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Automatic 3D MR Image Registration and Its Evaluation
for Precise Monitoring of Knee Joint Disease

Yuanzhi CHENG'®, Quan JIN', Hisashi TANAKA 7, Changyong GUOT, Xiaohua DING', Nonmembers,

SUMMARY  We describe a technique for the registration of three di-
mensional (3D) knee femur surface points from MR image data sets; it is
a technique that can track local cartilage thickness changes over time. In
the first coarse registration step, we use the direction vectors of the vol-
ume given by the cloud of points of the MR image to correct for different
knee joint positions and orientations in the MR scanner. In the second
fine registration step, we propose a global search algorithm that simulta-
neously determines the optimal transformation parameters and point corre-
spondences through searching a six dimensional space of Euclidean motion
vectors (translation and rotation). The present algorithm is grounded on a
mathematical theory - Lipschitz optimization. Compared with the other
three registration approaches (ICP, EM-ICP, and genetic algorithms), the
proposed method achieved the highest registration accuracy on both ani-
mal and clinical data.

key words: registration, global optimization, corresponding points, artic-
ular cartilage, cartilage thickness

1. Introduction

Magnetic resonance imaging (MRI) is routinely used in the
diagnosis of a wide variety of joint pathologies in human; it
has been proposed for assessing cartilage volume and thick-
ness in several human studies. Changes in the articular carti-
lage over time can indicate the progression of osteoarthritis
(OA) and show particular promise for evaluating the efficacy
of disease modifying OA drugs. There is evidence that car-
tilage changes (volume and thickness) in joint degeneration
are rather a local than a global effect [1], [2]. Consequently,
it is imperative to develop a three dimensional (3D) regis-
tration technique for tracking local cartilage changes over
time.

Only a limited number of studies have applied the im-
age registration to monitor quantitative changes of carti-
lage [3]. In literature [3], Stammberger et al. used a 3D elas-
tic registration method to identify the corresponding points
of the bone-cartilage interface for quantifying the local car-
tilage thickness changes. This has two noticeable problems:
1) the algorithm depends of the accuracy in normal vector
of both surfaces; 2) there is a lack of evaluation of the regis-
tration accuracy using the anatomical mark points.

The more general problem of finding the registration
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between two 3D data sets was considered in [4], where the
iterative closest point (ICP) algorithm is proposed to solve
the problem. The ICP algorithms can handle various types
of data, which include point sets, line segment sets, trian-
gle sets, and implicit surfaces. However, the ICP algorithms
require a good initialization in order to converge to the glob-
ally optimal solution, otherwise only a local optimum is at-
tained; moreover, their performances heavily depend on the
spatial configuration (distribution) of 3D points. A number
of approaches [5] have been devoted to make the ICP algo-
rithm more robust to such difficulties, but in some cases the
algorithms are still plagued by local minima problems, and
lots of iterations are required. Chow et al. [6] presented a
dynamic genetic algorithm to avoid local minima problems.
The main problem of this algorithm is time required to con-
verge.

The purpose of the present study is to find a global solu-
tion, meaning that the estimated transformation (translation
and rotation) and correspondences should be globally opti-
mal, i.e., giving rise to globally minimal objective function
error. To our knowledge, no such efficient global method
is available for registration of knee femur surface points on
serial MR images obtained at different times yet.

In this paper, we present a new framework for globally
solving the 3D registration problem of knee femur surface
points. Our framework is grounded on a mathematical the-
ory - Lipschitz optimization [7]. Based on this theory, we
propose a global search algorithm that simultaneously de-
termines the transformation and point correspondences. The
main advantage of the proposed method is that our algo-
rithm does not need any initialization and a lot of computa-
tion time. Additionally, we describe a six dimensional (6D)
search space for simultaneously finding the optimal trans-
formation parameters (translation and rotation), thus our al-
gorithm can achieves arbitrarily high accuracy. Finally, our
algorithm is independent of point configuration.

The accuracy of registration was evaluated using 20
fresh frozen knees from pigs and 15 knees of patients. The
proposed method was more accurate than the conventional
methods for registration of 3D knee joint femur surface.

2. Methods

The 3D registration method presented in this study consists
of two stages: In the first pre-registration stage, the knee fe-
mur surfaces are registered using the direction vectors of the

Copyright © 2011 The Institute of Electronics, Information and Communication Engineers
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volume (3D cloud of points) given by the cloud of points
of the MR image to align the sequence of MR images be-
tween them [8]. In the second stage, a global optimization
algorithm is presented for obtaining the most accurate solu-
tion as possible. This method is grounded on a mathemati-
cal theory - Lipschitz optimization. After determining the
corresponding points of both femur surfaces, different local
properties (such as the cartilage thickness) can be compared.
These are explained in the following section.

2.1 Coarse Registration

This registration step is based on using the direction vectors
of a cloud of points, to compensate for different knee joint
positions and orientations inside the MR magnet during the
data acquisition [8]. The method involves calculating the
covariance of each spatial point set as follows:

Cov = % ;(x,- =) -X)" (D

where n is the number of points, X is the center of mass
of cloud of points, and x; is the i-th point of the surface.
Then, the direction U; of the main axis can be computed by
singular value decomposition (SVD):

Cov = U;D;UT (2)

The rotation is determined by the product of the eigen-
vector matrices:

R=UU! A3)

Furthermore, the translation is determined by the dis-
tance between the centers of mass of both clouds of points.

2.2 Fine Registration

The goal of the fine registration is to obtain the most ac-
curate solution as possible. This method is grounded on
a mathematical theory - Lipschitz optimization. Moreover,
we describe a 6D space to simultaneously find the optimal
translation and rotation. In the 6D space, registration accu-
racy is improved.

2.2.1 Objective Function in the 6D Space

We want to find an optimal rigid motion that minimizes the
objective function, where the motion is represented by a
translation 7 and a rotation R. The translation vector and
the rotation matrix are expressed as

1 rno orn s
T=|1t |andR=| r rn s “)
13 31 I 133

To simultaneously find the optimal translation 7 and
rotation R, we describe a 6D transformation space. The two
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vectors (7 and R) can be combined in a single transforma-
tion matrix [R T; 0 1] which is the 4 X 4 transformation
matrix. Q belongs to Lie group S E(3), which is given by
(9]

0 —-w3 wy
_ w3 0 —w1 V2 3
SE®=| 0 w0 v |@VER (5)

0 0 0 1

Equation (5) demonstrates that the transformation
space can be mapped into a 6D space. The transforma-
tion search space can be substituted by a 6D space in
which the vector can be denoted by [w, w, w3, Vi, V2, V3].
Each transformation matrix Q has the corresponding point
[w1, w2, w3,Vv1,v2,v3] in the 6D space by using the expo-
nential map.

Let us assume that X and Y represent two 3D point sets,
and x; and y; are coordinates of the i-th points in the sets,

. T .
respectively. _x>lT and y , (i € [l,...,n]) are denoted as
=
vectors from matrices X € R™? and Y € R™?, respectively.

Suppose X; and ; are matched, in the 6D space, the objec-
tive function can be defined by

1 n R
d(X.YIQ.P) = — ) [%i - 0T (©6)
i=1

where the correspondences are represented by a permutation
matrix P € P"". The optimal combination P between X and
Y that can be computed by Hungarian algorithm [10].

The distances between every point from X and every
one from Y are calculated, and then the distance matrix P™"
is regarded as the cost matrix in Hungarian algorithm, where
the element in the i-th row and j-th column represents the
distance of the j-th point from Y and the i-th point from X.
The correspondence between X and Y, represented by an as-
signment matrix, is derived by using the Hungarian method.
The size of the assignment matrix is also n X n. The result
of Hungarian method means that the position of the zero-
value element in the assignment matrix is the position of the
selected element in the distance matrix P"™". For example,
if the element in the i-th row and j-th column of the assign-
ment matrix is zero, then the element in the i-th row and j-th
column of distance matrix is selected, the i-th point from X
and the j-th point from Y make a corresponding point pair.

2.2.2  Lipschiz Algorithm and Lipschization

Currently, the paper is aiming at simultaneously finding a
truly globally-optimal combination Q. To achieve this goal,
we should derive a global optimization algorithm to mini-
mize Eq. (6). However, the global optimization method ba-
sically conducts an exhaustive search over all possible Q in
the 6D search space. It seemed to be impossible, because
the entire space to be searched is the space of S E(3), which
is extremely huge.

To overcome this, we present a new method based on
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Fig.1 A Lipschitz function with Lipschitz constant L. f* is the minimal
value achieved so far. By evaluating the function at a single point x, a
neighborhood region with radius [f(x) — f*|/L can be eliminated without
losing the true global minimum Xx,,,;;,.

the theory of Lipschitz optimization. To begin with, let us
consider a simple case: 1D global optimization. Here are
some useful results.

Definition 1. A real-valued function f defined on the real
domain R is a global Lipschitz function (or said satisfy a
Lipschitz condition) if there exists a constant L > 0 such
that for Vx,y € R:

lf(x) = fO)l < Lix =y )

The smallest such L is called the Lipschitz constant.

Result 1. If f is a differentiable function with bounded
derivatives |f'(x)| < L, then f is a global Lipschitz function
with a Lipschitz constant L.

Next, we give an application of Lipschitz algorithm
(shown in Fig. 1). This can explain the reason why the Lip-
schitz optimization algorithm can be effectively carry out a
global search. Consider a 1D Lipschitz function with a Lip-
schitz constant L. We wish to find the global optimum with
the given region D. Let f* = f(x*) be the minimal the func-
tion at x. If f(x) < f*, then we replace f* with f(x); other-
wise, we could conclude that within a neighborhood region
of x with radius € = |f(x)— f(x")|/L, there cannot be any do-
main variable y such that f(y) > f(x*). This result follows
directly from |f(x) — f(x*)| < L|x — x*|. Consequently, by
evaluating the function at a single point, we can safely re-
move the e-neighborhood region without losing the global
minimum. Repeating this process systematically within D,
we will eventually observe the global minimum in D.

The Lipschitz condition states that a Lipschitz func-
tion cannot change too fast. The objective function is not
globally Lipschitzian in the entire domain. To salvage this,
we introduce a “Lipschitzation” process to the objective
function. The idea: by using a proper algebraic transform
to the objective function, we hope to reduce its speed-of-
change without severely altering the positions of its min-
ima. This idea is explained in Fig.2. There are many al-
gebraic transforms that can be used for the purpose. We
selectfr(x) = 1 - 5 +1x2 in Fig. 2. Besides making the objec-
tive function globally Lipschitzian, the Lipschitzization also
simplifies the estimation of the Lipschitz constant. This is
seen from the following result.

Result 2. The Lipschitz constant of Eq.(8) is less than
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Fig.2 Top row: left: the original of function f(x) = x*; middle and
right: two of its Lipschitzized functions, fi(x) = V2 +5 and Hx)=1-
1/(1+ x?), respectively; Bottom row: their derivative functions. This figure
shows that while the function f(x) = x> has un-bounded derivatives in the
real axis, the derivatives of its two Lipschitzized functions are bounded
globally. For example, read form the figure we have |f;| < 0.65,Vx € R.

0.65|[¥il, where |[¥illis the average length of all vectors Y,
i=1...n
Proof. Consider a single pair of matched points (&, y;). If
we transform ¥; by Q, then the induced change to the ob-
jective function is at most (Q - |f;(IF%IDD - I¥ill/n < O -
0.65|[¥i|l/n. Now consider all n matches. Using the fact that
the Lipschitz constant of the sum of a set of Lipschitz func-
tions is the sum of their constants, we reach: L < 0.65|y]|.
By plugging the transform f>(-) into Eq. (6), the Lips-
chitzized objective function is given by

1< _
dp = ;fzdﬁc’? NSH) ®)

2.2.3 Identifying the Bound to Be Searched

In order to reduce the bound to be searched, a coarse regis-
tration is accomplished by aligning the three principal axes
of the 3D clouds of points (see Fig. 3). The bound of trans-
formation search space is identified as follows:

(1) The translation bound is defined as the Euclidian dis-
tances between each point-pair (7 4 and 7A, X p and
- = - = - .
Vg, Xc and y¢, Xp and yp) along the x — axis,
y — axis, and z — axis, respectively.

(2) The rotation bound range from —10° to 10° around the
X —axis, y — axis, and z — axis, respectively.

2.2.4 Implementation: the HCnHB Algorithm

To data we have done appropriate preparations: we have a
6D search space in which we can simultaneously find the
optimal 7 and R; we have a globally Lipschitzized objec-
tive function; we have identified the searching bounds in the
6D space. The only thing remaining is to design a global
optimization algorithm to minimize Eq. (8).

Our algorithm is based on the branch-and-bound al-
gorithm, a well-known technique in global optimization.
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Fig.3  Coarse registration of two femur surfaces, one (surface X) shown
with the symbol “+” and the other (surface Y) with the symbol “-”. Graph
shows the three principal axes of femur surface. Each femur surface is
composed of 2037 points. x4, Xg, Xc and xp represent the four endpoints
in the surface points of X, respectively. ya, vz, yc and yprepresent the
four endpoints in the surface points of Y, respectively. x4 and xp lie on the
trochlear line (TA), and x¢ and xp on the posterior condylar axis (PCX) in
the femur of knee.

Branch-and-bound (minimization) works by recursively
subdividing feasible transformation region into a set of sub-
regions eliminating sub-region which cannot contain global
minima by evaluating lower bounds over the considered
sub-region. The process stops when the global minimum is
bracketed into a small enough region that guarantees the de-
sired accuracy.

Manipulating a set of e&-hyper-balls is not an
easy task. Alternatively, we propose the use of hyper-
cuboids. This results in a tree data structure -which is subse-
quently used to implement the branch and bound search. We
call this tree data structure “Hexagram-64-tree data struc-
ture”. In the tree data structure, each of the tree nodes rep-
resents a hyper-cuboid in the 6D space. Each hyper-cuboid
has a data member of a hyper-ball with radius €. One node
can be subdivided into 2" sub-nodes in the n dimensional
vector (transformation) space[11]. For visualization pur-
pose we show a tree data structure in the 2D space Fig. 4 (a)
and in the 3D space Fig.4 (b). We concluded that in the
6D space, one hyper-cuboid (node) would result in 64 sub-
hyper-cuboids (sub-nodes) for the tree data structure.

As such, we call our new method the Hyper-cuboid-
and-hyper-ball (HCnHB) algorithm. It starts from a hyper-
cuboid circumscribing the hyper-ball. Suppose f* is the best
function value obtained so far. Evaluate the function at the
center point (denoted by x) of the hyper-cuboid currently
under examination. Compute the radius € of a neighboring
hyper-ball, e = |f(x) — f(x*)|/L. If the e-hyper-ball of the
node encloses the entire volume of its own hyper-cuboid,
then this hyper-cuboid can be eliminated safely; otherwise
subdivide the hyper-cuboid into 64 sub-hyper-cuboids. Re-
peat this process until the desired accuracy is reached (see
Fig.4 (c) for a 2D slice of this process). Our algorithm is
described in details below:

(1) (Preparation) Build a Hexagram-64-tree data structure,
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Fig.4 (a) Inthe 2D space, the region is subdivided into four sub-regions,
4 sub-nodes are derived from one node. (b) In the 3D space, the region is
subdivided into two 8-region, 8 sub-nodes are derived from one node. (c) A
2D slice of the branch-and-bound process. The black circles indicate the
g-balls. During a branch-and-bound process, the light gray (Box1) can be
safely removed as its volume is contained entirely inside its &-ball, but the
charcoal gray (Box2) deserves further subdivision.

each node of which is a hyper-cuboid in the 6D space.
At the very beginning there is only one hyper-cuboid
which circumscribes the hyper-ball. Each hyper-
cuboid has an associated e-hyper-ball. Radii of these
hyper-ball are initially set to 0, € = 0. The center
point x of hyper-cuboid is a 6D vector, each compo-
nent of vector is the mean value of the upper bound and
lower bound along the six directions. Make a rough es-
timate of the transformation by any available method
(e.g., even a random guess). Denote the best function
value obtained so far as f*. Make a proper estimate to
the Lipschiz constant L. The desired accuracy is set to
Y.

(2) (Implementation) Do repeated depth-first-search over
the Hexagram 64-tree. For each node:

a. Calculate a transformation matrix Q(R,T) using
the center of point x the hyper-cuboid.

b. Calculate the best permutation matrix P for given
QO(R, T) by using the Hungarian algorithm. Output
the current function f(x) = d;. If f(x) < f*,(f* =
dl*), then update f*; otherwise calculate the radius
of its e-hyper-ball by £ = |f(x) — f(x™)|/L.

c. If the hyper-cuboid is entirely contained in its
own &-hyper-ball, then remove this hyper-cuboid
from Hexagram-64-tree; otherwise, subdivide it
into sixty-four sub-hyper-cuboids and insert these
sub-hyper-cuboids at the current position in the
Hexagram-64-tree. With the transformation ma-
trix and Hungarian Algorithm, the optimal R, T
and P so far is derived.

d. Stop the search when f* < y.

(3) Report the center x,,; of one of the remaining hyper-
cuboids that produces the least function value as the
optimal Q,;(R, T), and the corresponding permutation
P, as the optimal correspondences. End.

3. Experimental Setup

In the first experiment, 20 fresh frozen knees of pigs were
used for the study. For each knee, 15 toothpicks made
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Fig.5 (a) Pig knee. 15 toothpicks were inserted into the femur surface
through the cartilage. 15 mark points of registration per pig knee are used
for testing the registration accuracy. (b) MR image of pig knee. 15 points
of toothpicks can be identified in the MR images. Four mark points on the
femur surface (arrows) are shown.

Fig.6  Sagittal MR image of the knee joint in 47-year-old female patient.
Eight mark points (arrows) were selected for evaluating the registration ac-
curacy. The coordinates of landmarks was determined by using the method
proposed by Mountney et al. [12]. A single person repeated this six times
over three weeks and results were averaged to give a 3D location for the
landmark. A radiologist confirmed the landmark selection.

of bamboo were inserted into the femur surface through
the cartilage Fig.5 (a). Each knee with toothpick markers
was scanned twice Fig.5(b). In the second experiment,
15 knees of patients with borderline to mild OA (51.2+6.3
years) were imaged twice over 3 months (Fig. 6). As shown
in Fig.5, 8 mark points were selected for evaluating the
registration accuracy. The coordinates of landmarks was
determined by using the method proposed by Mountney
et al. [12]. A single person repeated this six times over three
weeks and results were averaged to give a 3D location for
the landmark. A radiologist confirmed the landmark selec-
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tion.

All MR imaging was performed on a 1.5-T MR system
(Horizon, General Electric). Image parameters were as fol-
lows: TR/TE, 24.4/5.7 ms; flip angle, 20°; section thickness,
0.56 mm; in-plane resolution, 0.562 mmx0.562 mm; image
direction, sagittal.

Segmentation of the femur surface was performed
semi-automatically using a combination of threshold and
manual editing of the segmented region. After segmentation
of two femur surfaces (two time-points), each femur surface
is composed of the cloud of points.

4. Experimental Results

We compare the registration performances of the four ap-
proaches on the animal data and clinical data. The four ap-
proaches are respectively described as follows:

1) ICP: The ICP algorithm is the most widely used regis-
tration technique [4].

2) EM-ICP: A number of approaches have been devoted
to increase the robustness of ICP. The EM-ICP algo-
rithm is probably the most popular among those ap-
proaches [5].

3) Genetic: The ICP and improved ICP algorithms are
the most common registration method used, and the
results provided by authors are very good. However,
these methods present problems of convergence, lots
of iterations are required, and in some cases the algo-
rithms converge to a local minimum. Some authors
presented dynamic genetic algorithms to avoid local
minima which is a common problem in registration, es-
pecially when the initial motion is not provide [6].

4) Proposed: The main problem of the genetic algorithm
is the time required to converge. Thus, we propose
a global algorithm that simultaneously determines the
translation and rotation. Our algorithm is based on the
rigorous mathematical theory-Lipschitz optimization.

4.1 Accuracy Tests

We evaluate the registration accuracy based on the concept
of target registration error using fiducial markers in the an-
imal experiment and using the landmarks in the experiment
of clinical data. For each of the 20 selected pig knees, two
sets of femur surfaces of 12272 points are registered. Also,
the accuracy of registration is evaluated by measuring the
root mean square distance (RMSD) error of 15 mark points
between two femur surfaces (two time-points). In the ex-
periment using clinical data, two sets of chosen femur sur-
faces of 25036 points per knee are registered; the accuracy
of registration is evaluated by measuring the RMSD error of
8 landmarks as well.

Figure 7 shows the RMSD error using 20 knees of
pigs for each of four different registration methods. The
results using 15 knees of patient for each of four dif-
ferent methods are shown in Fig.8. Also, the aver-



CHENG et al.: 3D MR IMAGE REGISTRATION AND ITS EVALUATION

—v—1ICcP
—&— EM-ICP
—O— Genetic
141 —=&— Proposed

RMSD error (mm)

Data

Fig.7  Root mean square distance (RMSD) for each of four different reg-
istration approaches using 20 knees of pigs. For each of 20 knees, the
RMSD was estimated using 15 corresponding image points belonging to
both femur surfaces.
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Fig.8 Root mean square distance (RMSD) for each of four registration
approaches using 15 knees of patient. For each of 15 knees, the RMSD was
estimated using 8 corresponding image points belonging to both surfaces.
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—Jem-icp
—
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0.9

0.8

Pig Knees Patient Knees

Fig.9 The average RMSD and its standard deviation (SD) for each of
our registration approaches Left: The results using 20 knees of pigs; right:
the results using 15 knees of patients.

age RMSD and its standard deviation (SD) were cal-
culated for each registration method, and displayed in
Fig.9. In the animal experiment, the average RMSD
was 1.22+0.10mm (SD) (range, 1.03—1.39 mm) by ICP
method, 1.12+0.10 mm (range, 0.94-1.27 mm) by EM-ICP
method, 1.00+0.06 mm (range, 0.88—1.09 mm) by the ge-
netic method, and 0.93+0.04 mm (range, 0.83—-1.02 mm)
by the proposed method. In the experiment using clinical
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Table1 Experimental results using the pig knees obtained by four regis-
tration methods: The first column reports the 3D clouds of points. The last
three columns report the RMSD, the number of iterations, and the compu-
tation time in seconds (Time).

Points  Method RMSD Ni  Time (s)
ICP 1.39 27 221

1000 EM-ICP 1.35 31 242
Genetic 1.22 39 276

Proposed 1.15 28 229

ICP 1.32 53 1072

5000 EM-ICP 1.28 65 1159
Genetic 1.16 80 1325
Proposed 1.07 56 1097

ICP 1.26 83 9877

10000 EM-ICP 1.22 92 11552
Genetic 1.05 99 12736

Proposed 0.94 87 10325

Table 2 Experimental results using the clinical data obtained by four
registration method.
Points  Method RMSD Ni Time (s)
ICP 1.38 24 180
1000 EM-ICP 1.25 27 201
Genetic 1.21 32 235
Proposed 1.16 25 187
ICP 1.32 49 1037
5000 EM-ICP 1.28 58 1120
Genetic 1.16 76 1287
Proposed 1.06 51 1055
ICP 1.28 78 9120
10000  EM-ICP 1.13 86 10722
Genetic 1.08 95 11973
Proposed 0.97 81 9632

data, the average RMSD is 1.20+0.07 mm (range, 1.12—
1.28mm) by ICP method, 1.09+0.07 mm (range, 0.99-
1.23 mm) by EM-ICP method, 1.01+0.05 mm (range, 0.91—
1.08 mm) by the genetic method, and 0.94+0.05 mm (range,
0.84-1.01 mm) by the proposed method. It can be shown in
Figs. 7-9 that the proposed method was the best among the
four approaches.

4.2  Computation Time

The RMSD errors for four registration methods have been
estimated. The computation time has also been considered,
which might be critical in some applications. Although the
time required is very important, all the methods have been
programmed using Matlab 6.5 in an Intel (R) Core (TM) 2
Duo E6550 computer, 2.33 Ghz, 2 G RAM because we are
only interested in the comparison among the methods and
Matlab guarantees a simple implementation.

Experimental results using the pig knees are summa-
rized in Table 1. The last three columns give the average
RMSD errors, number of iterations and computation time.
Table 2 shows the results using the patient knees. In the
genetic method, the RMSD errors were found to be bet-
ter than the ICP and EM-ICP algorithms, while the com-
putation time greatly increased. The executing time of the
proposed method was considerably smaller compared to the
genetic and EM-ICP methods. Thus, the proposed method
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was highly efficient for computation time in the application
of the 3D point clouds-based registration described above.

5. Discussion

The 3D registration techniques have become an important
tool in medical image processing. They are useful for com-
bining data from different image modalities, comparing spa-
tial distribution patterns between different individuals, and
displaying longitudinal changes in those distribution pat-
terns, particularly in the context of monitoring disease pro-
gression.

Disorder of the knee joint, which is a load-bearing
joint, can cause severe disability in walking. Detection of
subtle physiological and anatomic changes in diseased knee
joints is essential for predicting prognosis of the disease and
planning therapy. Accurate evaluation of changes in lesions
requires precise matching of rotation and translation of MR
images, as well as high in-plane resolution and thin slice
thickness. To this end, we developed a registration method
of serial MR images of knee joints for precise monitoring of
knee joint disease.

Several investigators have already reported on the
changes in cartilage morphology over time[l1],[2],[13],
[14], and a few studies have reported the registration algo-
rithms of 3D cartilage surfaces for detecting local cartilage
morphology changes [15]. Until now, the authors could not
find any report commenting on the registration accuracy of
knee joint in terms of anatomical inspection. In the present
study, we have quantitatively evaluated the accuracy of 3D
femur surface matching using the three widely used regis-
tration approaches, and our proposed approach.

Although the global search algorithm can avoid the lo-
cal minima, this algorithm basically conducts an exhaustive
search. To overcome this, we introduced a “Lipschizization”
process to the objective function. After making the objective
function globally Lipschitzian, global search algorithm was
carried out effectively over the motion space. Moreover, a
coarse registration method base on the principle component
analysis (PCA) was used to reduce the bound to be searched.
The experimental results by the proposed approach demon-
strated the effectiveness for the computation time (see Ta-
bles 1 and 2).

It should be noted that the proposed method is different
from the others such as the ICP algorithm. The ICP algo-
rithm evaluates the correspondence between the two point
sets, estimates the optimum (in the last squares sense) regis-
tration vector, that is, the set of translation and rotation pa-
rameters that lead to the optimum (in the least squares sense)
registration of the two sets and then applies this transforma-
tion to one of the sets. This process is applied repeatedly
until a certain dissimilarity measure (e.g., the mean square
error) becomes smaller than a certain value. On the contrary,
our proposed method obtained the translation and rotation
parameters through searching a 6D space of Euclidean mo-
tions (rotation and translation) simultaneously. Then, this
search is carried out by using a Hyper-cuboid-and-hyper-
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ball (HCnHB) algorithm.

Wachowiak et al.[16] also used the Lipschitzian
method for the registration of 3D medical image. In the Wa-
chowiak’s method, two optimization algorithms (DIRECT
and MDS) were used for optimization problem. DIRECT
(Dividing Rectangles) is a global technique, and the multi-
directional search (MDS) is a local method. Wachowiak’s
method is a trade-off between the global and local optimiza-
tion. DIRECT is a relatively recent algorithm for finding
the global minimum of a multivariate function subject to lin-
ear bounds. It is essentially a Lipschitzian approach, but no
Lipschitz constant needs to be specified. Like the Nelder-
Mead method, MDS use a simplex of n + 1 vertices. A new
simplex is generated at each iteration based on the current
best point, the point attaining the lower function value in the
simplex. Initial vertices are usually chosen as [I, — 1,x1],
where [, is the n X n identity matrix, and —1,x; is column
vector of n — 1’s. Since MDS is an iterative descent algo-
rithm, it requires a good initial estimate in order to converge
to the global minimum. In the present study, we described a
Hyper-cuboid-and-hyper-ball (HCnHB) method for global
optimization. This algorithm is based on the branch-and-
bound method, a well-known technique in global optimiza-
tion. Branch-and-bound technique was adapted for finding
the optimal translation and rotation in the 6D space of Eu-
clidean transformation. Our algorithm (HCnHB) of solving
the mathematical optimization problem guarantees global
optimality.

Current study has developed a 3D global optimization
algorithm for the identification of anatomically correspond-
ing points of the knee femur surface to quantify local carti-
lage thickness changes. Furthermore, the cartilage thickness
must be measured. In the literature on thickness measure-
ment of articular cartilage from MR images, the edge de-
tection method has been widely used for thickness measure-
ment [17],[18]. However, for the articular cartilage with a
small thickness, its measured value is an overestimation rel-
ative to its true thickness. This is due to finite spatial resolu-
tion of imaging scanners and blurring involved in edge de-
tections [18]. To improve the measurement accuracy, Cheng
et al. [19], [20] proposed a method based on a model of the
MR imaging process. Thickness measurement problem was
formulated as the least square fitting of an actual gray-level
profile observed in the MR data set to a modeled gray-level
profile. Their results show that the model-based method
gave thickness measurements with sufficient accuracy.

In the present study, registration of tibia images was not
investigated. We have focused on registration of the femur
because detection of subtle changes in the femur can help
in predicting prognosis of the disease and planning therapy.
However, detection of changes in the tibia is also important
for precise monitoring of knee joint disease [14]. Further
research is needed to use the proposed method for testing
the accuracy of registration around the tibia.
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6. Conclusion

We have presented a technique for the identification of
anatomically corresponding points of the knee femur sur-
faces in the two MR image data sets. The technique can
track local cartilage thickness changes over time. The
present technique is grounded on a mathematical theory -
Lipschitz optimization. Based on this theory, we propose
a global search algorithm that simultaneously determines
the optimal transformation parameters and point correspon-
dences through searching a 6D space of Euclidean motion
vectors (translation and rotation). Compared with the other
three registration approaches (ICP, EM-ICP, and genetic al-
gorithms), the proposed method achieved the highest reg-
istration accuracy on both animal and clinical data. In the
future, we plan to apply our proposed registration method
to track local cartilage thickness changes over time for the
clinical application.
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