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PAPER

Efficient Combination of Likelihood Recycling and Batch
Calculation for Fast Acoustic Likelihood Calculation

Atsunori OGAWA†,††a), Satoshi TAKAHASHI††, and Atsushi NAKAMURA†, Members

SUMMARY This paper proposes an efficient combination of state like-
lihood recycling and batch state likelihood calculation for accelerating
acoustic likelihood calculation in an HMM-based speech recognizer. Re-
cycling and batch calculation are each based on different technical ap-
proaches, i.e. the former is a purely algorithmic technique while the latter
fully exploits computer architecture. To accelerate the recognition process
further by combining them efficiently, we introduce conditional fast pro-
cessing and acoustic backing-off. Conditional fast processing is based on
two criteria. The first potential activity criterion is used to control not only
the recycling of state likelihoods at the current frame but also the precal-
culation of state likelihoods for several succeeding frames. The second
reliability criterion and acoustic backing-off are used to control the choice
of recycled or batch calculated state likelihoods when they are contradic-
tory in the combination and to prevent word accuracies from degrading.
Large vocabulary spontaneous speech recognition experiments using four
different CPU machines under two environmental conditions showed that,
compared with the baseline recognizer, recycling and batch calculation, our
combined acceleration technique further reduced both of the acoustic like-
lihood calculation time and the total recognition time. We also performed
detailed analyses to reveal each technique’s acceleration and environmen-
tal dependency mechanisms by classifying types of state likelihoods and
counting each of them. The analysis results comfirmed the effectiveness of
the combined acceleration technique.
key words: fast acoustic likelihood calculation, state likelihood recy-
cling, batch state likelihood calculation, combined acceleration technique,
acoustic backing-off

1. Introduction

It is well known that acoustic likelihood calculation is the
most computationally expensive process in a hidden Markov
model (HMM) based speech recognizer. Generally speak-
ing, in the total speech recognition process, more than 50%
of the computational time is spent on acoustic likelihood
calculation. Thus, to accelerate the speech recognition pro-
cess, acoustic likelihood computation should be reduced.
Many studies have attempted to solve this problem [1]–[10],
and they can be roughly classified into the following two
technical categories.

The first category consists of purely algorithmic tech-
niques, such as Gaussian reduction [1], model parameter ty-
ing [2], scalar quantization of feature vectors [3], Gaussian
selection [4], and state selection (or state likelihood recy-
cling) [5], [6]. All of these techniques are based on approx-
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imations, i.e. simplifications of detailed model structures
and/or detailed likelihood calculations. Thus, these tech-
niques trade a slight degradation in recognition accuracy
for process acceleration. However, the acceleration perfor-
mance is essentially independent of the machine specifica-
tions.

On the other hand, the second category consists of tech-
niques based on computer architectures, such as Single In-
struction, Multiple Data (SIMD) (e.g. MMX [7] and Stream-
ing SIMD Extensions (SSE) [8]), Graphics Processing Unit
(GPU) [9], and batch state likelihood calculation [10]. There
is concern that their acceleration performance will depend
heavily on the machine specifications. However, since none
of these techniques use approximations, process accelera-
tion can be obtained without degrading recognition accu-
racy.

In this paper, we propose an efficient technique for
accelerating acoustic likelihood calculation [11]. The pro-
posed technique is based on a combination of state like-
lihood recycling [5], [6] and batch state likelihood calcula-
tion [10]. As mentioned above, they have different techni-
cal characteristics, and their good acceleration performance
is reported in [5], [6] and [10], respectively. If we could
combine them efficiently, further process acceleration could
be expected. Based on the similar idea, the combination
of Gaussian selection [4] and batch calculation [10] is pro-
posed in [12], and the complemental process acceleration
is reported. However, to the best of our knowledge, there
have been no studies investigating the combination of recy-
cling [5], [6] and batch calculation [10]. Therefore, it is not
known how much process acceleration could be obtained by
using the combined technique.

We introduce conditional fast processing and acoustic
backing-off [13] for combining the two acceleration tech-
niques efficiently [11]. Conditional fast processing is based
on two criteria. The first potential activity criterion is used
to control not only the recycling of state likelihoods at the
current frame but also the precalculation of state likelihoods
for several succeeding frames. The second reliability crite-
rion and acoustic backing-off are used to control the choice
of recycled or batch calculated state likelihoods when they
are contradictory in the combination, and to prevent word
accuracies from degrading.

Large vocabulary spontaneous speech recognition ex-
periments using four machines with different CPUs (Pen-
tium 4, Xeon, Core 2 Duo and Xeon X5570) under two en-
vironmental (clean and office noise) conditions showed that,
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compared with the baseline recognizer, recycling and batch
calculation, our combined acceleration technique further re-
duced both the acoustic likelihood calculation time and the
total recognition time. Most of the previous work on accel-
erating acoustic likelihood calculations has been conducted
using one machine under one (usually clean) environment.
In this sense, the experimental results obtained under our
wide variety of experimental conditions (four different CPU
machines × two environmens = eight conditions for one ac-
celeration technique) are informative.

We also performed detailed analyses to reveal each
technique’s acceleration and environmental dependency
mechanisms by classifying types of state likelihoods and
counting each of them. The analysis results confirmed the
effectiveness of the combined acceleration technique.

This paper is organized as follows: Section 2 pro-
vides further details of the two conventional acceleration
techniques; state likelihood recycling [5], [6] and batch state
likelihood calculation [10]. Section 3 proposes our com-
bined acceleration technique [11] based on conditional fast
processing and acoustic backing-off [13]. Section 4 de-
scribes large vocabulary spontaneous speech recognition ex-
periments that were conducted to evaluate the acceleration
techniques using four different CPU machines and under
two environmental conditions. Section 5 analyzes each tech-
nique’s acceleration and environmental dependency mecha-
nisms in detail. Section 6 concludes this paper.

2. Conventional Acceleration Techniques

This section details the two conventional fast HMM-state
likelihood calculation techniques, namely state likelihood

Fig. 1 Procedures of recycling and batch calculation in state-frame likelihood tables (SL: state likelihood).

recycling and batch state likelihood calculation. They have
different technical characteristics and, by combining them
efficiently, further process acceleration could be expected.

2.1 State Likelihood Recycling

The first conventional acceleration technique is state like-
lihood recycling [5], [6]. It accelerates acoustic likelihood
calculations by reducing the number of context-dependent
(CD) phoneme-HMM (i.e. biphone and triphone) state like-
lihood calculations by recycling the corresponding mono-
phone state likelihood calculation results. Hereafter, it is
referred to as recycling.

Figure 1 (a) is a state-frame likelihood table that shows
the recycling procedure. Recycling assumes that mono-
phones are approximated models of CD HMMs and, before
decoding, all CD HMM states are linked to the monophone
states on the condition that they are in the same phoneme
cluster and in the same state position (e.g. S4, S7 and S10 are
linked to S1, and S5, S8 and S11 are linked to S2).

During the frame by frame decoding, we calculate the
likelihoods of all the monophone states before calculating
the likelihoods of the active CD HMM states (S1 and S2 at
frames 1, 2, · · ·). The computational costs of these precalcu-
lations are not very high because the number of monophone
states is small compared with the number of CD HMM
states. Then, the likelihood of the corresponding mono-
phone state is referred in the likelihood calculation of each
active CD HMM state (at frame 2, S7 and S10 refer to S1, and
S5 refers to S2). If it is higher than the recycling threshold
(S2 at frame 2), the CD HMM state likelihood is regarded
as worth calculating and is calculated normally (S5 at frame
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2). Conversely, if the monophone state likelihood is lower
than the recycling threshold (S1 at frame 2), the CD HMM
state likelihood is not regarded as worth calculating. And
the monophone state likelihood is recycled as the approxi-
mated likelihood of the CD HMM state (S7 and S10 at frame
2).

At every frame, the recycling threshold is given by
multiplying the maximum monophone state likelihood by
recycling coefficient α (−∞ < α < 1.0). As α becomes
larger, the number of likelihood recycling operations in-
creases, thus the acoustic likelihood calculation is acceler-
ated but with a risk of degraded recognition accuracy. As
α becomes smaller, the opposite effect is obtained. Since
recycling is a purely algorithmic technique, its acceleration
performance is essentially independent of machine specifi-
cations.

2.2 Batch State Likelihood Calculation

The second conventional acceleration technique is batch
state likelihood calculation [10]. It accelerates acoustic
likelihood calculations by reducing the number of time-
consuming state parameter fetching processes. Hereafter,
it is referred to as batch calculation.

Batch calculation is based on the following two exper-
imental analyses.

(i) Profiling shows that, in a state likelihood calculation,
much of the time is spent not on floating-point opera-
tions, but in fetching the state parameters (i.e. the mean
and diagonal covariance vectors and weighting factors
of each Gaussian pdf in the state) from the main mem-
ory to the cache.

(ii) Speech has several frame intervals that could be re-
garded as stationary. Therefore, if a state is activated
at a frame, it tends to be activated for several succeed-
ing frames.

The batch calculation procedure, which exploits the above
two characteristics, is shown in Fig. 1 (b). If a CD HMM

Fig. 2 Conditional fast processing with acoustic backing-off (SL: state likelihood).

state is activated at a frame t, the state likelihoods are cal-
culated and stored in the state-frame likelihood table not
only for the current frame t (e.g. S10 at frame 1) but also
for succeeding β frames (S10 at frames 2, 3 and 4, since β
is set at 3 in Fig. 1 (b)). Then, for these look-ahead frames,
t + 1, · · · , t + β, if the state likelihoods are required, they are
looked up in the table (S10 at frames 2 and 4).

In batch calculation, the number of time-consuming
state parameter fetching processes described in (i) is re-
duced, thus, we can expect the acoustic likelihood calcu-
lation to be accelerated. If the batch calculated state likeli-
hoods are not used, they become redundant calculations (S10

at frame 3). However, because of the property of speech
described in (ii), there are not so many of these redundant
calculations. There is concern that the acceleration perfor-
mance will depend heavily on the machine specifications.
But, there is no degradation in recognition accuracy because
there is no approximation in batch calculation.

3. Combined Acceleration Technique

As described in Sect. 2, recycling and batch calculation have
different technical characteristics, and their good acceler-
ation performance is reported in [5], [6] and [10], respec-
tively. To further accelerate the recognition process by com-
bining them efficiently, we introduce the conditional fast
processing strategy, which is based on two criteria, namely
potential activity and reliability criteria (thresholds or co-
efficients in the implementation) for our combination al-
gorithm. In addition, we introduce the acoustic backing-
off [13] strategy to prevent word accuracies from degrading.

3.1 Conditional Fast Processing

Figure 2 (a) shows our combination algorithm; conditional
fast processing. As shown in this figure, monophone state
likelihoods are rated high or low by using a recycling thresh-
old (threshold 1) based on a recycling coefficient α as with
recycling. And there are two possibilities for the corre-
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sponding CD HMM state likelihoods, one is not calculated
and the other is batch calculated. Therefore, the combina-
tion basically consists of four cases, (1)–(4).

In case (1), as with recycling, we calculate the CD
HMM state likelihoods normally. At the same time, as with
batch calculation, we calculate the CD HMM state likeli-
hoods for succeeding β frames. In case (2), as with recy-
cling, we recycle the monophone state likelihoods as the
approximated likelihoods of the corresponding CD HMM
states. In case (3), as with batch calculation, we look up
the batch calculated CD HMM state likelihoods in the state-
frame likelihood table.

The function of recycling threshold (threshold 1) is
strengthened with this combination algorithm. In recycling,
as described in Sect. 2.1, it controls whether we calculate the
CD HMM state likelihoods normally or approximate them
with corresponding monophone state likelihoods only at the
current frame. However, in the combined technique, as de-
scribed in case (1), it also controls whether we calculate the
CD HMM state likelihoods for succeeding β frames in ad-
vance with the estimation that these states would be acti-
vated in the future frames. Thus, in the combined technique,
threshold 1 based on coefficient α is not just a recycling
threshold, and we refer to it as a potential activity thresh-
old.

In case (4), we must choose the state likelihood cal-
culation results obtained with either of the two techniques.
In this case, the monophone state likelihoods are rated low.
Thus, the recycling estimates that the corresponding CD
HMM state likelihoods are not worth calculating and could
be approximated. On the other hand, several frame earlier,
based on the continuity of the state activation, the batch
calculation estimated that the CD HMM state likelihoods
would be worth calculating and calculated them in advance.
That is, in this case, the state likelihood calculation results
of recycling and batch calculation are contradictory. The
straightforward choice in case (4) would be to look up the
batch calculated CD HMM state likelihoods in the state-
frame likelihood table as with case (3). This is because, in
general, CD HMM state likelihoods are more precise than
those of the corresponding monophone states.

In contrast to the straightforward choice, we adopt a
more efficient method for preventing word accuracy degra-
dation. It is based on the reliabilities of the state likelihoods
and includes the straightforward choice as a special case.
This reliability is a sort of frame level confidence [14] and is
estimated frame by frame. Our method divides case (4) into
two cases with a reliability threshold. If the CD HMM state
likelihoods are regarded as reliable (case (4X)), we look up
them in the state-frame likelihood table as with case (3).
On the other hand, if the CD HMM state likelihoods are re-
garded as unreliable (case (4Y)), we use some other reliable
value in place of the unreliable CD HMM state likelihoods.

3.2 Unreliable CD HMM State Likelihood

A monophone state is a representative version of the cor-

Fig. 3 Example of unreliable CD HMM state likelihood.

responding CD HMM states. Conversely, a CD HMM
state is a detailed version of the corresponding monophone
state. There should be a certain degree of correlation be-
tween monophone state likelihoods and the corresponding
CD HMM state likelihoods.

A monophone state is trained to cover all the data of
a part (i.e. beginning, middle or end) of a phoneme seg-
ment. Since the occupancy counts of the monophone states
are large, the parameters of the Gaussian pdfs in the mono-
phone states are robustly estimated, and the reliabilities of
the state likelihoods obtained from the monophone states
are expected to be high. The training data of a monophone
state are divided into parts according to the preceding and
succeeding phoneme dependencies determined by the tree-
based state clustering result. And each of the corresponding
CD HMM states is individually trained using part of the di-
vided data.

As shown in Fig. 3, it is difficult to obtain a robust es-
timate of the Gaussian pdf parameters of a CD HMM state
that covers the low likelihood region of the corresponding
monophone state. In this small occupancy count region,
Gaussian pdfs in the CD HMM state are over-tuned to the
training data. Consequently, their covariances tend to be
small. That is, if the monophone state likelihood is very low
for an input feature vector, the state likelihoods of the cor-
responding CD HMM states for the input feature vector are
unreliable. In some cases, even if the monophone state like-
lihood is very low for an input feature vector, the state likeli-
hoods of the corresponding CD HMM states for the feature
vector may be extremely high because of small covariances.

3.3 Acoustic Backing-Off

Based on the consideration described in Sect. 3.2, as shown
in Fig. 2 (b), we divide case (4) into two cases, (4B) and
(4R), by introducing a new coefficient, i.e. the reliability co-
efficient γ, in addition to the potential activity coefficient α
(−∞ < γ ≤ α < 1.0). Figure 4 corresponds to Fig. 2 (b) and
shows the procedure of our combined acceleration technique
in the state-frame likelihood table. γ gives threshold 2 that
divides monophone state likelihoods into low or very low
ranks (threshold 1 ≥ threshold 2). In case (4B), the mono-
phone state likelihoods are rated low (in Fig. 4, S1 at frame
3). Here, as with the straightforward choice, we look up the
CD HMM state likelihoods in the state-frame likelihood ta-
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Fig. 4 Procedures of the combined acceleration technique (R&B w/ ABO) in state-frame likelihood tables (SL: state likelihood).

ble (S4 at frame 3. (4B) means that the Batch calculation
results are chosen). In case (4R), the monophone state like-
lihoods are rated very low (S1 at frame 5). In this case, we
estimate that the corresponding batch calculated CD HMM
state likelihoods are unreliable and, as with recycling, we re-
cycle the more reliable monophone state likelihoods as the
approximated likelihoods of the CD HMM states (S4 and S7

at frame 5. (4R) means that the Recycling results are cho-
sen).

Recycling in case (4R) is a sort of acoustic backing-
off [13] i.e. we postpone the detailed local frame scoring of
the active hypotheses by giving them certain low but reliable
state likelihoods. If γ is set at −∞, case (4R) (i.e. acoustic
backing-off) disappears, and our method becomes equiva-
lent to the straightforward method. If γ is set equal at α, case
(4B) disappears, and in case (4) (i.e. (4R)), CD HMM state
likelihoods are approximated by the corresponding mono-
phone state likelihoods according to the acoustic backing-
off strategy. It should be noted that, in the combined tech-
nique, the monophone state likelihood calculations are also
accelerated by batch calculation (S1 at frames 2, 3 and 4).
Hereafter, we refer to our combined acceleration technique
shown in Figs. 2 (b) and 4 as “R&B w/ ABO” (i.e. a com-
bination of Recycling and Batch calculation with Acoustic
Backing-Off).

4. Speech Recognition Experiments

To evaluate the proposed combined acceleration technique
in comparison with the two conventional acceleration tech-
niques and the baseline speech recognizer, we conducted

Table 1 Acoustic analysis conditions.

Sampling frequency 16 kHz
Window type Hamming
Frame length/shift 20 ms/10 ms
Pre-emphasis 1 − 0.97z−1

Feature vector 12MFCC+12ΔMFCC+Δ logPow
Feature normalization Moving average CMN

large vocabulary spontaneous speech recognition experi-
ments using four different CPU machines under two envi-
ronmental conditions. Under all of the experimental condi-
tions, our combined acceleration technique further reduced
both the acoustic likelihood calculation time and the total
recognition time compared with the other techniques.

4.1 Experimental Conditions

We built a speech database that consisted of conversations
between agents and customers in simulated call-center sit-
uations. We gave anwering manuals to the speakers who
played call-center agents (all of them worked as agents in
real call centers). And we provided the speakers who played
the customers with goals (i.e. their reasons for contacting the
call center). Then they conversed according to the agent’s
guide with the aim of dealing with the customer’s reason
for calling. Since, there were no constraints other than the
agents’ manuals and the customers’ aims, their conversa-
tions were quite spontaneous. The utterances were recorded
at a high signal-to-noise ratio (SNR) of more than 50 dB.

The acoustic analysis conditions are shown in Table 1.
An HMM-based female acoustic model was trained using
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Table 2 Specifications of the four machines.

CPU Memory
Type # of cores Clock speed Cache size FSB speed

# of CPUs
Chip Size

Intel Pentium 4 Extreme Edition (Gallatin) 1 3.40 GHz 2 MB 800 MHz 1 DDR400 2 GB
Intel Xeon (Irwindale) 1 3.60 GHz 2 MB 800 MHz 2 DDR2-400 4 GB
Intel Core 2 Duo (Conroe) E6600 2 2.40 GHz 4 MB 1066 MHz 1 DDR2-533 4 GB
Intel Xeon (Nehalem-EP) X5570 4 2.93 GHz 8 MB 1333 MHz 2 DDR3-1333 24 GB

100 hours of speech consisting of 120k utterances by 55 fe-
male agents from our database described above. The acous-
tic model had 2000 states (consisting of 90 monophone
states and 1910 CD HMM states) and each state had 16-
mixture Gaussian components with diagonal covariance pa-
rameters (thus, the total number of Gaussian mixture com-
ponents was 32000). A trigram language model was trained
using 1.1M words of text data from a transcription of our
speech database, World Wide WEB texts and newspaper ar-
ticles, with Witten-Bell smoothing. The vocabulary size of
the word pronunciation dictionary was set at 30k. The base-
line speech recognizer was VoiceRex [15], [16], which em-
ploys a standard Viterbi beam search with a two-pass decod-
ing strategy. The three acceleration techniques described in
Sects. 2 and 3 were implemented on VoiceRex.

As described in Sect. 2.2, there is concern that the ac-
celeration performance of batch calculation (and also the
combined techniques) depends on the machine specifica-
tions. Thus, we conducted the experiments using four ma-
chines with different specifications as shown in Table 2.
Hereafter, we identify them by CPU types, i.e. Pentium 4,
Xeon, Core 2 Duo and Xeon X5570. Pentium 4 is an old
CPU. However, we employed it since many call centers (as
described above, one of our target fields) still use the ma-
chines with such old CPUs. Xeon X5570 is a state-of-the-
art CPU based on Intel microarchitecture of codename Ne-
halem as with Core i7. 32-bit CentOS Linux 5.2 operating
system was installed in all of the machines.

The evaluation speech data consisted of 850 utterances
by 17 female agent speakers (50 utterances per speaker)
from our speech database, who were different from the 55
female speakers who provided the acoustic model training
data. The total number of words was 9488 and the aver-
age utterance length was 3.28 sec. The test set perplexity
with the trigram language model was 107.3 and the out-
of-vocabulary rate was 0.8%. As described in Sect. 3.3,
the combined acceleration technique uses acoustic backing-
off that was originally proposed for recovering degraded
speech recognition accuracy under nonstationary noisy con-
ditions [13]. Therefore, in addition to the clean environmen-
tal condition, we also conducted experiments using the 850
utterances described above contaminated with office noise
data with a 15 dB SNR.

We compared the following five techniques: 1) a base-
line speech recognizer that did not employ any special tech-
niques for acoustic likelihood calculation acceleration, 2)
recycling, 3) batch calculation, 4) the proposed accelera-
tion technique without acoustic backing-off, i.e. the com-
bined technique that employed the straightforward choice in

case (4) in Fig. 2 (a) or set γ at −∞ in case (4) in Fig. 2 (b)
(hereafter, referred to as R&B), and 5) the combined accel-
eration technique with acoustic backing-off (R&B w/ ABO)
shown in Figs. 2 (b) and 4. Basic decoding parameters such
as beam width for hypothesis pruning, language weight and
word insertion penalty were common to all the techniques.

Many different experimental setups were realized by
changing the five techniques, their parameters (excepting
the basic decoding parameters), the four machines, and the
two environmental conditions. In each experimental setup,
we ran a single-thread speech recognition program while au-
tomatically monitoring that there were no other running pro-
grams. We measured the raw acoustic likelihood calculation
time (hereafter, referred to as raw ALCT) and the raw total
recognition time (raw TRT) based on the CPU time obtained
by using the clock function of the ANSI C programming
language. With each setup, we measured the CPU time five
times and averaged the results to reduce measurement er-
rors. We also calculated the normalized ALCTs and TRTs
on the basis of the raw ALCTs and TRTs of the baseline
speech recognizer.

4.2 Experimental Results in Clean Environment

Table 3 shows raw ALCTs, TRTs and their normalized ver-
sions obtained with the five techniques on the four different
CPU machines in a clean environment. The word accuracies
(WACCs) and parameters for the five techniques are also
shown.

According to the requirements of the application sys-
tems, we allowed a relative word accuracy degradation of
up to 2.00% from the baseline word accuracy (75.89%), i.e.
absolute degradation of 0.49%. Allowing this degradation
of word accuracy, with recycling, the recycling coefficient α
was increased from 0.600 to 0.950 in 0.025 steps, and was
finally fixed at 0.750. We can confirm that, as described
in Sect. 2.1, the word accuracy degrades slightly (0.35% in
absolute) from the baseline but similar reductions of the
ALCTs and TRTs are obtained for all of the machines. The
reduction rates of the normalized ALCTs and TRTs are up
to 37% (Core 2 Duo) and 20% (Xeon and Core 2 Duo), re-
spectively.

With batch calculation, the number of look-ahead
frames β was fixed at 7 according to our preliminary ex-
periments and [10]. We can confirm that, as described
in Sect. 2.2, there is no degradation in word accuracy but
the ALCT and TRT reductions depend heavily on the ma-
chine specifications. The reduction rates of the normalized
ALCT range from 2% (Xeon X5570) to 42% (Xeon) and
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Table 3 Raw ALCT, TRT and their normalized versions (in parentheses) obtained with the five techniques on the four machines in a clean environment.
Memory bandwidth of the four machines measured by the STREAM benchmark with TRIAD performance are also shown.

Parameter WACC Raw ALCT [sec] (Normalized ALCT) / Raw TRT [sec] (Normalized TRT)Technique
α β γ [%] Pentium 4 Xeon Core 2 Duo Xeon X5570

Baseline — — — 75.89 0.69 (1.00) / 1.21 (1.00) 0.82 (1.00) / 1.46 (1.00) 0.45 (1.00) / 0.81 (1.00) 0.23 (1.00) / 0.46 (1.00)

Recycling 0.750 — — 75.54 0.48 (0.70) / 1.00 (0.83) 0.53 (0.64) / 1.17 (0.80) 0.28 (0.63) / 0.64 (0.80) 0.15 (0.67) / 0.39 (0.84)
Batch calc. — 7 — 75.89 0.47 (0.68) / 0.99 (0.82) 0.47 (0.58) / 1.12 (0.77) 0.34 (0.76) / 0.70 (0.87) 0.22 (0.98) / 0.46 (0.99)

R&B 0.825 7 −∞ 75.82 0.29 (0.42) / 0.82 (0.68) 0.25 (0.31) / 0.90 (0.62) 0.20 (0.45) / 0.57 (0.70) 0.15 (0.65) / 0.38 (0.84)
R&B w/ABO 0.825 7 0.375 75.94 0.29 (0.43) / 0.82 (0.68) 0.25 (0.31) / 0.90 (0.62) 0.21 (0.46) / 0.57 (0.70) 0.15 (0.65) / 0.38 (0.83)

Memory bandwidth [MB/s] 3165.79 2844.80 3596.31 6857.25

Table 4 Raw ALCT, TRT and their normalized versions (in parentheses) obtained with the five techniques on the four machines in a noisy environment.

Parameter WACC Raw ALCT [sec] (Normalized ALCT) / Raw TRT [sec] (Normalized TRT)Technique
α β γ [%] Pentium 4 Xeon Core 2 Duo Xeon X5570

Baseline — — — 69.06 0.80 (1.00) / 1.40 (1.00) 0.92 (1.00) / 1.68 (1.00) 0.52 (1.00) / 0.94 (1.00) 0.26 (1.00) / 0.54 (1.00)

Recycling 0.750 — — 68.94 0.64 (0.80) / 1.24 (0.89) 0.71 (0.77) / 1.47 (0.88) 0.39 (0.76) / 0.82 (0.87) 0.20 (0.79) / 0.48 (0.90)
Batch calc. — 7 — 69.06 0.52 (0.66) / 1.13 (0.81) 0.52 (0.56) / 1.28 (0.76) 0.37 (0.72) / 0.80 (0.85) 0.24 (0.94) / 0.52 (0.97)

R&B 0.800 7 −∞ 68.77 0.42 (0.53) / 1.03 (0.73) 0.38 (0.41) / 1.14 (0.68) 0.28 (0.55) / 0.71 (0.76) 0.19 (0.76) / 0.48 (0.89)
R&B w/ABO 0.800 7 0.575 69.20 0.42 (0.52) / 1.02 (0.73) 0.37 (0.40) / 1.13 (0.68) 0.29 (0.56) / 0.72 (0.76) 0.19 (0.76) / 0.48 (0.89)

the normalized TRT range from 1% (Xeon X5570) to 23%
(Xeon). One reason for obtaining these results could be at-
tributable to the memory bandwidths of the four machines.
We measured them by using the STREAM benchmark with
the TRIAD performance [17], [18] as shown in the bottom
of Table 3. We can confirm that the effect of batch calcu-
lation in a machine is inversely proportional to the memory
bandwidth of the machine. Namely, in the case of Xeon, the
effect of batch calculation becomes relatively large because
of the low memory bandwidth of the machine†. In contrast,
in the case of Xeon X5570, the effect of batch calculation is
very small because of the very high memory bandwidth of
the machine.

With R&B, β was fixed at 7 as with batch calculation,
and the potential activity coefficient α was adjusted with
the same procedure employed for the recycling coefficient
α as described above and was finally fixed at 0.825. We can
confirm that the word accuracy degrades slightly (0.07% in
absolute) from the baseline but further ALCT and TRT re-
ductions are obtained for all of the machines. The slight
degradation in the word accuracy is derived from the recy-
cling property, and the machine dependence of the ALCT
and TRT reductions derives from the batch calculation prop-
erty. Normalized ALCT and TRT reduction rates are the
largest for Xeon at 69% and 38%, respectively.

With R&B w/ ABO, α and β were fixed at the same
value with R&B, namely 0.825 and 7, respectively. Then the
reliability coefficient γ was increased from 0.025 to 0.825
in 0.025 steps and was finally fixed at 0.375. Compared
with R&B, the word accuracy of R&B w/ ABO is recovered
0.12% in absolute. This value itself is small, however, com-
pared with 0.07%, i.e. the absolute degradation of the word
accuracy from the baseline to R&B, this recovery value is
sufficiently large. As a result, the word accuracy of R&B
w/ ABO becomes slightly, 0.05% in absolute, higher than
the baseline. From this result, we can confirm that acous-
tic backing-off is effective in preventing the word accuracy

from degrading even in a clean environment as designed in
Sect. 3.3. The ALCT and TRT reductions of R&B w/ ABO
are almost the same with R&B for all of the machines.

4.3 Experimental Results in Noisy Environment

Table 4 is the noisy environment version of Table 3. The pa-
rameters, α, β and γ, were adjusted with the same procedure
employed for the clean environment case. With a baseline
word accuracy of 69.06%, a 2.00% relative degradation cor-
reponded to a 0.63% absolute degradation. Allowing this
degradation of word accuracy, we adjusted the recycling or
potential activity coefficient α and finally fixed it at 0.750
(the same as in the clean environment) for recycling and at
0.800 (one step smaller than for the clean environment value
of 0.825) for R&B and R&B w/ ABO. The number of look-
ahead frames β was fixed at 7 for batch calculation, R&B
and R&B w/ ABO. The reliability coefficient γ was finally
fixed at 0.575 (larger than the clean case value of 0.375) for
R&B w/ ABO.

Because of the acoustic mismatch between the acoustic
model training data and the evaluation data, compared with
the clean environment case, performance degradations are
observed. The word accuracies degrade about 7% with all
of the techniques. Also the raw ALCT and TRT increase
with all of the techniques. However, the increases with batch
calculation are relatively small. And in contrast to the other
techniques, with batch calculation, the normalized ALCT
and TRT reduction rates slightly improves.

Despite the performance degradation described above,
also in a noisy environment, R&B and R&B w/ ABO show
their advantages as in a clean environment. Their normal-
ized ALCT and TRT reduction rates are the largest for Xeon

†As shown in Tables 3 and 4, with all of the techniques, raw
ALCT and TRT of Xeon are larger than those of the older machine;
Pentium 4. We guess that one reason of these results could also be
attributable to the low memory bandwidth of Xeon.
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at 60% and 32%, respectively. With R&B w/ ABO, larger
reliability coefficient γ caused acoustic backing-off to occur
more frequently. The word accuracy of R&B w/ ABO re-
covered 0.43% in absolute compared with R&B. This re-
covery value is larger than 0.29%, which is the absolute
degradation of the word accuracy from the baseline to R&B.
As a result, the word accuracy of R&B w/ ABO is slightly
higher than the baseline (0.14% in absolute). From these re-
sults, we can confirm that acoustic backing-off is effective
in a noisy environment as originally reported in [13].

5. Detailed Analyses

In Sect. 4, we showed acceleration performance and envi-
ronmental dependence of the five techniques. In this sec-
tion, we performed detailed analyses to reveal their mecha-
nisms. All of the acceleration techniques in this paper focus
on state likelihood calculations, and therefore, the analyses
should also be performed by focusing on them. We classi-
fied types of state likelihoods and counted each of them. The
analysis results confirmed the effectiveness of our combined
acceleration technique.

5.1 Analysis Conditions

We classified types of state likelihoods into three main cate-
gories and further classified each of them into some subcat-
egories as follows.

The first main category consisted of state likelihoods
that were actually calculated with floating-point operations
during the decoding for an evaluation utterance (hereafter,
referred to as Act-SLs). Act-SLs consisted of normally cal-
culated state likelihoods (Nml-SLs) and batch calculated
state likelihoods (Bat-SLs), i.e. #Act-SLs = #Nml-SLs +
#Bat-SLs. Once calculated, the state likelihoods for the
evaluation utterance were stored in a state-frame likelihood
table as shown in Figs. 1 and 4. We also computed the state
likelihood calculated rate in the state-frame likelihood table
(SLC-Rate), i.e. the ratio of #Act-SLs divided by the size of
the state-frame likelihood table. The table size is obtained

Table 5 State likelihood counting results obtained with the five techniques in a clean environment.

Technique and parameter (α, β, γ) setting
# state likelihoods Baseline Recycling Batch calc. R&B R&B w/ ABO

(—,—,—) (0.750,—,—) (—,7,—) (0.825,7,−∞) (0.825,7,0.375)

#Act-SLs 228947 162871 289516 198526 198529
#Nml-SLs 228947 162871 42792 31614 31613
#Bat-SLs 0 0 246724 166912 166916

SLC-Rate [%] 35 25 44 30 30

#Req-SLs 851704 894988 851704 895346 896548
#Nml-SLs 228947 162871 42792 31614 31613
#Lup-SLs 622757 560284 808912 696156 693855
#Rcy-SLs 0 171833 0 167576 167731
#ABO-SLs 0 0 0 0 3349

#Rdn-SLs 0 0 60569 33811 35555

WACC [%] 75.89 75.54 75.89 75.82 75.94
Raw ALCT [sec] (Norm. ALCT) 0.82 (1.00) 0.53 (0.64) 0.47 (0.58) 0.25 (0.31) 0.25 (0.31)
Raw TRT [sec] (Norm. TRT) 1.46 (1.00) 1.17 (0.77) 1.12 (0.78) 0.90 (0.62) 0.90 (0.62)

by multypling the number of states in the acoustic model by
the number of frames in the evaluation utterance.

The second main category consisted of required state
likelihoods during the decoding for an evaluation utterance
(Req-SLs). The Req-SLs consisted of the Nml-SLs de-
scribed above, state likelihoods that were looked up in the
state-frame likelihood table (Lup-SLs), recycled state like-
lihoods (Rcy-SLs) and state likelihoods given by acous-
tic backing-off (ABO-SLs), i.e. #Req-SLs = #Nml-SLs +
#Lup-SLs + #Rcy-SLs + #ABO-SLs.

The third main category consisted of redundant state
likelihoods (Rdn-SLs) for the decoding of an evaluation ut-
terance. As described in Sect. 2.2, with batch calculation,
also with R&B and R&B w/ ABO, some batch calculated
state likelihoods are not used in the decoding. In such cases,
they become redundant state likelihoods.

For each of the two environmental conditions and the
five techniques, all the types of state likelihoods described
above were accumulated for all of the 850 evaluation utter-
ances and averaged by the number of evaluation utterances
(850). As described in Sect. 4.1 and shown in Table 1, there
were 2000 states in the acoustic model, the average length
of the evaluation utterances was 3.28 sec and the frame shift
was 10 ms. Therefore, the average number of frames in the
evaluation utterances was 328 and the average size of the
state-frame likelihood tables was 656000. The parameter
(α, β, γ) settings of all the techniques are the same as in
Sects. 4.2 and 4.3.

5.2 Analysis Results in Clean Environment

Table 5 shows the state likelihood counting results obtained
with the five techniques in a clean environment. It also
shows the word accuracies, raw ALCTs, TRTs and their nor-
malized versions (in parentheses) for the five techniques on
Xeon (the machine that showed the best acceleration perfor-
mance in Sects. 4.2 and 4.3).

The number of Act-SLs with recycling is small com-
pared with the other techniques (#Act-SLs = #Nml-SLs).
And by recycling them (Rcy-SLs, these are monophone state



656
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

Table 6 State likelihood counting results obtained with the five techniques in a noisy environment.

Technique and parameter (α, β, γ) setting
# state likelihoods Baseline Recycling Batch calc. R&B R&B w/ ABO

(—,—,—) (0.750,—,—) (—,7,—) (0.800,7,−∞) (0.800,7,0.575)

#Act-SLs 254264 207530 313953 262438 262520
#Nml-SLs 254264 207530 46199 40066 40063
#Bat-SLs 0 0 267755 222372 222457

SLC-Rate [%] 39 32 48 40 40

#Req-SLs 959375 988602 959375 992989 991090
#Nml-SLs 254264 207530 46200 40066 40063
#Lup-SLs 705111 657125 913175 856846 846414
#Rcy-SLs 0 123947 0 96078 96514
#ABO-SLs 0 0 0 0 8099

#Rdn-SLs 0 0 59689 42903 47065

WACC [%] 69.06 68.94 69.06 68.77 69.20
Raw ALCT [sec] (Norm. ALCT) 0.92 (1.00) 0.71 (0.77) 0.52 (0.56) 0.38 (0.41) 0.37 (0.40)
Raw TRT [sec] (Norm. TRT) 1.68 (1.00) 1.47 (0.88) 1.28 (0.76) 1.14 (0.68) 1.13 (0.68)

likelihoods), it accelerates the acoustic likelihood calcula-
tions.

#Act-SLs is large with batch calculation compared with
the other techniques. However, breaking down it, we can see
that #Nml-SLs is small compared with the number of low-
cost batch state likelihood calculations (#Bat-SLs). Based
on this mechanism, although there are Rdn-SLs, batch cal-
culation can accelerate the acoustic likelihood calculations
as described in Sect. 2.2.

We can confirm that R&B and R&B w/ ABO inherit
properties from recycling and batch calculation. For ex-
ample, their #Rcy-SLs are close to that of recycling, their
#Nml-SLs are smaller than those of recycling and batch cal-
culation, and their #Act-SLs (and therefore the SLC-Rate)
take values between those of recycling and batch calcula-
tion.

With R&B w/ABO, #ABO-SLs are very small. We an-
alyzed these results in greater detail. Acoustic backing-off
occurred during the decoding for all of the 850 evaluation
utterances. Comparing the recognition results of R&B and
R&B w/ ABO utterance by utterance, we found they are
same for 833 utterances and only different for the remaining
17 utterances. However, for 14 of the remaining 17 utter-
ances, R&B w/ ABO provided more accurate recognition
results than those given by R&B. From these results, we
can again confirm the stable effect of acoustic backing-off
as regards preventing the word accuracy from degrading.

5.3 Analysis Results in Noisy Environment

Table 6 is the noisy environment version of Table 5. In
Sect. 4.3, it was confirmed that, compared with the clean en-
vironment case, raw ALCTs and TRTs increase with all of
the techniques in a noisy environment. We can confirm that
these increases are caused by the increases in the #Act-SLs
(and therefore the SLC-Rate) and #Req-SLs.

With recycling, despite the #Req-SLs increases com-
pared with the clean environment case, #Rcy-SLs decreases.
In addition to the increases of #Act-SLs and #Req-SLs, this
decrease of #Rcy-SLs also degrades the acceleration perfor-

mance of recycling. In a clean environment, i.e. under the
acoustically matching condition between training and evalu-
ation, it is expected that a few monophone states that match
the feature parameter of the current frame will have high
likelihods and be well divided from the other monophone
states in frame by frame monophone state likelihood calcu-
lations. On the other hand, in a noisy environment, the dis-
crimination abilities of the monophone states trained using
clean speech data are degraded, and then all of the mono-
phone states tend to have similar low likelihoods. There-
fore, if we employ the same recycling threshold for both
the clean end noisy environments (as described in Sects. 4.2
and 4.3, the recycling coefficient α was finally set at 0.750
for both the clean and noisy environments), #Rcy-SLs in a
noisy environment tends to be smaller than that in a clean
environment as shown in Tables 5 and 6. These results indi-
cate that, to improve the robustness of recycling in a noisy
environment, we should include recycling criteria other than
the thresholding of the monophone state likelihoods.

As with the other techniques, also with batch calcula-
tion, #Act-SLs increases compared with the clean environ-
ment case. However, the increase in #Nml-SLs is small.
And the increase in #Act-SLs is mainly accomplished by
the increase in the low-cost batch state likelihood calcula-
tions (#Bat-SLs). Therefore, even in a noisy environment,
with batch calculation, increases in ALCTs and TRTs are
small compared with the other techniques as described in
Sect. 4.3.

R&B and R&B w/ ABO inherit properties from recy-
cling and batch calculation as in a clean environment. Their
performance degradation is mainly attributable to that of re-
cycling as described above.

With R&B w/ ABO, #ABO-SLs increases compared
with that in a clean environment according to the increase
in the reliability coefficient γ from 0.375 to 0.575. Acous-
tic backing-off occurred during the decoding for all of the
850 evaluation utterances as in a clean environment case.
For 801 utterances, R&B and R&B w/ ABO provided the
same recognition results. For 39 of the remaining 49 utter-
ances, R&B w/ ABO gave more accurate recognition results
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than R&B. From these results, we can again confirm the
stable effect of acoustic backing-off in preventing the word
accuracy from degrading in a noisy environment as origi-
nally reported [13] and as in a clean environment. However,
acoustic backing-off in R&B w/ ABO is also based on the
thresholding of monophone state likelihoods as with recy-
cling. Thus, if some other reliability criteria could be in-
cluded, we could expect to obtain better performance for
acoustic backing-off.

6. Conclusion and Future Work

We proposed an efficient combination of state likelihood re-
cycling and batch state likelihood calculation based on con-
ditional fast processing and acoustic backing-off for accel-
erating acoustic likelihood calculation in an HMM-based
speech recognizer. We conducted large vocabulary sponta-
neous speech recognition experiments using the four differ-
ent CPU machines under two different environmental condi-
tions. Our combined acceleration technique showed the best
performance under all experimental conditions. Compared
with the baseline speech recognizer, the combined accelera-
tion technique achived reductions in the acoustic likelihood
calculation time and total recognition time respectively of
up to 69% and 38% in a clean environment and up to 60%
and 32% in a noisy environment. Detailed analyses based on
state likelihood type clustering clearly revealed the acceler-
ation and environmental dependency mechanisms of each
technique and confirmed the effectiveness of our combined
acceleration technique.

In future work, to improve the robustness of state like-
lihood recycling and the combined technique in noisy envi-
ronments, in accordance with the detailed analysis results,
we should include some recycling, potential activity and re-
liability criteria other than the thresholding of monophone
state likelihoods, e.g. confidence based criteria [14]. More-
over, we can combine other accelration techniques, e.g.
Gaussian reduction [1], SSE [8] and GPU [9], with our tech-
nique for a further acceleration of the acoustic likelihood
calculations. The acceleration techniques used in this paper
have up to three parameters, α, β and γ. As described in
Sects. 4.2 and 4.3, we manually adjusted them while allow-
ing slight degradation of recognition accuracy. We have to
make a guideline to ease these adjustment processes. And
for that, we have to reveal the sensitivities or stabilities of
the parameters against the changing of the conditions such
as speakers, noise types, acoustic/language models and de-
coder settings.
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