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PAPER

Distant-Talking Speech Recognition Based on Spectral Subtraction
by Multi-Channel LMS Algorithm

Longbiao WANG†a), Norihide KITAOKA††, Members, and Seiichi NAKAGAWA†††, Fellow

SUMMARY We propose a blind dereverberation method based on
spectral subtraction using a multi-channel least mean squares (MCLMS)
algorithm for distant-talking speech recognition. In a distant-talking envi-
ronment, the channel impulse response is longer than the short-term spec-
tral analysis window. By treating the late reverberation as additive noise,
a noise reduction technique based on spectral subtraction was proposed
to estimate the power spectrum of the clean speech using power spectra
of the distorted speech and the unknown impulse responses. To estimate
the power spectra of the impulse responses, a variable step-size uncon-
strained MCLMS (VSS-UMCLMS) algorithm for identifying the impulse
responses in a time domain is extended to a frequency domain. To re-
duce the effect of the estimation error of the channel impulse response, we
normalize the early reverberation by cepstral mean normalization (CMN)
instead of spectral subtraction using the estimated impulse response. Fur-
thermore, our proposed method is combined with conventional delay-and-
sum beamforming. We conducted recognition experiments on a distorted
speech signal simulated by convolving multi-channel impulse responses
with clean speech. The proposed method achieved a relative error reduction
rate of 22.4% in relation to conventional CMN. By combining the proposed
method with beamforming, a relative error reduction rate of 24.5% in rela-
tion to the conventional CMN with beamforming was achieved using only
an isolated word (with duration of about 0.6 s) to estimate the spectrum of
the impulse response.
key words: distant-talking speech recognition, blind dereverberation,
multi-channel least mean squares, spectral subtraction, cepstral mean nor-
malization

1. Introduction

In a distant-talking environment, channel distortion drasti-
cally degrades speech recognition performance. Compen-
sating an input feature is the main way to reduce mismatch
between the practical environment and the training environ-
ment. Cepstral mean normalization (CMN) has been em-
ployed to reduce channel distortion as a simple and effective
way of normalizing the feature space [1], [2]. To be suitable
for CMN, the length of the channel impulse response needs
to be shorter than the short-term spectral analysis window.
However, the impulse response of reverberation usually has
a much longer tail in a distant-talking environment. There-
fore, conventional CMN is not sufficiently effective under
these conditions. Several studies have focused on mitigating
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the above problem. Raut et al. [3], [4] used preceding states
as units of preceding speech segments, and they adapted
models accordingly by estimating their contributions to the
current state using a maximum likelihood function. How-
ever, model adaptation using a priori training data makes
the models less practical to use because the true impulse
response or matched reverberant utterance is not always ex-
pected for various environments. A blind deconvolution-
based approach for the restoration of speech degraded by
the acoustic environment was proposed in [5]. The pro-
posed scheme processed the outputs of two microphones
using cepstra operations and the theory of signal reconstruc-
tion from the phase only. Avendano et al. explored a speech
dereverberation technique whose principle was the recov-
ery of the envelope modulations of the original (anechoic)
speech [6], [7]. They applied a technique that they origi-
nally developed to treat background noise [8] to the derever-
beration problem. A novel approach for multimicrophone
speech dereverberation was proposed in [9]. The method
was based on the construction of the null subspace of the
data matrix in the presence of colored noise, employing gen-
eralized singular-value decomposition or generalized eigen-
value decomposition of the respective correlation matrices.
A reverberation compensation method for speaker recogni-
tion using spectral subtraction in which the late reverbera-
tion is treated as additive noise was proposed in [10], [11].
However, the drawback of this approach is that the optimum
parameters for spectral subtraction are empirically estimated
from a development dataset and the late reverberation can-
not be subtracted well since it is not modeled precisely. In
[12], [13], a novel dereverberation method utilizing multi-
step forward linear prediction was proposed. They esti-
mated the linear prediction coefficients in a time domain and
suppressed the amplitude of late reflections through spectral
subtraction in a spectral domain.

In this paper, we propose a robust distant-talking
speech recognition method based on spectral subtraction
employing the adaptive multi-channel least mean squares
(MCLMS) algorithm. Speech captured by distant-talking
microphones is distorted by the reverberation. With a long
impulse response, the spectrum of the distorted speech is
approximated by convolving the spectrum of clean speech
with the spectrum of the impulse response as explained in
the next section. This enables us to treat the late reverbera-
tion as additive noise, and a noise reduction technique based
on spectral subtraction can be easily applied to compensate
for the late reverberation. By excluding the phase informa-
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tion from the dereverberation operation as in [13], [14], the
dereverberation reduction in a power spectral domain pro-
vides robustness against certain errors that the conventional
sensitive inverse filtering method cannot achieve. The com-
pensation parameter (that is, the spectrum of the impulse re-
sponse) for spectral subtraction is required. In [15]–[18], an
adaptive MCLMS algorithm was proposed to blindly iden-
tify the channel impulse response in a time domain. In this
paper, we extend the method to blindly estimate the spec-
trum of the impulse response for spectral subtraction in a
frequency domain.

Error in estimating the channel impulse response is in-
evitable and results in unreliable estimation of the power
spectrum of clean speech. On the other hand, CMN is ro-
bust such that it reduces channel distortion within the spec-
tral analysis window. In this paper, the early reverberation is
normalized by CMN, and the late reverberation is then nor-
malized by the proposed reverberation compensation tech-
nique based on spectral subtraction by a multi-channel LMS
algorithm. Therefore, another novel point of our proposed
method is that it replaces the compensation of early rever-
beration with CMN with rigorous derivation. Furthermore,
delay-and-sum beamforming is applied to the multi-channel
speech compensated by the proposed method.

The remainder of this paper is organized as follows.
Section 2 describes our proposed dereverberation method
based on spectral subtraction. A multi-channel method
based on the LMS algorithm and used to estimate the power
spectrum of the impulse response (that is, a compensation
parameter for spectral subtraction) is briefly described in
Sect. 3. In Sect. 4, we normalize the early reverberation
by CMN instead of spectral subtraction using the estimated
impulse response. Section 5 describes the experimental
results of distant-talking speech recognition using multi-
channel distorted speech signals simulated by convolving
multi-channel impulse responses with clean speech. Finally,
Sect. 6 summarizes the paper and describes future directions
of research.

2. Dereverberation Based on Spectral Subtraction

When speech s[t] is corrupted by convolutional noise h[t]
and additive noise n[t], the observed speech x[t] becomes

x[t] = h[t] ∗ s[t] + n[t]. (1)

In this paper, additive noise is ignored for simplification, so
Eq. (1) becomes x[t] = h[t] ∗ s[t].

To analyze the effect of impulse response, the impulse
response h[t] can be separated into two parts hearly[t] and
hlate[t] as [10], [11]

hearly[t] =

⎧⎪⎪⎨⎪⎪⎩
h[t] t < T

0 otherwise
,

hlate[t] =

⎧⎪⎪⎨⎪⎪⎩
h[t + T ] t ≥ 0

0 otherwise
, (2)

where T is the length of the spectral analysis window, and

h[t] = hearly[t]+δ(t−T )∗hlate[t]. δ() is a dirac delta function
(that is, a unit impulse function). The formula (1) can be
rewritten as

x[t] = s[t] ∗ hearly[t] + s[t − T ] ∗ hlate[t], (3)

where the early effect is distortion within a frame (analysis
window), and the late effect comes from previous multiple
frames.

When the length of impulse response is much shorter
than analysis window size T used for short-time Fourier
transform (STFT), STFT of distorted speech equals STFT
of clean speech multiplied by STFT of impulse response h[t]
(in this case, h[t] = hearly[t]). However, when the length of
impulse response is much longer than an analysis window
size, STFT of distorted speech is usually approximated by

X( f , ω) ≈ S ( f , ω) ∗ H(ω)

= S ( f , ω)H(0, ω) +
D−1∑

d=1

S ( f − d, ω)H(d, ω), (4)

where f is frame index, H(ω) is STFT of impulse response,
S ( f , ω) is STFT of clean speech s and H(d, ω) denotes the
part of H(ω) corresponding to frame delay d. That is to
say, with long impulse response, the channel distortion is
no more of multiplicative nature in a linear spectral domain,
rather it is convolutional [4].

In [11], the early term of Eq. (3) was compensated by
the conventional CMN, whereas the late term of Eq. (3) was
treated as additive noise, and a noise reduction technique
based on spectral subtraction was applied as

|Ŝ ( f , ω)|=max(|X( f , ω)| −α ·g(ω)|X( f −1, ω)|, β · |X( f , ω)|),
(5)

where α is the noise overestimation factor, β is the spectral
floor parameter to avoid negative or underflow values, and
g(ω) is a frequency-dependent value which is determined
on a development and set as |1 − 0.9e jω| [11]. However, the
drawback of this approach is that the optimum parameters α,
β, and for the spectral subtraction is empirically estimated
on a development dataset and the STFT of late effect of im-
pulse response as the second term of the right-hand side of
Eq. (4) is not straightforward subtracted since the late rever-
beration is not modelled precisely.

In this paper, we propose a dereverberation method
based on spectral subtraction to estimate the STFT of the
clean speech Ŝ ( f , ω) based on Eq. (4), and the spectrum of
the impulse response for the spectral subtraction is blindly
estimated using the method described in Sect. 3. Assuming
that phases of different frames is noncorrelated for simplifi-
cation, the power spectrum of Eq. (4) can be approximated
as

|X( f , ω)|2 ≈ |S ( f , ω)|2|H(0, ω)|2

+

D−1∑

d=1

|S ( f − d, ω)|2|H(d, ω)|2. (6)
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|Ŝ ( f , ω)|2 = max(|X( f , ω)|2 − α ·∑D−1
d=1 |Ŝ ( f − d, ω)|2|H(d, ω)|2, β · |X( f , ω)|2)

|H(0, ω)|2 , (7)

The power spectrum of clean speech |Ŝ ( f , ω)|2 can be es-
timated as Eq. (7) (see the next page), where H(d, ω), d =
0, 1 . . .D − 1 is the STFT of impulse response which can be
calculated from known impulse response or can be blindly
estimated.

3. Compensation Parameter Estimation for Spectral
Subtraction by Multi-Channel LMS Algorithm

3.1 Blind Channel Identification in Time Domain

3.1.1 Identifiability and Principle

In [15]–[18], an adaptive multi-channel LMS algorithm for
blind Single-Input Multiple-Output (SIMO) system identifi-
cation was proposed.

Before introducing the MCLMS algorithm for the blind
channel identification, we express what SIMO systems are
blind identifiable. A multi-channel FIR (Finite Impulse
Response) system can be blindly primarily because of the
channel diversity. As an extreme counter-example, if all
channels of a SIMO system are identical, the system reduces
to a Single-Input Single-Output (SISO) system, becoming
unidentifiable. In addition, the source signal needs to have
sufficient modes to make the channels fully excited. Ac-
cording to [19], the following two assumptions are made to
guarantee an identifiable system:

1. The polynomials formed from hn, n = 1, 2, · · · ,N,
where hn is n-th impulse response and N is the chan-
nel number, are co-prime †, i.e., the channel transfer
functions Hn(z) do not share any common zeros;

2. The autocorrelation matrix Rss = E{s(k)sT (k)} of in-
put signal is of full rank (such that the single-input
multiple-output (SIMO) system can be fully excited).

In the following, these two conditions are assumed to hold
so that we will be dealing with a blindly identifiable FIR
(Finite Impulse Response) SIMO system.

In the absence of additive noise, we can take advantage
of the fact that

xi ∗h j = s∗hi ∗h j = x j ∗hi, i, j = 1, 2, · · · ,N, i � j, (8)

and have the following relation at time t:

xT
i (t)h j(t) = xT

j (t)hi(t), i, j = 1, 2, · · · ,N, i � j, (9)

where hi(t) is the i-th impulse response at time t and

xn(t) = [xn(t) xn(t − 1) · · · xn(t − L + 1)]T ,

n = 1, 2, · · · ,N, (10)

where xn(t) is speech signal received from the n-th channel

at time t and L is the number of taps of the impulse response.
Multiplying Eq. (9) by xn(t) and taking expectation yields,

Rxi xi (t + 1)h j(t) = Rxi x j (t + 1)hi(t),

i, j = 1, 2, · · · ,N, i � j, (11)

where Rxi x j (t+1) = E{xi(t+1)xT
j (t+1)}. Eq. (11) comprises

N(N −1) distinct equations. By summing up the N −1 cross
relations associated with one particuar channel h j(t), we get

N∑

i=1,i� j

Rxi xi (t + 1)h j(t) =
N∑

i=1,i� j

Rxi x j (t + 1)hi(t),

j = 1, 2, · · · ,N. (12)

Over all channels, we then have a total of N equations. In
matrix form, this set of equations is written as:

Rx+(t + 1)h(t) = 0, (13)

where

h(t) = [h1(t)T h2(t)T · · · hN(t)T ]T , (15)

hn(t) = [hn(t, 0) hn(t, 1) · · · hn(t, L − 1)]T , (16)

where hn(t, l) is the l-th tap of the n-th impulse response at
time t. If the SIMO system is blindly identifiable, the matrix
Rx+ is rank deficient by 1 (in the absence of noise) and the
channel impulse responses can be uniquely determined.

When the estimation of channel impulse responses is
deviated from the true value, an error vector at time t + 1 is
produced by:

e(t + 1) = R̃x+(t + 1)ĥ(t), (17)

where R̃xi x j (t + 1) = xi(t + 1)xT
j (t + 1), i, j = 1, 2, · · · ,N and

ĥ(t) is the estimated model filter at time t. Here we put a
tilde in R̃xi x j to distinguish this instantaneous value from its
mathematical expectation Rxi x j .

This error can be used to define a cost function at time
t + 1

J(t + 1) = ‖e(t + 1)‖2 = e(t + 1)T e(t + 1). (19)

By minimizing the cost function J of Eq. (19), the im-
pulse response is blindly derived. There are various meth-
ods to minimize the cost function J, for example, con-
strained Multi-Channel LMS (MCLMS) algorithm, con-
strained Multi-Channel Newton (MCN) algorithm and Vari-
able Step-Size Unconstrained MCLMS (VSS-UMCLMS)
algorithm and so forth [16], [18]. Among these methods,

†In mathematics, the integers a and b are said to be co-prime if
they have no common factor other than 1, or equivalently, if their
greatest common divisor is 1.
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Rx+(t + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
n�1 Rxn xn (t + 1) −Rx2 x1 (t + 1) · · · −RxN x1 (t + 1)
−Rx1 x2 (t + 1)

∑
n�2 Rxn xn (t + 1) · · · −RxN x2 (t + 1)

...
...

. . .
...

−Rx1 xN (t + 1) −Rx2 xN (t + 1) · · · ∑n�N Rxn xn (t + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (14)

R̃x+(t + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
n�1 R̃xn xn (t + 1) −R̃x2 x1 (t + 1) · · · −R̃xN x1 (t + 1)
−R̃x1 x2 (t + 1)

∑
n�2 R̃xn xn (t + 1) · · · −R̃xN x2 (t + 1)

...
...

. . .
...

−R̃x1 xN (t + 1) −R̃x2 xN (t + 1) · · · ∑n�N R̃xn xn (t + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (18)

the VSS-UMCLMS achieves a nice balance between com-
plexity and convergence speed [18]. Moreover, the VSS-
UMCLMS is more practical and much easier to use since the
step size does not have to be specified in advance. There-
fore, in this paper, we apply VSS-UMCLMS algorithm to
identify the multi-channel impulse responses.

3.1.2 Variable Step-Size Unconstrained Multi-Channel
LMS Algorithm in Time Domain

The cost function J(t + 1) at time t + 1 diminishes and its
gradient with respect to ĥ(t) can be approximated as

ΔJ(t + 1) ≈ 2R̃x+(t + 1)ĥ(t)

‖ĥ(t)‖2 (20)

and the model filter ĥ(t + 1) at time t + 1 is

ĥ(t + 1) = ĥ(t) − 2μR̃x+(t + 1)ĥ(t), (21)

which is theoretically equivalent to the adaptive algorithm
proposed in [20] although the cost functions are defined in
different ways in these two adaptive blind SIMO identifi-
cation algothrithms. In Eq. (21), μ is step size for Multi-
channel LMS.

With such a simplified adaptive algorithm, the primary
concern is whether it would converge to the trivial all-zero
estimate. Fortunately this will not happen as long as the
initial estimate ĥ(0) is not orthogonal to the true channel
impulse response vector h, as shown in [20].

Finally, an optimal step size for the unconstrained
MCLMS at time t + 1 is obtained by

μopt(t + 1) =
ĥ

T
(t)ΔJ(t + 1)
‖ΔJ(t + 1)‖2 . (22)

The details of the VSS-UMCLMS were described in [18].

3.2 Extending VSS-UMCLMS Algorithm to Compensa-
tion Parameter Estimation for Spectral Subtraction

To blindly estimate the compensation parameter (that is, the

spectrum of impulse response), we extend the MCLMS al-
gorithm mentioned in Sect. 3.1 from a time domain to a fre-
quency domain in this section.

The spectrum of distorted signal is a convolution op-
eration of the spectrum of clean speech and that of impulse
response as shown in Eq. (4). The spectrum of the impulse
response is dependent on frequency ω, and the varibale ω
is omitted for simplification. Thus, in the absence of addi-
tive noise, the spectra of distorted signals have the following
relation at frame f on the frequency domain:

XT
i ( f )H j( f )=XT

j ( f )Hi( f ), i, j=1, 2, . . . ,N, i� j,

(23)

Where Xn( f ) = [Xn( f ) Xn( f − 1) . . . Xn( f −
D + 1)]T is a D-dimention vector of spectra of the dis-
torted speech received from the n-th channel at frame f ,
Xn( f ) is the spectrum of the distorted speech received from
the n-th channel at frame f for frequency ω, Hn( f ) =
[Hn( f , 0) Hn( f , 1) . . . Hn( f , d) . . . Hn( f ,D−1)]T , d =
0, 1, . . . ,D − 1 is a D-dimensional vector of spectra of the
impulse response, and Hn( f , d) is the spectrum of the im-
pulse response for frequency ω at frame f corresponding to
frame delay d (that is, at frame f + d).

Using Eq. (23) in place of Eq. (9), the spectra of the
impulse responses can be blindly estimated by the VSS-
UMCLMS mentioned in Sect. 3.1.2.

4. Combining Spectral Subtraction with CMN

The estimated power spectrum of clean speech may not be
very accurate due to the estimation error of the impulse
response, especially the estimation error of early part of
the impulse response. In addition, the unreliable estimated
power spectrum of clean speech in a previous frame causes
a furthermore estimation error in the current frame. In this
paper, we compensate the early reverberation by subtracting
the cepstral mean of the utterance and then compensate the
late reverberation by the proposed reverberation compensa-
tion method.

As is well known, cepstrum of the input speech x(t) is
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calculated as:

Cx = IDFT (log(|X(ω)|2)) (24)

where X(ω) is the spectrum of the input speech x(t).
The early reverberation is normalized by the cepstral

mean C̄ in a cepstral domain (linear cepstrum is used) and
then it is converted into a spectral domain as:

|X̃(ω)|2 = |eDFT (Cx−C̄)| = |X( f , ω)|2
|X̄( f , ω)|2 , (25)

where X̄( f , ω) is mean vector of X( f , ω). After this normal-
ization processing, the Eq. (6) becomes as

|X̃( f , ω)|2

=
|X( f , ω)|2
|X̄( f , ω)|2

=
|S ( f , ω)|2|H(0, ω)|2
|X̄( f , ω)|2 +

D−1∑

d=1

{ |S ( f − d, ω)|2|H(d, ω)|2
|X̄( f , ω)|2 }

≈ |S ( f , ω)|2
|S̄ ( f , ω)|2 +

D−1∑

d=1

{ |S ( f − d, ω)|2
|S̄ ( f , ω)|2 × |H(d, ω)|2

|H(0, ω)|2 }

= |S̃ ( f , ω)|2 +
∑D−1

d=1 {|S̃ ( f − d, ω)|2 × |H(d, ω)|2}
|H(0, ω)|2 , (26)

where |S̃ ( f , ω)|2 =
|S ( f ,ω)|2
|S̄ ( f ,ω)|2 , |X̄( f , ω)|2 ≈ |S̄ ( f , ω)|2×

|H(0, ω)|2, and S̄ ( f , ω) is mean vector of S ( f , ω). The es-
timated clean power spectrum |S̃ ( f , ω)|2 becomes as

|S̃ ( f , ω)|2 = |X̃( f , ω)|2 −
∑D−1

d=1 {|S̃ ( f − d, ω)|2 × |H(d, ω)|2}
|H(0, ω)|2 .

(27)

The spectral subtraction is used to prevent the estimated
clean power spectrum being negative value, the Eq. (27) is
modified as:

|Ŝ ( f , ω)|2 ≈ max(|X̃( f , ω)|2 −
α ·
∑D−1

d=1 {|S̃ ( f − d, ω)|2|H(d, ω)|2}
|H(0, ω)|2 , β · |X̃( f , ω)|2). (28)

The methods given in Eq. (7) and Eq. (28) are referred to as
original proposed method and modified proposed method,
respectively.

5. Experiments

5.1 Experimental Setup

Multi-channel distorted speech signals simulated by con-
volving multi-channel impulse responses with clean speech
were used to evaluate our proposed algorithm. Six
kinds of multi-channel impulse responses measured in
various acoustical reverberant environments were selected
from the Real World Computing Partnership sound scene

Table 1 Detail record conditions for impulse responses measurement.
“angle”: recorded direction between microphone and loudspeaker. “RT60
(second)”: reverberation time in room. “S”: small, “L”: large.

array no array type room angle RT60

1 linear tatami-floored room (S) 120◦ 0.47
2 circle tatami-floored room (S) 120◦ 0.47
3 circle tatami-floored room (L) 90◦ 0.60
4 circle tatami-floored room (L) 130◦ 0.60
5 linear Conference room 50◦ 0.78
6 linear echo room (panel) 70◦ 1.30

database [21]. A four-channel circular or linear microphone
array was taken from a circular + linear microphone array
(30 channels). The four-channel circle type microphone ar-
ray had a diameter of 30 cm, and the four microphones were
located at equal 90◦ intervals. The four microphones of the
linear microphone array were located at 11.32 cm intervals.
Impulse responses were measured at several positions 2 m
from the microphone array. The sampling frequency was
48 kHz. Table 1 details the conditions for six recordings
with a four-channel microphone array.

For clean speech, 20 male speakers each with a close
microphone uttered 100 isolated words. The 100 isolated
words were phonetically balanced common isolated words
selected from the Tohoku University and Panasonic isolated
spoken word database [22]. The average time of all utter-
ances was about 0.6 s. The sampling frequency was 12 kHz.
The impulse responses sampled at 48 kHz were downsam-
pled to 12 kHz so that they could be convolved with clean
speech. The frame length was 21.3 ms, and the frame
shift was 8 ms with a 256-point Hamming window. Then,
116 Japanese speaker-independent syllable-based HMMs
(strictly speaking, mora-unit HMMs [23]) were trained us-
ing 27,992 utterances read by 175 male speakers (JNAS cor-
pus [24]). Each continuous-density HMM had five states,
four with probability density functions (pdfs) of output
probability. Each pdf consisted of four Gaussians with
full-covariance matrices. The acoustic model was com-
mon for the baseline and proposed methods, and it was
trained in a clean condition. The feature space comprised 10
mel-frequency cepstral coefficients. First- and second-order
derivatives of the cepstra plus first and second derivatives of
the power component were also included (32 feature param-
eters in total).

The number of reverberant windows D in Eq. (4) was
set to eight, which was empirically determined. In general,
the window size D is proportional to RT60. However, the
window size D is also affected by the reverberation prop-
erty; for example, the ratio of power of the late reverbera-
tion to the power of the early reverberation. In our prelim-
inary experiment with partial test data, the performance of
our proposed method with a window size D = 2 to 16 out-
performed the baseline significantly and the window size D
= 8 achieved the best result. Automatic estimation of the
optimum window size D is our future work. The length of
the Hamming window for discrete Fourier transformation
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Fig. 1 Analysis window for spectral subtraction. For the proposed dereverberation based on spectral
subtraction, the previous clean power spectra estimated with a skip window were used to estimate the
current clean power spectrum because the frame shift is half the frame length in this paper. For example,
to estimate the clean power spectrum of the 2i-th window W2i, the estimated clean power spectra of the
2(i-1)-th window W2(i−1), the 2(i-2)-th window W2(i−2), · · · were used.

Table 2 Baseline results (%).

Single Mic. (first channel)
distorted w/o CMN inverse SS with beam-
speech # CMN filtering true impulse forming

response

1 46.0 64.2 77.4 74.5 69.4
2 48.4 64.2 71.8 71.8 73.2
3 53.3 62.8 77.3 73.2 71.4
4 48.7 65.1 76.2 72.5 71.8
5 43.5 56.2 70.9 66.1 67.7
6 40.3 54.7 72.4 66.2 63.1

Ave. 46.7 61.2 74.3 70.7 69.4

was 256 (21.3 ms), and the rate of overlap was 1/2 †. An il-
lustration of the analysis window is shown in Fig. 1. For the
proposed dereverberation based on spectral subtraction, the
previous clean power spectra estimated with a skip window
were used to estimate the current clean power spectrum ††.
The spectrum of the impulse response H(d, ω) is estimated
using the corresponding utterance to be recognized with av-
erage duration of about 0.6 second. No special parameters
such as over-subtraction parameters were used in spectral
subtraction (α = 1), except that the subtracted value was
controlled so that it did not become negative (β = 0.15). The
speech recognition performance for clean isolated words
was 96.0%.

5.2 Experimental Results and Discussion

Table 2 shows the baseline results for speech recognition.
“Distorted speech #” in Tables 2 and 3 corresponds to “ar-
ray no” in Table 1. The CMN of the distorted speech was
used as a baseline. LSE-based inverse filtering [25] using
a true impulse response was the ideal condition. However,
this filtering cannot appropriately deal with a non-minimum
phase impulse response [25], which is common in real re-
verberant environments. Therefore, the speech recognition
performance was not an upper bound when using the known
impulse response. There are many other more precise in-
verse filtering techniques such as that of [25], [26]. We will
use the more precise inverse filtering techniques as the ideal
condition in the near future. The result of spectral sub-
traction with the true impulse response did not improve the
performance sufficiently. The reason for this might be that

optimum parameters α and β for spectral subtraction were
not used and the distorted input speech was analyzed us-
ing a Hamming window while the compensation parameter
H(d, ω) was calculated from the true impulse response with-
out using a Hamming window.

In this paper, speech recognition was performed using
speech data for a single microphone and multiple channels.
For single-microphone processing †††, only the speech sig-
nal from the first channel of each microphone array was used
for speech recognition. In our original proposed method
described in Sect. 2, speech signals from four microphones
were used to blindly identify the compensation parameters
for the spectral subtraction (that is, the spectra of the channel
impulse responses), and then the spectrum of the first chan-
nel impulse response was used to compensate for the rever-
beration of the speech signal from the first channel. In this
paper, the modified proposed method described in Sect. 4
is also evaluated. Moreover, delay-and-sum beamforming
is performed for the multi-channel dereverberate speech in
both the original and modified proposed methods.

Table 3 shows the experimental results obtained for the
original and modified proposed methods for speech recog-
nition. In our proposed methods, CMN was also performed
on the dereverberant speech. In this paper, the cepstral mean
was calculated using one isolated word (that is, a recogni-
tion word with duration of about 0.6 s) in both methods. The
original proposed method based on Eq. (7) remarkably im-
proved the speech recognition performance. The modified
proposed method based on Eq. (28) improved speech recog-
nition significantly compared with the original proposed
method and CMN for all severe reverberant conditions. The
reason was that the compensation error using spectrum sub-

†Our method employs two-stage processing of time-domain
speech. In the first stage, the reverberant speech is transformed
to a frequency domain, and a method based on spectral subtraction
is used to compensate the late reverberation before the speech is
transformed to the time domain. In this stage, the rate of overlap
is 1/2 as shown in Fig. 1. In the second stage, the compensated
time-domain speech is transformed to MFCCs with a frame shift
of 8 ms.
††Eq. (23) is true when using a skip window and the spectrum

of the impulse response can be blindly estimated.
†††In fact, multi-channel speech data were used to estimate the

channel transfer function a priori.
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Table 3 Speech recogniton performacnes of the original and modified
proposed methods. 4 microphones were used to estimate the spectrum
of impulse response. Delay-and-sum beamforming was performed to 4-
channel dereverberant speech signals. For proposed method, each channel
speech was compensated by the corresponding impulse response (%).

Original Modified
distorted proposed method proposed method
speech # w/o beam- w/o beam-

beamforming forming beamforming forming

1 66.3 70.8 72.8 76.0
2 65.8 76.3 70.0 80.6
3 69.9 76.1 73.9 80.3
4 69.4 76.7 71.1 78.6
5 63.1 70.6 66.0 74.4
6 62.0 68.1 65.8 71.2

Ave. 66.1 73.1 69.9 76.9

traction was greater than that using CMN for early rever-
beration. The result of the proposed method was similar
to that of spectral subtraction with a true impulse response.
Therefore, we can state that the compensation parameter for
spectral subtraction was estimated accurately. The modi-
fied proposed method † achieved an average relative error re-
duction rate of 22.4% in relation to conventional CMN and
11.2% in relation to the original proposed method. When
delay-and-sum beamforming was combined with our pro-
posed method, further improvement was achieved. Relative
error reduction rates of 20.6% in relation to the original pro-
posed method and 23.3% in relation to the modified method
without beamforming were achieved. Comparing the con-
ventional CMN combined with beamforming (69.4% in Ta-
ble 2), relative error reduction rate of 24.5% were achieved.

We also analyzed the relationship between the speech
recognition rate and reverberation time for conventional
CMN and the proposed method. The results are shown in
Fig. 2. Naturally, the speech recognition rate degraded as
the reverberation time increased. Using the modified pro-
posed method, the reduction of the speech recognition rate
was less especially for an impulse response with a long re-
verberation time compared with conventional CMN. The
reason is that our proposed method can compensate for the
late reverberation through spectral subtraction using an esti-
mated power spectrum of the impulse response.

We attempted to compare our proposed methods with
the dereverberation method based on the VSS-UMCLMS
algorithm in the time domain proposed in [17], [18]. How-
ever, the estimation error of the impulse response was very
large. Therefore, the recognition rate of the compensated
speech using the estimated impulse response was signif-
icantly worse than that of unprocessed received distorted
speech. The reason might be that the tap number of the
impulse response was very large and the duration of the ut-
terance (that is, a word with duration of about 0.6 s) was
very short. Therefore, the VSS-UMCLMS algorithm in the
time domain might not be convergent. The other problem
with the algorithm in the time domain is the estimation cost.
The estimation time of the algorithm in the time domain was
about 360 times that in the frequency domain under the ex-

(a) without beamforming

(b) microphone array

Fig. 2 The relationship between speech recognition rate and reverbera-
tion time.

perimental setup described in Sect. 5.1.

6. Conclusions and Future Work

In this paper, we proposed a blind reverberation reduction
method based on spectral subtraction employing a variable
step-size unconstrained multi-channel LMS algorithm for
distant-talking speech recognition. In a distant-talking envi-
ronment, the channel distortion no longer has a multiplica-
tive nature in a linear spectral domain; rather, it is convolu-
tional. We treated the late reverberation as additive noise,
and a noise reduction technique based on spectral subtrac-
tion was proposed to estimate the clean power spectrum.
The power spectrum of the impulse response was required to
estimate the clean power spectrum. To estimate the power
spectra of the impulse responses, a VSS-UMCLMS algo-
rithm for identifying the impulse responses in a time domain
was extended to the frequency domain. Error in estimating
the channel impulse response is inevitable and results in un-
reliable estimation of the power spectrum of clean speech.
In this paper, the early reverberation was normalized by

†Our proposed method could not achieve perfect speech recog-
nition because of the error in estimating the impulse response.
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CMN, and then the late reverberation was normalized by
the proposed spectral subtraction employing a multi-channel
LMS algorithm. Delay-and-sum beamforming was also ap-
plied to the multi-channel speech compensated by the pro-
posed reverberation compensation technique based on spec-
tral subtraction. Our original and modified proposed algo-
rithms were evaluated using distorted speech signals simu-
lated by convolving multi-channel impulse responses with
clean speech taken from the Tohoku University and Pana-
sonic isolated spoken word database. The modified pro-
posed method achieved average relative error reduction rates
of 22.4% in relation to the conventional CMN and 11.2%
in relation to the original proposed method. By combining
the modified proposed method with beamforming, the rela-
tive error reduction rates of 24.5% in relation to the conven-
tional CMN with beamforming was achieved using only an
isolated word (with duration of about 0.6 s) to estimate the
spectrum of the impulse response.

So far, the spectrum of the impulse response H(d, ω)
was estimated using only the corresponding utterance to be
recognized with average duration of about 0.6 second. In
the future, we will attempt to use multiple words to estimate
the spectrum of the impulse response H(d, ω) and obtain a
more accurate estimation result. In this paper, the cepstral
mean was calculated using one isolated word. Our previous
study [27]–[29] showed that a cepstral mean cannot be ac-
curately estimated from a short utterance (for example, one
isolated word). In the future, we will estimate the cepstral
mean from multiple words and combine it with the modi-
fied proposed method. Finally, additive noise was not con-
sidered in this paper. We will attempt to evaluate our pro-
posed methods using real-world speech data simultaneously
degraded by additive noise and convolutional noise in the
future.
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