
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011
69

PAPER

Low-Overhead Architecture for Security Tag

Ryota SHIOYA†a), Daewung KIM†∗, Kazuo HORIO†∗∗, Masahiro GOSHIMA†, Nonmembers,
and Shuichi SAKAI†, Member

SUMMARY A security-tagged architecture is one that applies tags on
data to detect attack or information leakage, tracking data flow. The pre-
vious studies using security-tagged architecture mostly focused on how to
utilize tags, not how the tags are implemented. A naive implementation
of tags simply adds a tag field to every byte of the cache and the memory.
Such a technique, however, results in a huge hardware overhead. This paper
proposes a low-overhead tagged architecture. We achieve our goal by ex-
ploiting some properties of tag, the non-uniformity and the locality of ref-
erence. Our design includes the use of uniquely designed multi-level table
and various cache-like structures, all contributing to exploit these proper-
ties. Under simulation, our method was able to limit the memory overhead
to 0.685%, where a naive implementation suffered 12.5% overhead.
key words: processor architecture, tagged architecture, information secu-
rity, information flow tracking

1. Introduction

A tagged architecture [1] is an architecture in which each
piece of data has a tag applied to describe its property. In
the 70’s and 80’s, tagged architectures were mainly used for
identifying the data types. By checking tags, the processors
can automatically identify and convert the data types at run-
time.

In recent years, tagged architectures have been used in
the field of information security, which includes preventing
information leakage, detecting malicious attacks and so on.
For example, dynamic information flow tracking (DIFT) [2]
applies a 1-bit tag to every word of the memory, for detect-
ing a broad range of malicious attacks such as code injec-
tion attack. Another example, RIFLE [3], is a technique that
uses tags to distinguish between the data that must be pro-
tected and not. Some data that must be protected are per-
sonal data and copyrighted works, by avoiding leakages and
illegal copies, respectively.

Despite many previous studies, the techniques to com-
pactly store tags have rarely been the target of research.
Most previous studies assume a naive implementation in
which the tags are always stored with the data in pairs, all
the way from register file to main memory. This means if a
1-bit tag is added to each byte, it becomes 9 bits in size.

Manuscript received June 1, 2010.
Manuscript revised September 13, 2010.
†The authors are with the Graduate School of Information Sci-

ence and Technology, The University of Tokyo, Tokyo, 113–8656
Japan.

∗Presently, with LG Electronics.
∗∗Presently, with Fujitsu Laboratories.

a) E-mail: shioya@mtl.t.u-tokyo.ac.jp
DOI: 10.1587/transinf.E94.D.69

The previous studies also leave the use of variable-
length tag totally out of scope. The previous techniques can
only use fixed-size tags and cannot change their size from
one to another. For example, Raksha [4] applies 1- or 2-bit
tag to each word for capacity, but they also point out that
per-byte tags is preferable against attacks using strings.

There are two sides to the overhead of tagged architec-
ture, the memory overhead and the latency overhead.

Memory overhead The extra capacity required to store
tags. For example, the memory overhead of the naive
implementation which applies 1-bit tag per byte is
1/8 = 12.5%.

Latency overhead The latency overhead can be repre-
sented by the extra time for loading and storing tags.

The goal of our research is to minimize both of these
overheads. We achieve our goal by exploiting the non-
uniformity and the locality of reference of tags. The non-
uniformity and the locality of reference are the characters of
tag summarized as follows:

Non-uniformity The memory can be divided into areas of
data that have tag and ones that don’t. Within a tag-
assigned area, the tags are likely a same value. Across
the areas, the values may be different.

Locality of reference Tags have the locality of reference
just as much as data does. Moreover, since tags are
not applied to all data, they are cached more effectively
than data.

Our system exploits these characters using a uniquely
designed multi-level table and various cache-like structures.
We adopt the following:

Data structure Multi-level Tag Table which has similar
structure to the page table to store security tags.

Physical structures A dedicated level-1 and a unified
level-2 cache for security tags.

The rest of the paper is organized as follows. In
Sect. 2, we review related work on security-tagged architec-
ture. Sections 3, 4 and 5 will give details of our proposal,
focusing on the design of the Tag Table and the tag caches,
each of which is a key component of our system. In Sect. 6,
we evaluate the efficiency of the system. In Sect. 7, we state
the conclusion.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



70
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

2. Related Work

Previous studies adopting tagged architecture focus on how
to utilize tags, not how the tags are implemented. This sec-
tion describes some previous studies adopting tagged archi-
tecture and their approaches to the tag implementation.

RIFLE [3] is an architectural framework to prevent in-
formation leaks by tracking the flow of data which must be
protected. RIFLE uses the tagged architecture as a means
of information-flow tracking. RIFLE mainly focuses on the
method of tracking information flow using tags, and the im-
plementation of the tags used is not touched in the paper.

Minos [5] is a microarchitecture that implements Biba’s
low-water-mark integrity policy on individual words of data.
Minos applies a 1-bit tag which represents the data integrity,
to every word of the memory. The Minos implements tags
in a naive way, that is, the tags are coupled with the data all
the way from register file to main memory.

Dynamic Infomation Flow Tracking by Suh et al. [2]
is an architecture to detect both control and non-control at-
tacks. Their method applies a 1-bit tag to every word of the
memory for identifying spurious information flows. The OS
marks the tags spurious for potentially malicious data, and
the processor tracks its flow by propagating the tags along
with their operation. Their method decouples the storage of
tags from instructions and data throughout the memory hier-
archy. It uses L1 and L2 tag caches, which are the dedicated
caches for tags, and on the main memory, tags are stored in
their dedicated area separate from the data. Finding a tag
stored separately from the data requires a special address
translation, and their method uses a tag TLB for this pur-
pose. Their method however, doesn’t describe the detail of
tag implementation, such as the structure of the tag storage
and the tag TLB, and so on.

Mondrian Memory Protection (MMP) [6] is an archi-
tecture that allows multiple protection domains to control
access permissions on individual words of data. The MMP
applies a 2-bit permission field to every word of the mem-
ory. The permission field acts somewhat similarly to tags in
the tagged architectures, though the term is different. As op-
posed to tags, the permission does not propagate, because it
is not for tracking information flow. Unlike the naive imple-
mentation of tags, the MMP separates the permission and
the data in the memory space by introducing a multi-level
permissions table (MLTP) as a storage of the permission
bits. The MMP also caches the MLTP entries the same way
as a TLB to improve the table look-up speed. The basic con-
cept of the MLTP is similar to the Tag Table of our system,
but it is not suitable for a system that changes its contents
frequently. This is due to that the MMP design assumes the
permission modification occurs more frequently than page
table modifications, but less frequently than the tag propa-
gation.

Overall, the previous studies do not pay great atten-
tion to the implementation of tags. RIFLE does not touch it
in the paper, and Minos simply adopts a naive implementa-

tion. Dynamic information flow tracking by Suh et al. uses
a technique that exploits non-uniformity to an extent. Their
method achieves this by supporting the multi-granularity of
tag mapping, but it cannot dynamically adjust the tag stor-
age to its minimal size, which is possible by our technique of
contraction, explained in Sect. 4.5. Moreover, their imple-
mentation is not described in details. The MMP takes a close
approach to us for reducing overhead, but their technique is
for a different purpose, and is not suitable for a system that
changes its contents frequently.

3. Proposal

We propose a low-overhead tagged architecture for security
tag. We exploit some properties of the tags in our design,
the non-uniformity and the locality of reference.

3.1 Properties of Security Tags

Non-uniformity

The memory can be divided into areas of data that have tag
and ones that don’t. Within a tag-assigned area, the tags are
likely a same value. Across the areas, the values may be
different.

When files or data from a network are read into a con-
secutive area of the memory, the same tag will initially be
applied throughout the data. This leads to the situation de-
scribed above. Figure 1 shows an image of the memory in
this situation. In this figure, there are areas of data with tags
applied and areas without. The different tag-applied areas
have different tags on them, for the tags are derived from
different origins, which may be files or IO.

Locality of Reference

Tags have the locality of reference just as much as data does.
Moreover, since tags are not applied to all data, they are
cached more effectively than data.

Fig. 1 Non-uniformity of tag-applied area. Non-uniformity is summa-
rized: 1. Tag applied areas are partial and contiguous. 2. Tags are likely
same value within these areas.



SHIOYA et al.: LOW-OVERHEAD ARCHITECTURE FOR SECURITY TAG
71

3.2 Overview

Figure 2 is a block diagram of our system. The figure shows
the placement and the interactions of important components
of our design, the Tag Table and the cache hierarchy.

Tag Table

The Tag Table is a data structure for storing tags, built on the
main memory. The Tag Table is characterized by a multi-
level structure like the page table. The index of the page ta-
ble is virtual address and the value of it is the corresponding
physical address. In the case of the Tag Table, the index is
virtual address but the value is the tag of the corresponding
data.

The page table usually has a multi-level tree structure.
Figure 3 shows the structure of the Tag Table. The Tag Table
consists of 5 levels of subtables. The leaf subtables have the
values of tags, while the non-leaf subtables have the pointers
to the next-level subtables. The value of the tag is obtained
by walking on the path indicated by the pointers.

Just like the page table, subtrees for the areas that do
not have tags assigned are not allocated on the memory, sav-
ing large amount of memory.

Cache Hierarchy

The cache hierarchy of our system includes a dedicated L1
tag cache and a unified L2 cache for instruction, data and

Fig. 2 Block diagram of system.

Fig. 3 Tag table and virtual address translation.

tag, and a Tag Management Unit (TMU) placed between
them.

On the L1 cache miss, the TMU walks on the Tag Ta-
ble, retrieves the tag, and refills it to the L1 tag cache. Mean-
while, L2 cache is just the same as conventional one, and
does not have any special functionality for tags. Therefore,
the image of the Tag Table is cached on the L2 cache as it
is.

The Tag Table is protected by usual memory protection
system, thus user programs cannot access the Tag Table on
the L2 cache directly. The user programs can access tag
information only through the L1 tag cache. This can avoid
malicious attacks by accessing to the Tag Table in the case
that our proposal is used in the field of information security.

We do provide a dedicated L1 cache for tags, but not
for L2 cache for the following reasons:

• If L1 cache is unified, the Tag Table Walk is needed for
each execution of load/store instructions, resulting in
an intolerable overhead. In our configuration, the Tag
Table Walk is only needed on L1 cache miss, making
the overhead tolerable.

• The dedicated L2 cache means the TMU is placed be-
tween L2 cache and the main memory. The TMU then
must perform Tag Table Walk on the main memory,
also resulting in intolerable overhead.

The combination of Tag Table and the cache hierarchy de-
scribed above minimizes the memory overhead and latency
overhead.

The following sections give details of the implementa-
tion of the Tag Table and the cache hierarchy.

4. Tag Table

This section gives details of the Tag Table.
As described before, the Tag Table is a multi-level table

like a page table. Figure 3 shows the structure of the Tag
Table. The Tag Table consists of 5 levels of subtables. The
leaf subtables have the values of tags, while the non-leaf
subtables have the pointers to the next-level subtables. The
Tag Table is accessed by a 64-bit virtual address. The virtual
address is divided into fields as shown in Fig. 3. The index
field for a non-leaf level subtable provides offset from the
base address of the corresponding table. This structure of
the Tag Table is designed after x86-64 page table [7].

Note that the Tag Table in Fig. 3 is designed under the
assumption that the pages are 4 KB and always aligned to
4 KB-boundaries. The same assumption is applied through-
out the paper.

4.1 Tree Structure

The conventional page table can largely reduce its size by
creating subtrees only for allocated virtual pages. The Tag
Table also adopts this mechanism. It creates subtrees only
for data which have tags applied on them. In addition, the
Tag Table is able to delete subtrees under certain conditions,



72
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Fig. 4 Subtrees allocated only if tags are applied.

achieving even more efficient storage than page tables. In
Fig. 4, most entries of the first-level table are not allocated,
reducing the area significantly.

The non-leaf level subtables are mostly for pointing to
the next level subtables. These entries, however, contain
more than just pointers, specifically, the tags themselves.
The entries of the different level tables vary in their struc-
tures as follows:

Tag Table Entry (TTE) An entry of the first to the third
level subtables

Extended Tag Table Entry (ETTE) An entry of the fourth
level subtables

Tag Line (TL) An entry of the leaf-level subtables

The TTE and the ETTE have TAG fields, which allows
a tag to be obtained without tracking the pointers down to
the leaf-level. This field can be used when a same tag is
mapped to a significant-size block of memory. In such case,
the use of lower-level subtables are superfluous, because a
same tag will be stored in all of their entries. The tag can
instead be represented on a upper-level table entry, on its
TAG field. This reduces the number of access to the Tag
Table. The existing lower-level subtables may actually be
freed, and this is done for a specific table level. This opera-
tion is called contraction, and reduces the total table size.

The opposite happens when such uniformly tag-
mapped block is disturbed. In this case, a new subtable is
allocated. This operation is called expansion.

The following sections will give details of the struc-
tures of the different table entries. We also describe the
specifics of the free list, and the operation of expansion and
contraction.

4.2 Data Structures of Table Entries

Tag Table Entry

A Tag Table Entry (TTE) is the format of the table entry
for the first to the third level subtables. It simply provides a
pointer to the next level subtable in most cases. The compo-
sition of TTE is given in Fig. 5.

Tag Table Pointer (TTP)

The upper 52 bits of the physical address of the next-level
subtable. The 64-bit physical address is derived by adding
the lower 12 bits, all zeros, to the TTP.

Fig. 5 Composition of Tag Table Entry.

Table 1 Linear address space covered by TAG field.

Table Level Block Size

4 8 KB
3 2 MB
2 1 GB
1 512 GB

Fig. 6 Composition of Extended Tag Table Entry.

TAG

Since each table consisting the Tag Table is 4 KB and always
aligned on 4 KB boundaries, the lower 12 bits of the 64-bit
address are always 0. Thus the lower bits may be used to
store a tag.

Our system may support tags of up to 12 bits in length,
for this field is 12 bits. However, we currently choose to
support only up to 4 bits, because supporting longer tags
calls for multiple table free lists. We describe the reason
in Sect. 4.3. When storing tags smaller than 12 bits, the re-
maining upper bits are filled with 0.

As stated earlier, when a significant-size block of mem-
ory is mapped a same tag, the upper-level table entries pro-
vide the tag. In such case, the upper-level table entry, or the
TTE, does not provide a pointer to the next-level subtable.
Specifically, its TTP field is set to NULL. When the TMU
at Tag Table Walk encounters a null TTP, it returns the tag
on the Tag field instead of further tacking down the point-
ers. Thus the number of access to the Tag Table is reduced.
When TTP is not NULL, the TAG field is ignored.

The block of tags represented by a single TTE TAG
field differs by the table level. A first-level TTE providing
tag means that the tags obtained via the whole table hierar-
chy beyond level 2 are a same value, and thus mapped to a
single TAG field. The sizes of linear address space possibly
covered by a TAG field are shown in Table 1.

Extended Tag Table Entry

The Extended Tag Table Entry (ETTE) is the format of the
fourth level entries of Tag Table. The ETTE is composed as
in Fig. 6.

The ETTE is composed of a TTE, which we explained
above, and a Tag Line Vector (TLV). The TLV is a bitmap
64 bits in length. The TTE and the TLV are the upper and
the lower 64 bits of the ETTE, respectively.



SHIOYA et al.: LOW-OVERHEAD ARCHITECTURE FOR SECURITY TAG
73

Fig. 7 Composition of Tag Line Vector.

Fig. 8 Composition of Tag Line.

Tag Line Vector (TLV)

A 64-bit bitmap. These bits correspond one-by-one to the
fifth level table entry (Tag Line). The TLV gives a hint on
the content of the fifth level subtable. An example of this is
shown in Fig. 7.

A bit in the TLV is set to 1 if and only if:

• All tags on the corresponding Tag Line are equal
• The tags on the Tag Line match the TTE tag field

Hence, if a TLV bit is set, the tag may be obtained with-
out accessing the fifth-level subtable. When all bits of the
TLV are set to one, all the tags that exist on the fifth-level
subtable are the same value. In such cases, if the TTP field
is not NULL, or in other words, the fifth-level subtable still
exists, we may free it from the Tag Table. This operation is
called contraction. In Sect. 4.5, we describe contraction in
more detail.

Tag Line

The Tag Line (TL) is the format of the fifth-level entries of
the Tag Table. It is composed as in Fig. 8. This figure shows
formats of TL in each case that the length of tag applied was
1, 2, and 4 bits for a byte of data.

The size of TL is 64 bytes, and it is composed entirely
of tags. The size of TL is equal to that of the line of the L1
tag cache. The reason is described in Sect. 5.1.

4.3 Free List

Our system supports variable-length tag. The sizes of the
fifth-level subtables, containing only tags, differ by the
length of tag. For example, if the length of tag is 1/2 of
the data, the fifth-level subtable size will be 2 KB (because

a page of data consumes 4 KB). If the length of tag is 1/4 of
the data, the fifth level subtable size will be 1 KB, and so on.

The free list allocates and frees memory for tables in
4 KB chunks. When the length of tag is equal to or smaller
than 1/2 of the data, two or more fifth-level subtables are
allocated in a single chunk.

4.4 Consideration about Address Space

We use a virtual address to access the Tag Table rather than
a physical address for the following reasons:

• A physical address assigned to a virtual address may
be changed on page swapping. Therefore, the use of
the physical address requires additional processes that
include updating the Tag Table to the changed physical
address. The use of the virtual address can avoid these
processes.

• We reduce the size of the Tag Table by exploiting
non-uniformity of tags, Tag applied areas are partial
and contiguous. The use of the physical address can
weaken this non-uniformity because contiguous areas
on a virtual address space are not always contiguous
on a physical address space.

The Tag Table itself is placed on the physical address
space and is managed to avoid being swapped out by an OS
as conventional page tables. Therefore, the pointer of the
subtable is a physical address and this can remove address
translation on Tag Table Walk.

4.5 Expansion and Contraction

Through expansion and contraction operations by the TMU,
the Tag Table dynamically adjusts itself to the minimal size.
These operations exploit the Non-uniformity of tags. In this
section, we first describe expansion and contraction opera-
tions, and then discuss the overheads of them.

4.5.1 Expansion

The Tag Table initially consists only of a level-1 subtable.
As tags are applied to data, the table is expanded, or new
lower-level subtables are allocated as necessary. The Tag
Table obtains new chunks from the free list, allocates them
to new subtables, and then link the subtable with pointers.

4.5.2 Contraction

Whenever a block of data is applied the same tag, the table
can be contracted, or the block of tags will be reduced to
the single TTE (or ETTE) of the upper-level subtable. In
contrast to the expansion, the contraction removes subtables
from the Tag Table.

The contraction is triggered on the write of tags to the
Tag Table. The contraction starts when the write changes
a tag and all the tags on the subtable has the same value
as a result. This requires accesses to all the entries of the
subtable, except in the case of a leaf-level subtable.



74
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Fig. 9 Contraction of fifth-level subtable.

Leaf-level Subtable

For the leaf-level subtable, checking all entries can be per-
formed by simply inspecting the TLV bits. This mechanism
is displayed in Fig. 9. As described in the previous subsec-
tion, a bit of TLV is set when all the tags of the Tag Line are
the same value as the TAG field of the TTE. Therefore, if
all the bits in the TLV are set, all the tags of the subtable has
the same value.

If the condition is met, the subtable is freed.

Non-leaf-level Subtable

The contraction process of a non-leaf-level subtable is trig-
gered by the contraction of a lower-level subtable, for it
modifies the table entry.

Firstly in the contraction process of non-leaf-level sub-
table, the TAG fields of all the TTEs have to be checked if
they are of the same value.

The TTE TAG field is invalid when the TTP field is
not NULL (it is a pointer to the next-level subtable). At the
presence of such table entry, the contraction process imme-
diately stops.

The contraction is repeated recursively as long as it is
successful, until reaching the first-level subtable.

4.5.3 Overhead of Expansion and Contraction

As described before, the operations required for expansion
are allocating subtables from the free list and linking the
subtables with pointers. This operations cause several write
accesses to the L2 cache for the linking. The evaluation re-
sult in Sect. 6 shows that the frequency of expansion is small
enough, thus the write accesses do not decrease performance
greatly.

The overhead caused by contraction varies according
to the level of a subtable. For the leaf-level subtable, check-
ing all entries can be performed by simply inspecting the
TLV bits. On the other hand, for the non-leaf-level sub-
table, the TAG fields of all TTEs in a subtable have to be
checked, therefore up to 4 KB, which is the size of the sub-
table, read accesses to the L2 cache are performed. As de-
scribed before, this checking process for the non-leaf-level
contraction is triggered only by the leaf-level contraction.
The evaluation result in Sect. 6 shows that the frequency
of the leaf-level contraction is small enough, thus the fre-
quency of read accesses caused by checking the TAG fields
for the non-leaf-level contraction is small and it does not
decrease performance greatly.

5. Cache Hierarchy

The cache hierarchy of our system includes the dedicated
L1 tag cache and the unified L2 cache, and the TMU placed
between them as described in Sect. 3.2. This section gives
details of the cache hierarchy of our system.

5.1 Level-1 Tag Cache

The cache hierarchy of our system has a dedicated L1 tag
cache. This L1 tag cache uses virtual address for indexing
and physical address for tag matching. This is similar to
L1 cache of some microprocessors [8], [9] and it does not
require flushing operations on context switching.

As described before, the Tag Line (TL) of the Tag Table
has the same size as the level-1 tag cache (L1 tag cache). In
other words, a TL is mapped directly to a line of L1 tag
cache on a refill.

It is important this size matches the line size of the L1
tag cache. The modification of Tag Table is made when
a line of L1 tag cache, to which some changes have been
made, is written back to the L2 cache or the memory. Since
a line of L1 tag cache corresponds directly to a TL, the TMU
is able to determine the value of the corresponding TLV bit
at the time of write-back. If, for instance, the size of TL was
larger than the cache line size, comparing the cache line bits
during the write-back is not enough to determine the TLV
bit. In this case, an extra access to the Tag Table will be
necessary to obtain the remaining bits for comparison. Such
extra overhead is avoided in our design.

5.2 Tag Management Unit

This section gives details of the Tag Management Unit
(TMU).

The TMU handles the reading/writing of the Tag Table.
Since TMU is placed between the L1 tag cache and the L2
cache, all its operations are triggered by the L1 tag cache
miss.

The operations to the Tag Table includes the following:

• Tag Table Walk
• Expansion/contraction

5.2.1 Overhead of Tag Table Walk

The TMU does not have additional address translation
mechanism such as a TLB, though the Tag Table is accessed
by virtual address as described in Sect. 4. This is because the
each part of virtual address is used as the index of an entry
on each subtable. On Tag Table Walk, a pointer to the next
level subtable does not require address translation, because
the pointer obtained from the TTP field is physical address.

The overhead of the Tag Table Walk is mainly caused
by the L2 cache access. In the case of Tag Table Walk, TMU
needs to access the Tag Table on the L2 cache five times,



SHIOYA et al.: LOW-OVERHEAD ARCHITECTURE FOR SECURITY TAG
75

and this will cause a large overhead. Thus, we introduce
a Pointer Cache to cache TTEs on the path of Tag Table
Walks. The Pointer Cache provides the TTEs required for
the table walk on hit.

Pointer Cache

Some MMUs (Memory Management Unit) of microproces-
sors have the pointer cache to cache the pointers included
in the page tables to speed up the page table walks. The
Pointer Cache of TMU caches TTEs just for the same pur-
pose of conventional MMUs.

Pointer Cache is a small set-associative cache, whose
value is TTEs and ETTEs. The Pointer Cache uses physical
address because TTEs and ETTEs have pointers as physical
address and the TMU accesses the Pointer Cache using these
pointers on Tag Table Walk. When TMU needs to access the
Tag Table, it first accesses the Pointer Cache. If the Pointer
Cache misses, the TMU accesses the Tag Table on the L2
cache and refills the missed TTEs or ETTEs to the Pointer
Cache.

6. Evaluation

In this section, we evaluate our system through simulation.
We first describe the evaluation environment, and then dis-
cuss the performance overheads.

6.1 Evaluation Environment

Our simulation uses a cycle-accurate processor simulator
Onikiri2 [10], developed in our laboratory. Unlike Sim-
pleScalar Tool set [11], which is used widely for researches
on processor architecture, Onikiri2 replays execution of in-
struction in the exact cycle when it is on the execution
stage. Thus, Onikiri2 can simulate more precisely than Sim-
pleScalar Tool set, when adopting data predictions such as
address match/mismatch prediction. The parameters used
for the simulation are shown in Table 2.

We used all 29 programs of the SPEC CPU2006 [12]
benchmark with ref data sets. The programs were compiled
using gcc 4.2.2 with “−O3” options. We skipped the first
3G instructions and evaluated the next 500M instructions.

To evaluate our system, we applied tags to every input

Table 2 Architectural parameters.

Architectural parameters Specifications

ISA Alpha
fetch width 4 inst.
execution unit int: 2, fp: 2, mem: 2.
instruction window int: 32, fp: 16, mem: 16
register file int: 128, fp: 128
L1 I/D cache 32 KB, 4 way, 64 B/line, 3 cycles
L1 Tag cache 4 ∼ 32 KB, 4 way,

64 B/line, 1 cycle
Pointer Cache 128 B ∼ 2 KB, 4 way,

16 B/line, 1 cycle
L2 cache 4 MB, 8 way, 64 B/line, 10 cycles
main memory 100 cycles

data, and propagated them by rules shown in Table 3. This
propagation rule is for tracking explicit flow of data and is
used by most researches [2], [4]. The length of tag applied
was 1 bit for a byte of data. The formats of TL and fifth-level
subtable in this case are described in Sect. 4.2.

In this table, the notation ‘Rn’ is used to indicate the
data of register number n. The notation ‘Tn’ indicates the
tag applied to the data ‘Rn’. Also, the notation T[x] indi-
cates the tag stored on the address x.

6.2 Result

Compared to architectures without tags, the following per-
formance overheads are added to tagged architecture.

Memory overhead Extra memory consumed by tags.

Latency overhead Extra time to read/write tags. In our
system, this is represented by a increase of memory
access latency caused by tag access.

The following sections describe how our system re-
duces these overheads and shows the result of the evalua-
tion.

6.2.1 Memory Overhead

We measured the total amount of memory consumed by the
Tag Table. The measurement was taken from the average
memory consumption for the execution. Figure 10 shows
the result for all the benchmark programs.

The naive is a naive model of tagged architecture,
which simply adds a tag field on each byte. For exam-
ple, if 1-bit tag is added per byte, the overhead is statically
1/8 = 12.5%, independent of the amount of the memory
consumed by programs.

The nocont is a model of our system without contrac-
tion, while the cont is one with contraction. The values on

Table 3 Tag propagation rules.

Inst. type Example Tag propagation

Arithmetic addl R1, R2, R3 T1← T2 OR T3
or Logical addli R1, R2, #Imm T1← T2
Load ldl R1, Imm(R2) T1← T[R2+Imm] OR T2
Store stl Imm(R1), R2 T[R1+Imm]← T1 OR T2
Branch/Jump jmp R1 do not propagate tag

Fig. 10 Memory overhead with and without contraction.



76
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

the graph are the ratio of the amount of the memory allo-
cated for the tags to that NOT for the tags.

Note that the value on the graph of the naive model
(12.5%) is the ratio to the amount of total physical memory
installed to the system, while the value of the nocont and
cont is the percentage to the amount of memory used by the
program.

The result shows that the memory overhead is signif-
icantly reduced from the naive model in both of our mod-
els. The overhead varies among the programs, because it
strongly depends on the characteristics of each program.
One factor that affects the overhead is the input data size,
which determines the initial amount of tags. The behavior
of the program, which determines how the tags are propa-
gated, also affects the overhead.

The nocont and cont models show memory overhead
of 2.97% and 0.685% in average, respectively. Thus we can
see that the use of contraction significantly contributes to the
reduction of memory overhead.

6.2.2 Latency Overhead

We evaluated the IPC degradation of our system from a
baseline model which does not have tags.

Figure 11 shows the IPCs of our system with 1 KB
Pointer Cache for various L1 tag cache sizes. The IPCs
in this figure are normalized by the IPC of the base model
and average of the programs in the benchmark. The average
degradation is 6.01%, 3.55%, 1.13%, and 0.491% for an 4-,
8-, 16- and 32 KB L1 tag cache, respectively. This graph
shows that 8- or 16 KB L1 tag cache is sufficient to maintain
the performance.

Figure 12 shows the IPCs of our system with 8 KB L1
tag cache for various pointer cache sizes. The IPCs in this
figure are normalized and averaged just like Fig. 11. The
“none” label show the IPC degradation for a model without
the Pointer Cache. The model without the Pointer Cache
shows significant performance degradations, and the aver-
age performance degradation of the model is 22.6%. On
the other hand, the performance degradations of the models
with the Pointer Cache is considerably small. The average
degradation is 8.20%, 5.55%, 4.24%, 3.76%, and 3.57% for
128 B, 256 B, 512 B, 1 KB, and 2 KB Pointer Cache, respec-
tively. This result shows that a small capacity of the Pointer

Fig. 11 Avg. relative IPC for various L1 tag cache size.

Cache significantly improves IPCs of benchmarks with large
IPC degradation by the L1 tag cache miss.

Figure 13 shows the IPCs of our system with 8 KB
L1 tag cache and 1 KB Pointer Cache for each benchmark
programs. The IPCs in this figure are normalized just like
Fig. 11. The average IPC degradation of our system is
3.55%. This graph shows that each IPC degradation is not
much different between benchmark programs.

Figure 14 shows the L1 tag cache hit rate of our sys-
tem for each benchmark program. Some programs show
low cache hit rates. The cache hit rates of 410.bwaves and
447.dealII are 83.1% and 66.5%, respectively. This is be-
cause the line size of L1 tag cache is much larger than that
of L1 data cache. The length of tag applied was 1 bit for
a byte of data, thus one line of the L1 tag cache is corre-
sponding to 8 lines of the L1 data cache. In this case, cache
hit rates of programs with low spatial locality become very
low.

These low cache hit rates do not always degrade the
performance of the programs. This is because the hit rate of

Fig. 12 Avg. relative IPC for various pointer cache size.

Fig. 13 IPC degradation for each benchmark program.

Fig. 14 Hit rates of L1 tag cache (8 KB).



SHIOYA et al.: LOW-OVERHEAD ARCHITECTURE FOR SECURITY TAG
77

Fig. 15 Hit rates of Pointer Cache (1 KB).

Fig. 16 Number of occurrences of expansion and contraction
(leaf-level).

the Pointer Cache, which is accessed on the tag table walk
caused by L1 tag cache miss, is usually quite high. Figure 15
shows the Pointer Cache hit rate of our system with 1 KB
Pointer Cache. The average Pointer Cache hit rate over all
the programs is 99.2%. The cache hit rates of 410.bwaves
and 447.dealII, which show low L1 tag cache hit rate, are
99.9% and 100.0%, respectively.

Figures 14 and 15 show that the L1 tag cache and
Pointer Cache hit rates of 429.mcf are 86.2% and 83.4%,
respectively. These hit rates are relatively low, but Fig. 13
shows that the IPC degradation of 429.mcf is 5.56%, which
is relatively small. This is because the L1 cache and L2
cache hit rates of 429.mcf for normal data access are very
low, they are no more than 85% and 40%, respectively.
These hit rates are much lower than those of the L1 tag cache
and Pointer Cache, thus relatively low hit rates of the L1 tag
cache and Pointer Cache do not have significant impact to
performance in 429.mcf. Moreover, as shown in Fig. 10, the
size of the tag table is much smaller than that of memory al-
located by the program, thus the hit rate of L2 cache on Tag
Table Walk is much higher than that of normal data access.

The above observation shows frequent accesses to the
Tag Table affect the performance, and implies importance
of the mechanisms to reduce the L1 tag cache miss penalty.
The Pointer Cache is introduced to reduce accesses to the L2
cache, and consequently average access latency of the Tag
Table.

Figure 16 shows the numbers of occurrences of expan-
sion and contraction for leaf-level, respectively. We only
show the results for leaf-level in the graph, because the num-
bers for non-leaf-level are very small, they are no more than
20 times among all benchmark programs. These numbers
are much smaller than those of instructions executed, which
is 500M instructions, thus additional cycles for expansion

and contraction do not degrade the performance of the pro-
grams.

7. Conclusion

In this paper, we presented low-overhead security-tagged
architecture. To achieve low overhead, our system ex-
ploits two characteristics of the tags, which are the Non-
uniformity and the Locality of reference of tags. Our de-
sign uses a uniquely designed multi-level table and various
cache-like structures to exploit these characteristics.

Simulation result shows that our system can signifi-
cantly reduce the memory overhead compared to a naive im-
plementation. The ratio of the memory used for the tags to
that not for the tags is no more than 0.685% in average.

We also evaluated the latency overhead, and the IPC
degradation to the base model which does not support tags
is no more than 3.55% in average. We also observed that a
small capacity of the Pointer Cache can significantly reduce
L1 tag cache miss penalty.

Our plan for future study is to apply some realistic tech-
niques of information flow tracking on our system. The fea-
ture of our system that supports variable-length tag allows
us to apply multiple techniques at once, even though they
apply different-length tags on different-length data.

We recognize the importance of the information flow
tracking techniques, and believe our low-overhead imple-
mentation of them will contribute to information security.

References

[1] E.A. Feustel, “On the advantages of tagged architecture,” IEEE
Trans. Comput., vol.C-22, no.7, pp.644–656, 1973.

[2] G. Suh, J. Lee, and S. Devadas, “Secure program execution via dy-
namic information flow tracking,” Proc. 11th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pp.85–96, 2004.

[3] N. Vachharajani, M.J. Bridges, J. Chang, R. Rangan, G. Ottoni, J.A.
Blome, M.V.G.A. Reis, and D.I. August, “Rifle: An architectural
framework for user-centric information-flow security,” Proc. 37th
International Symposium on Microarchitecture (MICRO), pp.243–
254, 2004.

[4] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible infor-
mation flow architecture for software security,” Proc. 34th Interna-
tional Symposium on Computer Architecture (ISCA), pp.482–493,
June 2007.

[5] J. Crandall and F. Chong, “Minos: Control data attack prevention
orthogonal to memory model,” Proc. 37th International Symposium
on Microarchitecture (MICRO), pp.221–232, 2004.

[6] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory protec-
tion,” Proc. 10th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
pp.304–316, Oct. 2002.

[7] Intel Corporation, Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, http://www.intel.com/products/processor/manuals/,
March 2009.

[8] Sun microsystems, UltraSPARC User’s Manual, 1997.
[9] MIPS Technologies, MIPS R10000 Microprocessor User’s Manual,

1995.
[10] R. Shioya, M. Goshima, and S. Sakai, “Design and implementa-

tion of a processor simulator onikiri2,” Proc. Symposium on Ad-
vanced Computing Systems and Infrastructures (SACSIS), pp.120–



78
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

121, 2009.
[11] D. Burger and T.M. Austin, “The SimpleScalar tool set, version 2.0,”

Tech. Rep., University of Wisconsin-Madison Computer Sciences
Department, 1997.

[12] The Standard Performance Evaluation Corporation, SPEC CPU2006
suite, http://www.spec.org/cpu2006/

Ryota Shioya was born in 1981. He is cur-
rently a Ph.D. student in Information and Com-
munication Engineering in The University of
Tokyo. He received his M.E. degree in Informa-
tion and Communication Engineering from The
University of Tokyo in 2008. He was a research
fellow of the Japan Society for the Promotion of
Science from 2009. He is a member of IPSJ.

Daewung Kim currently works for LG Elec-
tronics Inc. He received M.E. at The University
of Tokyo in 2009. His field of research is pro-
cessor architecture.

Kazuo Horio currently works for Fujitsu
Laboratories Ltd. He received M.E. at The Uni-
versity of Tokyo in 2010. His field of research
is processor architecture.

Masahiro Goshima was born in 1968. He
received his M.E. in engineering and Ph.D. in
informatics from Kyoto University in 1994 and
2004, respectively. He was a research fellow
of the Japan Society for the Promotion of Sci-
ence from 1994. From 1996, he was an assistant
professor in the Graduate School of Informat-
ics, Kyoto University. Since 2005, he has been
an associate professor in the Graduate School of
Information Science and Technology, the Uni-
versity of Tokyo. He has been engaging in the

research area of computer architecture. He received IPSJ Yamashita SIG
research award and IPSJ best paper award in 2001 and 2002, respectively.
He wrote a book titled “Digital Circuits”. He is a member of IPSJ and
IEEE.

Shuichi Sakai was born in 1958, re-
ceived B.S., M.S. and D.E. from the Univer-
sity of Tokyo in 1981, 1983 and 1986, respec-
tively. He had been working at Electrotechni-
cal Laboratory (1986–1998), Massachusetts In-
stitute of Technology (MIT, 1991–1992), Real
World Computing (RWC, 1993–1996), Univer-
sity of Tsukuba (1996–1998). In 1998, he be-
came an Associate Professor of The University
of Tokyo where he has continuously been a Full
Professor since 2001. His major concerns are

computer systems and their applications, especially computer architec-
tures, interconnection networks, optimizing compilers, low power architec-
tures and dependable systems. He received several awards, including IPSJ
Best Paper Award (1991), IBM Science Award (1991), Ichimura Academic
Award (1995), IEEE Outstanding Paper Award (1995), Sun Distinguished
Speaker Award (1997). He is a member of IPSJ (IPSJ fellow since 2010),
IEICE (chair of CPSY), JSAI, ACM and IEEE.


