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PAPER

Using Hierarchical Transformation to Generate Assertion Code
from OCL Constraints∗∗

Rodion MOISEEV†∗, Shinpei HAYASHI†a), Nonmembers, and Motoshi SAEKI†, Member

SUMMARY Object Constraint Language (OCL) is frequently applied
in software development for stipulating formal constraints on software
models. Its platform-independent characteristic allows for wide usage dur-
ing the design phase. However, application in platform-specific processes,
such as coding, is less obvious because it requires usage of bespoke tools
for that platform. In this paper we propose an approach to generate as-
sertion code for OCL constraints for multiple platform specific languages,
using a unified framework based on structural similarities of programming
languages. We have succeeded in automating the process of assertion code
generation for four different languages using our tool. To show effective-
ness of our approach in terms of development effort, an experiment was
carried out and summarised.
key words: OCL, constraints, assertion code, programming languages

1. Introduction

Model-centric methodologies for software development
such as OMG’s Model Driven Architecture (MDA) [2] are
becoming significant in academia and industry, and Uni-
fied Modeling Language (UML) and Object Constraint Lan-
guage (OCL) [3] play an important role in these methodolo-
gies. For instance, UML class diagrams express the struc-
tural design of the system, where OCL specifies properties
that must be satisfied at a certain time in the system. Fig-
ure 1 illustrates how class diagrams and OCL descriptions
could be used during a development. The code skeleton is
automatically generated from the class diagram, e.g., by us-
ing EclipseUML [4], which is then used by developers to
complete the implementation. The OCL specifications can
then be used to generate code for checking the system at
run-time, and/or unit test code. We will generally refer to
it as assertion code hereafter. If we take Java as a possi-
ble implementation language, we should translate the OCL
specification into Java-based assertion code. Similarly, for
Python and Perl, we need translators from OCL into Python
and Perl respectively. This means that we should have an
OCL translator for each implementation language. How-
ever, a tremendous amount of effort is necessary to develop
an OCL translator from scratch for each language.

Consider another more concrete motivating scenario
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with UML and OCL depicted in Fig. 2 in a distributed sys-
tem like a client/server system. Assume we have designed
an application in UML, defined an interface to it with a
method doQuery and stipulated several constraints on this
method in OCL as shown at the bottom of the figure. The
constraints on the method doQuery form a contract for ac-
cessing that method. The contract is a statement: “Caller
must provide the callee an argument q : Query that is, at
the least not null, for the return value to adhere to the range
from 0 to the maximum value specified by MAX DATA, in
case of successful execution.” After implementing our ap-
plication in Perl, we decide that we want the interface to be
accessible by clients over the network without restricting the
client implementation language. Therefore clients can be
implemented in any arbitrary language, e.g., Python or Java.
Now the difficulty is that the contract in our case obliges the
caller to check the pre-condition (q != null) and obliges
the callee to warrant the post-conditions (result >= 0
etc.), which therefore means that there is a need for an OCL
evaluator or checker to be present on all server and clients,
which can be implemented in different implementation lan-
guages.

The motivation scenario describes a possible usage
of OCL that spans implementations in different languages,
which imposes a need for OCL translators for multiple lan-
guages within one design. In such cases using OCL is desir-
able since OCL is independent of the implementation tech-
nology, such as implementation languages and platforms.
Most of currently available UML modelling tools can gen-
erate code from UML models, some of which also have the
facility to input constraints in OCL. However, not many
can make use of those constraints during the implementa-
tion stage (the dotted section of Fig. 1). Also, investigating
the current approaches (see Sect. 5), we can conclude that
currently there exists no approach suitable for working with
OCL constraints on the implementation level for multiple
languages. Thus we should have a technique to develop an
OCL translator for each implementation language with least
possible effort.

In this paper, we propose an approach to allow develop-
ers to make use of OCL from UML diagrams and to check
developers’ programmes, for multiple implementation lan-
guages. This will be achieved by translating constraints in
OCL into their equivalent assertion code in the target lan-
guage (e.g., Java, C, C++ or Python). Our OCL translator
is based on model transformation. One of the advantages of
model transformation is the ability to reuse transformation
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Fig. 1 UML and OCL usage overview.

Fig. 2 Motivating scenario: interface with OCL constraints.

rules when developing similar application software, more
concretely, transforming semantically similar models. Spec-
ifications of the OCL and implementation languages can
be modelled as an abstract syntax tree (AST). The trans-
formation rules between these two models can be used to
achieve generation of assertion code that can be executed on
the implementation language platform. Consider two differ-
ent implementation languages that could be possible targets
for generating OCL assertions. If these two languages are
similar, e.g., both of them are imperative programming lan-
guages, some of their transformation rules can be shared, so
that we can reduce the efforts to design the transformation
rules. Therefore we can mitigate the above problem men-
tioned in the last paragraph, i.e., larger efforts to develop an
OCL translator for each implementation language.

The approach focuses on making sure that most of the
OCL translation can be done within one framework inde-
pendent of the target implementation language. On the other
hand, because of this lack of dependency, creating an OCL
translator for an additional target language requires little un-
derstanding of OCL itself on behalf of the developer, which
is important for cases when software designer (working with
OCL) and programmer (working with implementation lan-
guages) are not the same person. The translation process
is hierarchically managed which makes it easily modifiable
and extendible. It also allows AOP-like [5] modifications
at higher (more abstract) levels independently of concrete
language implementations, where a good example of use-

ful modifications includes: logging, constraint checking,
etc. The approach was designed to make the following im-
provements upon existing approaches [6]–[8] (compared in
Sect. 5):

Extendibility:
Our approach was designed to be extendible to multiple

languages, by providing the following advantages:

• Low efforts when creating OCL assertion code genera-
tors for languages with no OCL support.
• Minimum efforts when creating support for a new lan-

guage that is an extension or a modification of an exist-
ing language.

Maintainability:
By using a semantic hierarchy, each individual module

(step in the hierarchy) is naturally decoupled from others,
which improves the maintainability in the following way:

• Modifications tend to be more cohesive with respect to
individual modules, hence lowering modification costs.

Understandability:
Our approach attempts to reduce the required knowl-

edge for implementing an OCL evaluator because:

• Developing an OCL evaluator for a concrete language
only requires to know that language, and the associated
DL, which should be semantically close to the target
language. Therefore OCL assertion code generators
can be created with minimum understanding of OCL
concepts.
• On opposite, OCL related work can be performed at

more abstract levels, requiring little knowledge of the
concrete implementation languages down the hierar-
chy.

The main contributions of the paper can be summarised
as follows:

• providing a technique to develop an OCL assertion
code generator using model transformation with less
efforts and
• showing an evaluation result with Rozyn, the transfor-

mation tool we have developed.

The evaluation shows that by using our approach we can
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develop OCL translators for four different implementation
languages with less transformation rules (hence, less effort),
opposed to developing each translator separately.

The rest of this paper is organised as follows. In the
next section, we describe our approach. Section 3 describes
its architecture, pointing out how it realises the contributions
we have claimed. In Sect. 4, we cover an evaluation exper-
iment for our approach and summarise the results. Some
related work is covered in Sect. 5, followed by conclusion in
Sect. 6 and future work described in Sect. 7.

2. Proposed Approach: Basic Idea

Our approach comprises a framework that allows developers
to easily and with minimum effort create a generator of OCL
assertion code for multiple text-based languages by reusing
the mappings to OCL from other languages’ structural and
semantic concepts.

In order to understand the main concept behind our ap-
proach, consider the sample code shown in Fig. 3. We have
a sample Python code in Fig. 3 (a) that checks each apple
in a collection of apples, basket, to see whether it is of
red colour. The above semantics are expressed in terms of
a for-loop and an if -statement nested inside it. If you fur-
ther consider a sample Java code in Fig. 3 (b), you will find
that even though syntactically it looks somewhat different,
semantically and structure-wise it is nearly identical. First,
the idea of a for-loop for iterating over the collection, and
an if -statement for doing logical checks is the same as in
the Python example. Also the if -statement is again nested
inside the for-loop. These show that Python and Java pro-
gramming languages resemble in their conceptual vocabu-
lary and in structure, even though the detailed syntax is dif-
ferent.

In fact, we can make similar observations with most
imperative programming languages, including Java, Python,
Ruby, Perl, C++ and C#. Since all of these languages are
based on the same imperative programming paradigm, they
will contain basic flow control structures such as for-loops,
if -statements, sub-procedures, or other structures express-

(a) Sample Python code.

(b) Sample Java code.

(c) Pseudo-description of the same action.

Fig. 3 Language similarities extraction.

ible in terms of the basic ones. Because of this similarity,
we can describe for-loops such as the one in Figs. 3 (a) and
3 (b), with a pseudo-language description which captures
the semantics of the performed action, shown in Fig. 3 (c).
What we are trying to say is that, imperative languages all
bear similarities in their semantics originally and therefore
share a lot of common programming structures. Of course,
other language types, like functional languages also all share
common structures, since most of them were designed to
solve the same problem. Some languages within a certain
type, e.g., imperative, may have discrepancies from other
languages of the same type, such as having additional con-
structs or lacking some. In such cases, the developer could
extend the main pseudo-language with another layer and
provide the required semantic translation between the two
pseudo-languages. If such semantic translation is difficult
or impossible, extending from a different language type, or
creating a new language type would be a better choice.

If we can extract common language features from all
languages that fall under a particular category, such as im-
perative languages, we could create, for example, an im-
perative pseudo-language that captured all of the common
constructs available in imperative programming languages.
Such imperative pseudo-language could be used to describe
behaviour of OCL constructs in terms of imperative con-
structs. By doing this, not only we can make the transla-
tion to the target imperative language easier, but also alle-
viate the need to completely comprehend every OCL ex-
pression. Based on this idea, in our approach we define
a hierarchy, based on structural similarities of commonly
available languages. Refer to Fig. 4 for an example of such
hierarchy. Some languages can be further subdivided into
sub-hierarchies to capture similarities that are more fine-
grained, and thus more specific to particular imperative lan-
guages. An example of such languages would be Python and
Java, which both have foreach-loops. Such hierarchy allows
us to describe most complex OCL concepts in terms of in-
termediary pseudo-languages (e.g., imperative or functional
pseudo-languages) in one or more steps, therefore abstract-
ing OCL concepts away from implementation languages.
This means that at the lower, more concrete levels, the de-
veloper will only need to provide details specific to language
syntax and grammar to complete the mapping.

Fig. 4 Hierarchy of languages based on their structural similarities.
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Fig. 5 Reducing semantic gaps.

By doing so, we can create one single framework for
creating OCL assertion code generators for multiple lan-
guages, maximising reuse between different implementa-
tions. Also by minimising the semantic gap between the
intermediary steps, we reduce the efforts required to under-
stand OCL and the manual efforts of specifying the concept
mapping from one step to another, as shown in Fig. 5.

3. Implementing Our Approach

In order to assess the feasibility of our approach, we have
implemented Rozyn: an OCL translation tool based on the
language similarities. Rozyn was implemented using the
Maude System [9], a term rewriting system, which com-
prises powerful equational and rewriting logic capabilities,
which would be useful for our multi-step translation.

3.1 Generation Process

As mentioned in the last section, we have two major steps
of translation; (1) from OCL (precisely, an AST obtained by
parsing an OCL description) to pseudo-code and (2) from
pseudo-code to the target source code. The structure of
pseudo-code depends on the class of the target languages.
For example, we have a class of pseudo-code for impera-
tive languages such as Java, C or Python, and have another
class for functional programming languages such as Haskell
or Lisp. We call this language of pseudo-code Definition
Language (DL). The example in Fig. 3 (c) is the pseudo-
code written in Imperative DL. The transformation then
follows the hierarchy defined for the target language (see
Fig. 4) starting at the top and proceeding to the leaf, per-
forming translations for each intermediate step. Based on
the hierarchy shown in Fig. 4, if we generate Python code
from an OCL constraint, Rozyn first translates the constraint
to Imperative DL, and then translates it to Python DL.

Figure 6 shows the overview of our process of gener-
ating an OCL assertion code from an arbitrary UML/OCL
model, which consists of the following three main steps:

1. UML + OCL → OCL AST. The initial input to our
system is a UML diagram annotated with OCL con-
straints. We therefore require means of interpreting the
UML diagram and parsing the OCL constraints before-
hand. After parsing a syntactically correct OCL de-
scription, it is then converted into its AST representa-
tion. UML, e.g., a class diagram, is used in the back-
ground to form an environment (ENV) containing the
type information, which is stored along with the AST
in a similar format. We use the Octopus tools [10] for

Fig. 6 Generation process.

parsing OCL constraints.
2. OCL AST → Target language DL. The target lan-

guage for OCL constraints being executed is selected,
and the hierarchy is traversed starting from OCL AST
definition step-by-step, until the final output in the DL
of the target language (target language DL) is pro-
duced. The translation is defined as rewriting rules in
Maude and executed by using these rewriting rules and
the type information. The detailed usage of the Maude
will be mentioned later. This step is repeated until the
target language DL, e.g., Python DL, is obtained.

3. Target language DL → Assertion code. Finally, the
target language DL can be transformed into its equiva-
lent executable code by applying a set of printing rules.
We call this stage printing. The technique for this trans-
formation is the same as the last step, i.e., we define the
printing rules as rewriting rules in Maude.

Combined, these three steps represent a pluggable ar-
chitecture, which could be inserted into an existing inte-
grated development environment and used as a provider of
assertion code bits fetched from the model specification.
Such assertion code bits can be used in test cases or for run-
time assertion.

For implementing Rozyn to automate the above gener-
ation process, as mentioned above, we have used the Maude
language [9], which uses equational and rewriting logic. The
language contains a functional-like data definition language
used to define data structure and reduction rules, and a
rewriting language used to describe rewriting rules between
data structures. In the implementation of Rozyn, the data
definition language was used to create each of the DLs, e.g.,
OCL AST (Fig. 9 (b)) or Imperative DL (Fig. 9 (d)), while
the rewriting language was used for defining mappings be-
tween the different levels in the hierarchy, e.g., between
OCL AST and Imperative DL.

Other implementation technologies, such as QVT-
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based [11] meta-model based transformation engines, were
also considered. However, we stopped on Maude because
it was simple to use and provided minimum requirements
such as tree-structure transformation functions.

3.2 Example of Transformation Process

Suppose you were given a simple model of a company
shown in Fig. 7. If there was a company requirement that
all employees must earn over 100,000, in OCL it could be
expressed as an invariant on the Company class as shown
at the bottom of the figure. This OCL constraint consists
of a forAll expression, which enforces all Employee ob-
jects contained in the employees collection to have the
salary property set to a value greater than 100000. Gen-
erated Python assertion code from this OCL is shown in
Fig. 8. The given OCL is transformed to the method
callExtMethod A and it is checked as the invariant via the
function invariant 1.

As described in the architecture model in Fig. 6, the
first step is to convert OCL expressions from the model into
their AST representation. The OCL expression in our ex-
ample can be expressed in the Maude language as shown
in Fig. 9 (b), showing an example of mapping from OCL to
its AST. In OCL forAll is a type of iterator expression,
which we encode as iteratorExp AST node (Fig. 9 (b)
line 1). The first argument is the collection to be iterated
over, employees in our case (returned as the result of eval-
uating dotted block at lines 2 and 3 of Fig. 9 (b)). The
second argument is the iterator expression type, forAll at
line 4, followed by iterator variable and the sub-expression,
at lines 5 and 6 through 8 (dotted block) respectively.

At the second step of Fig. 6, we enter the OCL AST
rewriting stage where by means of rewriting rules we trans-
form the OCL AST into the DL for a concrete implemen-
tation language. The intention of this step is to declare a

Fig. 7 An example model.

Fig. 8 Generated Python code from the example input.

transformation of the OCL concept into an abstract imper-
ative code for its assertion. In our example, we declare a
rewriting rule as shown in Fig. 9 (c). At the top of the figure,
the left-hand-side of the rule (LHS) is declared to match all
occurrences of forAll-expressions, on arbitrary collection
expressions OE. Other variable parts of the matching rule
are expressed in bold capitals. To transform the matched
expression into Imperative DL, the right-hand-side (RHS)
states that it should be expressed as an external method
call (impMethodExtract) of return type Boolean that
loops (impForLoop) through the target collection OE and
tests (impIf) whether the sub-expression OE’ holds. If sub-
expression is not satisfied, the method returns (impReturn)
with the boolean value false (boolLitFalse). The pre-
fix imp identifies that the following structure belongs to
the Imperative DL, and thus expressions such as for-loops,
if -statements and return-statements are marked with that
prefix. One possible implementation of this abstraction in
Python is shown in Fig. 8.

When more context is required during translation, the
environment (ENV) may be used to look up type informa-
tion declared in the UML diagram. For example, e.salary
in OCL is translated to e.salary in Python because the vis-
ibility of salary field was declared public. However, with
tighter visibility e.getSalary() would be a correct trans-
lation.

By applying the above rule to the OCL AST in

Fig. 9 An example of transformation from OCL to Imperative DL.
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Fig. 10 Printing rules.

Fig. 9 (c), we obtain the imperative definition of the OCL
constraint, shown in Fig. 9 (d). In this transformation,
the iterator expression e.salary > 100000 is mapped
to the variable OE’, and as a result, appears inside
the impIf(impNot(· · · )) statement in the fifth line of
Fig. 9 (d). The OCL constraint is now expressed in terms
of the desired imperative language constructs.

As a rule, to produce executable Python code from the
Imperative DL, it would first be transformed into Python DL
in the same manner as the OCL AST was transformed into
the Imperative DL. However, constructs of the target lan-
guage that have very similar structure and semantics can be
used directly without alternation from parent DL. This sug-
gests that printing should also be done by directly referenc-
ing parent DL’s constructs. Within the scope of our example,
all generated Imperative DL constructs by coincidence have
enough structural resemblance to Python, and thus we can
apply printing rules to generate actual Python code directly
from Imperative DL constructs (see bottom part of Fig. 10).
In our example, Imperative DL is the most concrete DL to
be used for printing, i.e., the leaf node.

Printing rules for the target language are matched and
applied to the obtained DL top-down (Imperative DL in
our case). An example of the printing process is depicted
in Fig. 10, the external method call and the for-loop were
omitted for the sake of brevity. The printing rule for if -
block impIf is matched to the DL, and its sub-expressions,
if -expression and then-expression are matched to variables
IFEXP and THENEXP respectively. The printing rule states
that in Python syntax if -block starts with "if (", followed
by the if -expression, then the closing bracket, a colon and
then an indented then-expression. This reduction process is
then repeated for each sub-expression (impNot on the right
hand side of Fig. 10), until the whole DL is translated into

Python code. For each target language a printing module
is declared, containing such printing rules for all syntacti-
cal concepts of the language. Common syntactical rules can
be expressed at higher levels of the hierarchy, for instance,
the impIf rule in Fig. 10 is declared at the imperative level
and therefore need not be declared explicitly at the Python
level. Applying Python printing rules makes an executable
Python code that can be plugged into a class implementing
the Company and used to check the original OCL invariant.

3.3 Usage of Extending Hierarchy

For defining an OCL translator for a new language using our
approach, it is generally enough to define a set (or modify
an existing set) of printing rules to capture syntactical rules
of that language, therefore detailed understanding of OCL
will not be required. Modifications to output assertion code
on syntactical level will always be reflected though changes
to the printing rules. On the other hand, modifying structure
will be done by changing rewriting rules higher up in the
hierarchy e.g., Imperative DL (Fig. 9 (c)). As an example of
such change, one could inject a logging action for whenever
a for-all evaluation is made by adding log("message");
appropriately in the RHS of the rewriting rule. This opera-
tion does not require direct understanding of how each con-
crete language implementation performs logging. If logging
is not appropriate for some concrete language it can be omit-
ted during next transformation or printing stage.

We can easily extend the language hierarchy shown in
Fig. 4 by adding a new language DL. Translation of OCL
concepts into concepts of other implementation languages
requires a description of their transformation, for each con-
cept. When adding of a DL is planned, a suitable parent DL
is selected based on its similarity to the added DL. If no
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Fig. 11 An example of structure declarations.

similar parent DL exists, the root language, i.e., OCL AST,
can be used for directly translating OCL to the target DL.
Next, we write structure declarations defining the new con-
cepts of the target DL and how they relate with the concepts
of the parent DL. For instance, the example of Maude struc-
ture declarations shown in Fig. 11 includes at least five data
definitions related to if -expressions in Imperative DL. Fi-
nally, we write transformation rules from the parent to the
target DL and printing rules such as the examples in Figs. 9
and 10.

3.4 Limitations and Disadvantages

During the implementation of our approach, we have dis-
covered some limitations. Here we have a list, which is by
no means complete, but outlines the most obvious limita-
tions.
Insertion in the middle. Even though the existence of
the language hierarchy allows us to easily append new lan-
guages, it has the disadvantage of being difficult to extend
from the middle, i.e., regrouping existing languages and
extracting a common DL would create a new node in the
middle of the hierarchy. Such operation would be difficult
because all of the child languages of the new DL would
have to be modified (expressed in terms of the new pseudo-
language).
Hybrid languages. We have also not provided any means
for making it possible to declare DLs with more than one
parent DL. This could be useful with some hybrid lan-
guages that inherit common properties from different lan-
guage types. In our approach, we traverse the hierarchy
from top to bottom, taking a single path, thus it is not cur-
rently possible for DLs to have multiple parent DLs.

4. Experimental Evaluation

To evaluate our approach, we made an experiment. The aim
of the experiment is to show that our approach gives us the
ability to flexibly create OCL assertion code generators for
multiple languages, gaining savings in manual efforts re-
quired to implement each generator.

Evaluation assumes that users of our tool deal with
projects what would benefit from automated OCL trans-
lation. As an example of such project, there is work by
Chimiak-Opoka [12] describing a large scale application
with thousands of lines of OCL code. For this reason, com-

pletely manual translation of OCL is not included in evalu-
ation.

4.1 Procedure

For evaluation, we will implement four OCL translators for
four different languages. Two languages are from under the
imperative languages hierarchy, Java and Python; and the
others are from under the functional languages hierarchy,
Haskell and O’Haskell. Then the efforts required to imple-
ment each one of those OCL translators will be measured
and compared to an estimated effort required to create an
OCL translator for the same language using a direct ap-
proach, i.e., the development from scratch. The direct ap-
proach assumes an implementation of OCL requiring mini-
mum effort, realised by simply implementing a set of trans-
formation rules that directly translate each OCL expression
into the target language. Finally, generated assertion code
for each OCL translator will be checked to make sure they
exhibit desired behaviour.

We first build an OCL translator for Python, using
the direct approach, and use the resulting effort figure as
a yardstick for estimating direct approach efforts for other
languages. Secondly, we pre-build the Imperative and the
Functional DLs, and then implement OCL translators for
each one of the four languages by extending the Imperative
or the Functional DLs as appropriate, and measure the ef-
forts during each implementation. Lastly, the efforts that
were required to create each OCL translator as an extension
in our approach are compared to the efforts for the direct
approach.

To evaluate the effort at each step, we need a compara-
ble indicator that can be used to measure and compare these
efforts. In order to evaluate the effort for creating OCL trans-
lators, we will count the following evaluation parameters:

1. the number of rule definitions in the rewriting lan-
guage, e.g., in Fig. 9 (c) (RR),

2. the number of structural declarations in the data defini-
tion language, e.g., in Fig. 11 (S), and

3. the number of definitions in the printing module, e.g.,
shown in Fig. 10 (PR)

in Maude, for each generator. For evaluation the total of
the above parameters will be compared with the number
of rewriting rules required to create an OCL assertion code
generator without the use of the intermediate definition lan-
guages i.e., the direct approach.

Note that the main feature of our approach is in the fact
that creating a generator for a new language only requires
the developer to provide details specific to the language in its
category. For example, creating a generator for Java would
require to provide structural description and syntax for Java
class cast expressions as they will be used in the foreach-
loops and possibly other Java constructs, but not necessar-
ily in other imperative languages, such as Python. For this
reason, the evaluation parameters described only need to be
counted when creating the final node (the leaf) in our hierar-
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Fig. 12 Evaluation results.

Table 1 Evaluation targets.

Iterator Expressions Collection Operations Logical Operators
(Iter. Exp.) (Coll. Op.) (Logic. Op.)

iterate select includes isEmpty xor
forAll reject excludes notEmpty implies
exists any includesAll union
isUnique one excludesAll intersection
collect sortedBy including flatten

excluding sum
first size
last at

chy, since we can assume that parent nodes are predefined.
The complete list of all implemented OCL features is

given in Table 1. All features are subdivided into three main
groups: iterator expressions, collection operations and log-
ical operations. Finally, the generated assertion code for
each OCL generator was manually checked to make sure
it exhibits desired behaviour, using some test cases. At the
current stage, the focus was put on evaluating the efficiency
of our approach; therefore the correctness of generated as-
sertion code is responsibility of the developers of rewriting
rules.

4.2 Results

In order to clearly show the efforts saved using our approach
compared to implementing directly, we have summarised

our results in Fig. 12. The numbers are given in format RR[S]
showing the number of rewriting rules and number of struc-
tures defined, subdivided according to groups in Table 1. In
the example of Java, the numbers of rewriting rules and of
structures for iterative expressions are 1 and 3 respectively.
Note that O’Haskell is an extension of the Haskell compris-
ing several behavioural and syntactical changes. However,
implementation of OCL assertion code generator only re-
quired a modification in one syntactical rule in the printing
module (see bottom right of Fig. 12).

For each target language, we have shown the estimated
effort of direct implementation (bar on the left) and actual
effort by our approach (bar on the right). In the example
of Java, 36 and 85 rules were written in our approach and
direct one respectively. We have also shown the percentage
of the effort saved in case when our approach is undertaken.
In Java, we could reduce 49 (85 − 36) rules and as a result,
58% (49/85) of the effort could be reduced. Each bar-chart
assumes that the parent node in the graph is predefined.

4.3 Discussions

From Fig. 12 we can see that on average we are saving ap-
proximately 50% effort, which clearly indicates that lan-
guages share a fair amount of structural and semantic sim-
ilarities and reusing those similarities is very efficient. The
savings in effort that can be seen from the results are a good



620
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

indication that languages in the same structural family can
be related also on the semantic level and hence can be ef-
fectively grouped for reuse. It was also shown that small
changes in the syntax of the language require proportionally
small efforts of implementation.

In addition, as can be seen from Fig. 12, most of the
complex OCL iterator expressions (Iter. Exp.) could be
rewritten using non-OCL concepts, in other words concepts
from Imperative DL or Functional DL, which are indepen-
dent of OCL. This underlines the fact that our approach
alleviates the need to understand OCL completely.

Measuring effort involved in implementing an OCL
translator in an unbiased manner was a very difficult task.
In our effort evaluation strategy, we have tried to cover
most complexity aspects associated with implementation of
OCL translators, by quantitatively measuring the number
of rewriting rules, printing rules and semantic structures.
However, implementation of some rewriting rules was more
complex than others, and not because of their size, but be-
cause of their dependency on other rewriting rules (i.e., ap-
plication of such rule must be followed by application of an-
other rule). Even though we have tried to take into account
the complexity of rewriting rules by counting the number of
structures defined to support them, it was not always a com-
plete indication of effort. On the other hand, some rewriting
rules were very easy to specify, because they were simply
representations of a concept in the target language, such as
a for-loop, and were not directly related to OCL.

Representativeness of evaluation results is not ideal as
all evaluation procedures were carried out by the same per-
son. For a fairer result evaluation with adding new lan-
guages by several persons should be considered.

5. Related Work

Currently available approaches for evaluating OCL con-
straints can be split into three main types: metamodel-based
model validation, source code assertion and translating OCL
to another Design-by-Contract (DBC) language.
Metamodel-based model validation. Checking for cor-
rectness of OCL constraints for a model using its meta-
model description can be advantageous since such approach
can take arbitrary data models as their input, and therefore in
theory it is possible to validate absolutely any type of data.
Some researches that use this approach include Kent OCL
Tool [6], NAOMI [7], and ITP/OCL [8]. However, very few
language platforms provide direct inspection of objects at
run-time (also known as reflection) which would be neces-
sary for validation. Also, further knowledge of the underly-
ing reflection API would be necessary.
Checking constraints on the implementation level.
Source code assertion approaches usually use code instru-
mentation or aspect-oriented techniques to achieve code
checking at run-time. However, all such approaches, includ-
ing jContractor [13], Handshake [14], ocl2j [15], Jass [16],
and iContract [17], are tailor-made for a specific program-
ming language.

Translating OCL to JML. Another approach is to translate
OCL to another OCL-like DBC language such as JML [18]–
[20]. Hamie has proposed a set of mappings from OCL to
JML [21] to which we have previously contributed with our
own extensions [22]. However, the problem with such ap-
proaches is that there is currently no other DBC language
that can be applied to multiple programming languages.

In informatics, introducing abstraction layers for min-
imising costs of software development activities is one of
the orthodox approaches. For example, some compilers
such as GNU Compiler Collection (GCC) [23] use a simi-
lar technique to translate various front-end language such as
C, C++ or Java, into an intermediate representation, which
can then be optimised and translated into the target platform
machine code. The main difference between GCC and our
approach is that, regardless of the target platform, there is
only one intermediate representation format (but with pos-
sibly different optimisations applied).

6. Conclusion

To conclude, we first focused on the problem of working
with OCL constraints on the implementation level for mul-
tiple languages. We also proposed our approach to remedy
this problem and performed an experiment to confirm the
claimed effort savings when using our approach. We showed
how new OCL translators can be added without knowledge
of OCL and how functionalities such as logging can be eas-
ily injected into OCL translator implementations. Our ex-
perimental evaluation with Rozyn shows the effectiveness
of our approach.

7. Future Work

Some OCL functionality was not covered, such as history
expressions, OCL messages and the allInstances call,
that we have not implemented and left for future work.

In order to merge the code generated from UML and
assertion code generated by Rozyn, we could develop a
plug-in for an integrated development environment, such as
Eclipse. This aspect is considered for future work.

To manage the framework code, including language
structures, rewriting and printing rules, we will need to de-
velop a management scheme. The scheme could consist of
guidelines and conventions, to help keep code consistent
across the framework, and allow collaboration of multiple
developers.

With regard to evaluation of our approach, we realise
the need to consider the following in the future:

• Evaluation of effort involved in learning the DL used
for rewriting,
• Evaluation with several persons and greater variety of

languages (including hybrid languages), and
• Confirming that generated assertion code exhibits con-

sistency, accuracy and determinateness, as proposed by
Gogolla et al. [24].
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We have also realised of certain limitations of our ap-
proach, such as difficulty in introducing DLs into the middle
of the hierarchy because this would cause change to propa-
gate to all nodes below and would be difficult to automate.
Catering for this is a significant task that will require an in-
dividual approach in the future.
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