
egy has the possibilities of producing more writes. This was
confirmed by Fig. 7 and Fig. 8. More writes were issued
at the physical layer than the logical layer. Even if nilfs2
can improve the IO throughput by converting random writes
into sequential writes, additional writes may finally degrade
the overall application performance. Second, too large IO
sizes have the possibilities of degrading the throughput. In
Intel’s and OCZ’s SSDs, sequential performance decreases
when the request size is larger than 32 KB, as discussed in
Sect. 2.2.2. This explains why the physical write rate of
nilfs2 on Intel and OCZ’s SSD in Fig. 8 is much better than
that of ext2fs for the commercial DBMS because the aver-
age write size is smaller. For MySQL, since the request size
is very large (100 KB+), the physical write rate of nilfs2
on Intel’s SSD is not so much better than that of ext2fs, on
OCZ’s SSD it is even worse than that of ext2fs. Note that
although the write IO rate of nilfs2 is always higher than
that of ext2fs for Intel’s SSD, the transaction throughput of
nilfs2 is lower than that of ext2fs.

3.2.3 Garbage Collection

The log-structured file system tries to allocate a new data
block for writing a data, even if it overwrites the existing
data. This strategy produces lots of invalid blocks when
write-intensive workload runs for a long time. Garbage col-
lection (GC), a.k.a. segment cleaning, is an essential func-
tion, which collects such invalid blocks and makes them
reusable for future writes.

So far, we have done the experiments with garbage col-
lection disabled. This was intended for us to measure the
potential performance of the system. In real systems, peak
workloads may not continue so long and disabling garbage
collections can be an acceptable solution in such limited
time. But, garbage collection is also an inevitable topic
when we think about long-time operation. We also stud-
ied the influence of garbage collection. We got the trans-
action throughput with different cleaning interval as shown
in Fig. 10. Monotonic performance degradation was ob-
served in all the experimental cases. As garbage collec-

(a) Commercial DBMS

(b) MySQL

Fig. 10 Transaction throughput with garbage collection enabled.

tion occurred more frequently, the transaction throughput
decreased more. The degradation ratios were varied around
0.77%−10.44% with a moderate configuration (10 seconds)
and 17.51% − 38.83% even with a severe configuration (1
second). Mtron’s SSD for both DBMSs and OCZ’s SSD
for commercial DBMS were relatively sensitive to garbage
collection, while Intel’s SSD for commercial DBMS and
MySQL and OCZ’s SSD for MySQL were less sensitive.

3.3 Transaction Throughput by Various Configurations

3.3.1 Buffer Size

The database buffer plays a vital role to the cache hit rate, the
write merging and re-ordering. The buffer size is influential
to the performance. The complexity is that DBMS reserves
some portion of the available main memory for the database
buffer, but the remaining memory space is also used as the
buffer cache for the file system, where some optimizations
may be tried too. Figure 11 shows the transaction through-
puts that we measured by varying the buffer size on Mtron’s
SSD. The absolute performance increased as we increased
the buffer size of two DBMSs on both file systems. How-
ever, the performance speedup of nilfs2 to ext2fs decreased.
With large database buffer size, a lot of random writes can be
cached in the database buffer, the amount of random writes
reaching to the file system was greatly reduced. The advan-



608
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

(a) Commercial DBMS

(b) MySQL

Fig. 11 Transaction throughput on Mtron SSD with different buffer size
of database system.

tage of log-structured file system is then reduced.

3.3.2 Workload Type

In the experiments presented so far, we have only employed
a standard mix of transactions. Here we present another two
types of workloads, read intensive and write intensive, as in-
dicated in Table 3. As shown in Fig. 12, absolute transaction
throughputs were higher for read-intensive workloads. The
speedups from ext2fs to nilfs2 were conversely higher for
write-intensive workloads.

3.3.3 IO Scheduler

The IO strategies can also be implemented by different IO
schedulers. Two IO schedulers are selected for comparison;
Anticipatory and Noop. The Anticipatory scheduler will do
the requests merging and ordering, arrange the requests in
the one-way elevator and delay some time to anticipate the
next request, to reduce the movement of disk head. The
Noop scheduler is the simplest one, which only merges the
requests, and serves them in FIFO order.

The Noop scheduler is believed to be the best choice for
the flash SSDs since there is no mechanical moving parts.
Figure 13 shows the transaction throughput with Noop and
Anticipatory schedulers. The Noop scheduler can help to

Fig. 12 Transaction throughput of commercial database with different
workload on Mtron SSD.

Fig. 13 Transaction throughput by different IO schedulers on commer-
cial DBMS.

have further improvement in the case of nilfs2 on Mtron
SSD and ext2fs on Intel SSD. But it is not clear about supe-
riority over the Anticipatory scheduler in the rest cases, and
the Noop scheduler is even worse in some cases.

4. Discussion on SSD-Specific Features

One innate characteristic of flash chips is the limited pro-
gramming cycles, which leads to limited lifespan of SSD.
If a particular flash page is written in many times, that page
will be worn out (i.e. coming to be unable to hold a writ-
ten data safely) soon even though other pages are healthy.
It would shorten the life time of flash SSDs. Balancing the
write count among all the flash pages, often called wear-
leveling, is an essential solution. One typical technique
is to redistribute hot (frequently written) pages to other
places [20], [21]. If TPC-C is running on a conventional
in-place-update file system such as ext2fs, writes are often
skewed on particular pages. This technique seems essential
to prolong the life span. When we use a log-structured file
system such as nilfs2, the file system itself is self-balancing.
That is, it can automatically distribute most of pages over the
whole address space in a copy-on-write manner. Potentially
wear-leveling could be mostly relieved. But wear-leveling is
an internal function that is mainly implemented in SSD con-



WANG et al.: PERFORMANCE EVALUATION OF FLASH SSDS IN A TRANSACTION PROCESSING SYSTEM
609

Table 5 Reliability information of SSDs.

Manufacture & Model Reliability Information
Mtron PRO 7500 [10] MTBF1 : 1,000,000 hours, write en-

durance is greater than140 years at 50 GB
write/day at 32 GB SSD2.

Intel X25-E [11] MTBF1: 2,000,000 hours, 64 GB drive
supports 2 petabyte of lifetime random
writes.

OCZ VERTEX EX [13] MTBF1: 1,500,000 hours
1 MTBF: Mean Time between Failures.
2 The above calculation is based on the guaranteed 100,000 program

and erase cycles of SLC type flash memory from vendors and the
assumption that the write is performed in sequential manner. [10]

Table 6 SSDs endurance in years by the IO throughput in Fig. 8.

Intel (years)
Commercial DBMS with ext2fs 5.47
MySQL with ext2fs 2.19
Commercial DBMS with nilfs2 2.32
MySQL with nilfs2 1.43

troller. Real algorithms are not disclosed by any vendors at
present. We would like to study the effect of wear-leveling
on the choice of file systems in the future.

Although the wear-leveling can prolong the lifespan of
the whole disk, the overall write operation count is still lim-
ited. The limitation of write operation counts is directly re-
lated to the reliability of the SSD. We collected the reliabil-
ity information of each SSD, as shown in Table 5. Given the
information in Table 5, we try to roughly calculate the en-
durance of the SSDs in the transaction processing system by
the IO throughput at the driver level in our experiment. Intel
discloses in the specification that the SSD we used is guar-
anteed two petabytes of lifetime random writes. Random
write produces the largest write counts in general. We ob-
tained an expected minimum lifetime by dividing this guar-
anteed lifetime write amount (in bytes) by average through-
put (MB/s) shown in Fig. 8. Mtron also discloses its guar-
anteed lifetime write amount, but it is measured only for
sequential writes. OCZ does not disclose any guaranteed
lifetime write amount. We could not obtain an expected life-
time for Mtron’s SSD or OCZ’s SSD. The result is shown
in Table 6. We can see that Intel’s 64GB SSD could only
last 1.43 years in the shortest case. Note that, in our exper-
iments, TPC-C ran at top speed, namely without any key-
ing or thinking time, in order to measure the potential per-
formance of SSDs for transaction processing. In real sys-
tems, most of SSDs may be running at moderate workloads
in most of time, and thus they possibly can survive much
longer time. Further investigation is necessary on this point.
Boboila et al. [20] had shown that the endurance of tested
flash chips is far longer than the nominal values by man-
ufactures. More solutions such as the redundancy of SSD
or fat provision of flash chips could be also considered to
improve the reliability.

Another feature specific to SSDs is the TRIM com-
mand [22]. When trying to delete a page in a file volume
and/or a database, many file systems and/or database sys-

tems do not physically erase content of the concerned page,
but merely drop a pointer to the page in the volume meta
data (such as inode, directory or catalog). This logical dele-
tion strategy is beneficial in terms of performance, but it
would abandon a chance of SSDs to know what page has
been deleted by the file systems or the database systems.
TRIM, a new storage command, has been proposed as a so-
lution to this. It can inform flash SSDs of which page has
been logically deleted, so that the notified SSDs can pre-
emptively erase and release the concerned page. This often
helps the performance improvement by hiding slow erase
operations. Unfortunately this new command has not been
supported in our experimental system, so we could not ex-
periment this. We would like to investigate the effect in the
future work.

5. Related Work

5.1 Log-Structured File System

The Log-structured file system (LFS) [23] is designed to ex-
ploit fast sequential write performance of hard disk. It can
convert the random writes into sequential writes. However
the side effect is that the sequential reads may also be scat-
tered into random reads. Overall, the performance can be
improved to write-intensive applications. The LFS is also
expected to improve the random write performance of flash
memory, since the fast read performance of flash memory
well mitigates the side effect. For the garbage collection
of LFS, an adaptive method based on usage patterns is pro-
posed in [24].

5.2 Flash-Based Technologies

5.2.1 Flash Translation Layer

FTL bridges the operating system and flash memory. The
main function of FTL is mapping the logical blocks to the
physical flash data units, emulating flash memory to be
a block device like hard disk. Early FTL used a simple
page-to-page mapping [25] with a log-structured architec-
ture [23]. It required a lot of space to store the mapping
table. The block mapping scheme was proposed in order to
reduce the space for mapping table. The scheme introduced
the block mapping table with page offset to map the logi-
cal pages to flash pages [26]. However, the block-copy may
happen frequently. To solve this problem, Kim improved the
block mapping scheme to the hybrid scheme by using a log
block mapping table [27].

5.2.2 File System

Most of the file systems for flash memory exploit the de-
sign of Log-structured file system [23] to overcome the write
latency caused by the slow erase operations. JFFS2[28]
is a journaling file system for flash with wear-leveling.
YAFFS [29] is a flash file system for embedded devices.



610
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

DFS [1] provides a file system design on flash storage layer
instead of the FTL layer. The DFS is designed to bypass the
traditional file system buffer and perform direct access to the
SSDs via the flash storage layer.

5.2.3 Database System

Early design for database system on flash memory mainly
focused on the embedded systems. FlashDB [6] is a self-
tuning database system optimized for sensor networks, with
two modes; disk mode for infrequent write and log mode
for frequent write. LGeDBMS [30], is a relational database
system for mobile phone. For enterprise database design on
flash memory, In-Page Logging [5] is proposed. The key
idea is to co-locate a data page and its log records in the
same physical location.

As flash SSDs are being used in enterprise storage plat-
forms, many researchers are focusing on the performance of
the flash SSDs instead of the raw flash memory. Agrawal
et al.[31] studied the internal design tradeoffs that will have
impact on the performance. Myers [32] had a study on the
usage of flash SSD in database systems and provided the IO
throughput comparison between the LFS and the conven-
tional file system. We also had evaluation of LFS on SSD
using TPC-C benchmark [7], [33].

6. Conclusion and Future Work

We have presented experimental performance evaluations
of three major flash SSDs. First, we have clarified the ba-
sic performance characteristics of flash SSDs and compared
them with a conventional hard disk. Next, we have mea-
sured and analyzed the application performance and the in-
kernel IO behavior on three flash SSDs and two file sys-
tems with TPC-C benchmark. Finally, we have also studied
a variety of configurations for TPC-C. These measurements
have provided some practical experiences for building flash-
based database systems. The performance benefits of log-
structured design were confirmed only in limited cases. It
was against our early expectation. The necessity of careful
design was verified. We plan to study eager optimization
techniques for database applications running on flash SSDs.

References

[1] W.K. Josephson, L.A. Bongo, D. Flynn, and K. Li, “DFS: A file
system for virtualized flash storage,” FAST, 2010.

[2] S. Chen, “Flashlogging: Exploiting flash devices for synchronous
logging performance,” SIGMOD, pp.73–86, 2009.

[3] D. Tsirogiannis, S. Harizopoulos, M.A. Shah, J.L. Wiener, and G.
Graefe, “Query processing techniques for solid state drives,” SIG-
MOD, pp.59–72, 2009.

[4] D. Agrawal, D. Ganesan, R.K. Sitaraman, Y. Diao, and S. Singh,
“Lazy-adaptive tree: An optimized index structure for flash devices,”
PVLDB, vol.2, no.1, pp.361–372, 2009.

[5] S.W. Lee and B. Moon, “Design of flash-based DBMS: An in-page
logging approach,” SIGMOD, pp.55–66, 2007.

[6] S. Nath and A. Kansal, “FlashDB: Dynamic self-tuning database for
NAND flash,” IPSN, pp.410–419, 2007.

[7] Y. Wang, K. Goda, and M. Kitsuregawa, “Evaluating non-in-place
update techniques for flash-based transaction processing systems,”
DEXA, pp.777–791, 2009.

[8] Samsung Corporation, K9XXG08XXM Flash Memory Specifica-
tion, 2007.

[9] Hitachi Global Storage Technologies, “Deskstar 7K1000 Specifica-
tions,” http://www.hitachigst.com/deskstar-7k1000

[10] Mtron, “Solid state drive MSP-SATA7535 product specification, re-
vision 0.3,” http://rocketdisk.com/Local/Files/
Product-PdfDataSheet-35 MSP-SATA7535.pdf, 2008.

[11] Intel, “Intel X25-E SATA solid state drive, product manual,”
http://download.intel.com/design/flash/nand/extreme/319984.pdf

[12] Intel, “IntelR X25-E extreme SATA solid-state drive, technical spec-
ifications,”
http://www.intel.com/design/flash/nand/extreme/index.htm

[13] OCZ, “OCZ vertex EX series SATA II 2.5′′ SSD Specifications,”
http://www.ocztechnology.com/products/solid state drives/
ocz vertex ex series sata ii 2 5-ssd

[14] hdparm. http://hdparm.sourceforge.net/
[15] “Review: Intel X25-E 32GB SSD,” http://www.bit-tech.net/

hardware/storage/2008/12/17/intel-x25-e-32gb-ssd-review/1
[16] R. Freitas and L. Chiu, “Solid-state storage: Technology, design and

applications,” FAST2010 Tutorial, http://www.usenix.org/
events/fast10/tutorials/T2.pdf, 2010.

[17] Transaction Processing Performance Council (TPC), TPC BENCH-
MARK C, Standard Specification, Revision 5.10, April 2008.

[18] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and S. Moriai,
“The Linux implementation of a log-structured file system,” Operat-
ing Systems Review, vol.40, no.3, pp.102–107, 2006.

[19] SystemTap. http://sourceware.org/systemtap/
[20] S. Boboila and P. Desnoyers, “Write endurance in flash drives: Mea-

surements and analysis,” FAST, pp.115–128, 2010.
[21] E. Gal and S. Toledo, “Algorithms and data structures for flash mem-

ories,” ACM Comput. Surv., vol.37, no.2, pp.138–163, 2005.
[22] Intel, “Intel SSD optimizer, white paper,”

http://download.intel.com/design/flash/nand/mainstream/
Intel SSD Optimizer White Paper.pdf

[23] M. Rosenblum and J.K. Ousterhout, “The design and implementa-
tion of a log-structured file system,” ACM Trans. Comput. Syst.,
vol.10, no.1, pp.26–52, 1992.

[24] J.M. Neefe, D.S. Roselli, A.M. Costello, R.Y. Wang, and T.E.
Anderson, “Improving the performance of log-structured file sys-
tems with adaptive methods,” SOSP, pp.238–251, 1997.

[25] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based
file system,” USENIX Winter, pp.155–164, 1995.

[26] A. Ban, “Flash file system,” US Patent no.5404485, April 1995.
[27] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, and Y. Cho, “A space-

efficient flash translation layer for CompactFlash systems,” IEEE
Trans. Consum. Electron., vol.48, no.2, pp.366–375, May 2002.

[28] JFFS2, The Journalling Flash File System, Red Hat Corporation,
http://sources.redhat.com/jffs2/, 2001.

[29] YAFFS, Yet Another Flash File System, http://www.yaffs.net
[30] G.J. Kim, S.C. Baek, H.S. Lee, H.D. Lee, and M.J. Joe,

“LGeDBMS: A small DBMS for embedded system with flash mem-
ory,” VLDB, pp.1255–1258, 2006.

[31] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M.S. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,”
USENIX ATC, 2008.

[32] D. Myers, On the Use of NAND Flash Memory in High-
Performance Relational Databases. Master’s thesis, MIT, 2007.

[33] Y. Wang, K. Goda, M. Nakano, and M. Kitsuregawa, “Early expe-
rience and evaluation of file systems on SSD with database applica-
tions,” IEEE NAS, pp.467–476, July 2010.



WANG et al.: PERFORMANCE EVALUATION OF FLASH SSDS IN A TRANSACTION PROCESSING SYSTEM
611

Yongkun Wang is currently a Ph.D. candi-
date at the Graduate School of Information Sci-
ence and Technology, the University of Tokyo
in Japan. His research interests are the opti-
mization of database systems in a storage plat-
form with new storage media, specially the flash
memory. He is a student member of DBSJ.

Kazuo Goda Project research associate
at Institute of Industrial Science, the University
of Tokyo in Japan. He received the Ph.D. de-
gree in information science and technology from
the University of Tokyo in 2005. His research
interests include database systems and storage
systems. He is a member of ACM, IEEE CS,
USENIX, IPSJ and DBSJ.

Miyuki Nakano Project Associate Profes-
sor at Institute of Industrial Science, the Univer-
sity of Tokyo in Japan. She received the Ph.D.
degree in Information Science and Technology
in 2006 from the University of Tokyo. Her
research interests include data engineering and
parallel computing. She is a member of IEEE,
ACM, IPSJ and DBSJ.

Masaru Kitsuregawa Professor and the
director of the Center for Information Fusion
at Institute of Industrial Science, the University
of Tokyo in Japan. He received the Ph.D. de-
gree in information engineering in 1983 from
the University of Tokyo. His research interests
include parallel processing and database engi-
neering. He is a member of steering committee
of IEEE ICDE and Asian Coordinator for IEEE
TKDE, and has been a trustee of the VLDB En-
dowment. He is currently a trustee of DBSJ. Re-

cently he was awarded ACM SIGMOD E.F. Codd Innovation Award.


