LETTER

On Non-overlapping Words

Tetsuo MORIYA ${ }^{\dagger \text { a) }}$ and Itaru KATAOKA ${ }^{\dagger}$, Members

Abstract

SUMMARY Let Q be the set of all primitive words over a finite alphabet having at least two letters. In this paper, we study the language $D(1)$ of all non-overlapping (d-primitive) words, which is a proper subset of Q . We show that $D(1)$ is a context-sensitive langauage but not a deterministic context-free language. Further it is shown that $[D(1)]^{n}$ is not regular for $n \geq 1$. key words: primitive word, non-overlapping word, d-primitive word, context-sensitive, context-free

1. Introduction

The notion of primitivity of words plays a central role in algebraic coding theory and combinatorial theory of words (See [8], [10], [11]). Many studies have been done on context-freeness for the language Q of all primitive words, and furthermore context-freeness for some subsets of Q has been shown in [2], [3], [7].

On the other hand, various research efforts have been done on the langaluge $D(1)$ of all non-overlapping words among subsets of Q. (See, [1], [4], [9], [13], for example.) However there are very few results of $D(1)$ with respect to Chomsky-hierarchy except for [9].

In this paper, we discuss $D(1)$ and related lanaguaes with respect to the Chomsky-hierarchy. In Sect. 2, some basic definition and results are presented. In Sect. 3, we show that $D(1)$ is context-sensitive but not deterministic contextfree. In Sect. 4, we show that $[D(1)]^{n}$ is not regular for $n \geq 1$. For the cases of $n=1$ and $n=2$, the authors have already proved this in [9].

2. Preliminaries

Let Σ be an alphabet consisting of at least two letters. Σ^{*} denotes the free moniod generated by Σ, that is, the set of all finite words over Σ, including the empty word ϵ, and $\Sigma^{+}=$ $\Sigma^{*}-\{\epsilon\}$. For w in $\Sigma^{*},|w|$ denotes the length of w. A language over Σ is a set $L \subseteq \Sigma^{*}$.

For a word $u \in \Sigma^{+}$, if $u=v w$ for some $v, w \in \Sigma^{*}$, then $v(w)$ is called a prefix (suffix) of u, denoted by $v \leq_{p} u$ ($w \leq_{s}$ u, resp.). For a word w, let $\operatorname{Pref}(w)(\operatorname{Suff}(w))$ be the set of all prefixes (suffixes, resp.) of w.

A nonempty word u is called a primitive word if $u=$

[^0]$f^{n}, f \in \Sigma^{+}, n \geq 1$ always implies that $n=1$. Let Q be the set of all primitive words over Σ. A nonempty word u is a non-overlapping word if $u=v x=y v$ for $x, y \in \Sigma^{+}$ always implies that $v=\epsilon$. Let $D(1)$ be the set of all nonoverlapping words over Σ. A word in $D(1)$ is also called a d-primitive word (See [1] and [12]). The comlement of $D(1)$ with respect to Σ^{*} is denoted by $\overline{D(1)}$, that is $\overline{D(1)}=\Sigma^{*}-$ $D(1)$. Define $[D(1)]^{1}=D(1)$ and $[D(1)]^{n}=[D(1)]^{n-1} D(1)$ for $n \geq 2$.

Fact 1: Let $a, b \in \Sigma$, and $n \geq 1$.
(1) For $k_{1}>k_{2} \geq 0, w_{1}=a^{n+k_{1}} b^{n+k_{2}} a^{n} b^{n} \in D(1)$.
(2) For $k_{2}>k_{1} \geq 0, w_{2}=a^{n-k_{1}} b^{n-k_{2}} a^{n} b^{n} \in D(1)$.
(3) For $0<i, j<n$, and $l \geq 0, a^{n+l} b^{i} a^{j} b^{n} a^{n} b^{n} \in D(1)$.
(4) For $0<i, j<n$, and $k \geq 0, a^{n} b^{i} a^{j} b^{n+k} a^{n} b^{n} \in D$ (1)

3. $\quad D(1)$ and $D(1)$ in the Chomsky-hierarchy

In this section, we show that $D(1)$ is context-sensitive but not deterministic context-free.

Proposition 2: $\overline{D(1)}$ is not a context-free language.

Proof.

Suppose that $\overline{D(1)}$ were a context-free language. Then $L=\overline{D(1)} \cap a^{+} b^{+} a^{+} b^{+}=\left\{a^{i} b^{j+k} a^{i+m} b^{j} \mid i \geq 1, j \geq 1, k, m \geq\right.$ $0\}$ would also be a context-free language. We shall prove that L is not context-free using the pumping lemma. (see [5], for example). Let n be an integer sufficient large for L and pick $z=a^{n} b^{n} a^{n} b^{n}$. We may write $z=u v w x y$ subject to the usual constrains $|\nu w x| \leq n$ and $v x \neq \epsilon$. There are several cases to consider, depending where $u v w$ is in z.
(Case 1) $|u v w x| \leq n ; v x \in a^{+}$.
Let $|v x|=k$, where $k>0$. Then $u v^{2} w x^{2} y=a^{n+k} b^{n} a^{n} b^{n}$ is in $D(1)$.
(Case 2) $|u v w|<n<|u v w x|$
Set $|v|=l,|x|=k_{1}+k_{2}, x=a^{k_{1}} b^{k_{2}}$, where $0 \leq l, k_{1}, k_{2}<$ n, and $0<l+k_{1}+k_{2} \leq n$.

Since $k_{1} \neq 0, k_{2} \neq 0$, and $k_{1}, k_{2}<n$, we have $u v^{2} w x^{2} y=a^{n+l} b^{k_{2}} a^{k_{1}} b^{n} a^{n} b^{n}$ is in $D(1)$ by Fact1 (3).
(Case 3) $|u v| \leq n \leq|u v w|$
Set $v=a^{k_{1}}$ and $x=b^{k_{2}}$, where $k_{1}, k_{2} \geq 0$.
If $k_{1} \neq 0$, then $u v^{2} w x^{2} y=a^{n+k_{1}} b^{n+k_{2}} a^{n} b^{n}$ is in $D(1)$ by Fact 1 (1). If $k_{2} \neq 0$, then $u w y=a^{n-k_{1}} b^{n-k_{2}} a^{n} b^{n}$ is in $D(1)$ by Fact 1 (2).
(Case 4) $|u| \leq n<|u v|$
Set $|v|=l_{1}+l_{2},|x|=k, v=a^{l_{1}} b^{l_{2}}$, where $0 \leq l_{1}, l_{2}, k<$ n, and $0<l_{1}+l_{2}+k \leq n$. If $l_{1} \neq 0$, then $u v^{2} w x^{2} y=$
$a^{n} b^{l_{2}} a_{1}^{l_{1}} b^{n+k} a^{n} b^{n} \in D(1)$ by Fact 1 (4). If $l_{1}=0$, then $u w x=$ $a^{n} b^{n-l_{2}-k} a^{n} b^{n} \in D(1)$ by Fact 1 (2).
(Case 5) $n<|u|<2 n$ and $|u v|<2 n$
(5-1) $|u v w x|<2 n ; v w x \in b^{+}$Let $|v|=l,|x|=k$ with $0<$ $l+k \leq n . u w y=a^{n} b^{n-k-l} a^{n} b^{n} \in D$ (1) by Fact 1 (2).
(5-2) $|u v w x|>2 n ; v \in b^{+}$. Let $|v|=l$.
(5-2-1) $|u v w|<2 n$
Set $|x|=k_{1}+k_{2}$, and $x=b^{k_{1}} a^{k_{2}}$, where $k_{1}, k_{2}>0$. We have $u w y=a^{n} b^{n-l-k_{1}} a^{n-k_{2}} b^{n} \in D(1)$.
(5-2-2) $|u v w| \geq 2 n$
Set $|x|=k$, and $x=a^{k}$, where $k>0$. We have $u w y=$ $a^{n} b^{n-l} a^{n-k} b^{n} \in D(1)$.
(Case 6) $n<|u|<2 n$ and $|u v| \geq 2 n$
Let $|x|=k,|v|=l_{1}+l_{2}, v=b^{l_{1}} a^{l_{2}}$. We have that $u w y=a^{n} b^{n-l_{1}} a^{n-l_{2}-k} b^{n}$.
(Case 7) $|u| \geq 2 n$
The argument is symmetric to the above cases. ::
Corollary 3: $D(1)$ is not deterministic context-free.
Proof. The result holds since the class of deterministic context-free languages is closed under complement (See [5].) ::
Proposition 4: $\overline{D(1)}$ is context-sensitive.
Proof. Let M be a Turing machine with an input tape T_{1} and a working tape $T_{2} . M$ operates the following steps for a given word w on T_{1} : Let $|w|=n$.
(1) For $k=1$ to $n / 2, M$ iterates (1.1)-(1.2).
(1.1) M puts the prefix x and suffix y with $|x|=|y|=k$ of w on T_{2}
(1.2) M checks whether x is equal to y; if x is equal to y, then M halts in a state "Yes"; otherwise, M turn back to step
(1.1) (for the next k) again.
(2) M halts in a state "No"

Since the length of a given word w is finite, one needs only $|w|$ space on both of the tapes. Therefore M is a linear bounded automaton which accepts $\overline{D(1)}$.::
Corollary 5: $D(1)$ is context-sensitive.
Proof. The result holds since the class of context-sensitive languages is closed under complement. [6]

4. Regularity of $[D(1)]^{n}$

In this section, we show that $[D(1)]^{n}$ is not regular for $n \geq 1$. First we present some lemmas necessary for the proof of the aimed proposition as follows.
Lemma 6: Let $m \geq 1, x, x^{\prime} \in \Sigma^{+}$with $x^{\prime} \leq_{s} x, u^{\prime}, u$ ", $y \in$ Σ^{*}. For any $u \in D(1)$, if $x^{\prime}(y x)^{m}=u^{\prime} u u^{\prime \prime}$, then $|u| \leq|y x|$.
Proof. Suppose that $|y x|<|u|$.
(Case 1) $u=z x y w$ for some $z, w \in \Sigma^{*}$, with $|z w|>0$. Since $z \leq_{s} y$ and $w \leq_{p} x$, we have that $u=z w v z w$ for some $v \in \Sigma^{*}$. Thus $u \notin D(1)$.
(Case 2) $u=z^{\prime} y x w^{\prime}$ for some $z^{\prime}, w^{\prime} \in \Sigma^{*}$, with $\left|z^{\prime} w^{\prime}\right|>0$. By the same argument as in Case $1, u \notin D(1)$.
(Case 3) $u=y^{\prime} x y "$ for some $y^{\prime} \leq_{s} y$ and some $y^{\prime \prime} \leq_{p} y$.

Since $\left|y^{\prime} y^{\prime \prime}\right|>|y|$, we have that $u=y_{1} v^{\prime} y_{1}$ for some $v^{\prime} \in \Sigma^{*}$ and some $y_{1} \in \operatorname{Pref}\left(y^{\prime}\right) \cap \operatorname{Suf}\left(y^{\prime \prime}\right)-\{\epsilon\}$. Thus $u \notin D(1)$ (Case 4) $u=x^{\prime} y x^{\prime \prime}$ for some $x^{\prime} \leq_{s} x$ and some $x^{"} \leq_{p} x$. By the same argument as in Case $3, u \notin D(1)$. ::

Lemma 7: Let $m \geq 1, r \geq 1, f, f^{\prime} \in \Sigma^{+}$, with $f^{\prime} \leq_{s} f$. If $f^{\prime} f^{m}=u_{1} u_{2} \ldots u_{r}$ with $u_{i} \in D(1), i=1, \ldots, r$, then $\left|u_{i}\right| \leq|f|$.

Proof. Immediate by Lemma 6. ::
Lemma 8: Let $m \geq n \geq 1$. For any $f, f^{\prime} \in \Sigma^{+}$, with $f^{\prime} \leq_{s}$ $f, f^{\prime} f^{m} \notin[D(1)]^{n}$.
Proof. Suppose that $f^{\prime} f^{m} \in[D(1)]^{n}$. Then there exist $u_{1}, \ldots, u_{n} \in D(1)$ such that $f^{\prime} f^{m}=u_{1} \ldots u_{n}$. By Lemma 7 , for $1 \leq i \leq n,\left|u_{i}\right| \leq|f|$. However, $\left|u_{1} \ldots u_{n}\right| \leq n|f| \leq$ $m|f|=\left|f^{m}\right|<\left|f^{\prime} f^{m}\right|$. This shows that $u_{1}, \ldots, u_{n} \in D(1)$ is not true. ::

Lemma 9: For any $f \in D(1), f^{\prime} \in \Sigma^{+}$, with $f^{\prime} \leq_{s} f$ and $n \geq 1, f^{\prime} f^{n} \notin[D(1)]^{n}$.
Proof. Immediate by Lemma 8. ::
Corollary 10: For $k, n \geq 1, m \leq k, a^{m} b^{k}\left(a^{k} b^{k}\right)^{n} \notin[D(1)]^{n}$.
Proof. Put $f=a^{k} b^{k}, f^{\prime}=a^{m} b^{k}$ in Lemma 9. ::
Fact 11: For $k \geq 1, a^{k+1} b^{k} a^{k} b^{k} \in D(1)$. :
Proposition 12: For $n \geq 1,[D(1)]^{n}$ is not regular.
Proof. By Fact 11, $x=\left(a^{k+1} b^{k} a^{k} b^{k}\right)\left(a^{k} b^{k}\right)^{n-1}=$ $a^{k+1} b^{k}\left(a^{k} b^{k}\right)^{n} \in[D(1)]^{n}$, since $a^{k} b^{k} \in D(1)$.

Let k be the integer in the Pumping Lemma.
Then the word x can be written as $u v w$ for some $u, w \in$ $\Sigma^{*}, v \in \Sigma^{+}$. Since $|u v| \leq k, u v$ is in a^{+}. Moreover, we have that $u w$ is in $[D(1)]^{n}$ by the pumping lemma. However, since $u w=a^{m} b^{k}\left(a^{k} b^{k}\right)^{n}$ for some $m \leq k, u w$ is not in $[D(1)]^{n}$ by Corollary 10. This is a contradiction. ::
Concluding Remark 1: We proved that $D(1)$ is contextsensitive but not deterministic context-free. The following problem is still unsolved.
"Is $D(1)$ context-free ?"

References

[1] C.-M. Fan, H.J. Shyr, and S.S. Yu, "D-words and d-languages," Acta Informatica, vol.35, pp.709-727, 1998.
[2] P. Domosi, S. Horvath, and M. Ito, "Formal languages and primitive words," Publ. Math. Debrecen, vol.42, no.3-4, pp.315-321, 1993.
[3] P. Domosi, S. Horvath, M. Ito, L. Kazonyi, and M. Katsura, "Formal languages consisting of primitive words," Lect. Notes Comput. Sci., vol.710, pp.194-203, 1993.
[4] S.C. Hsu, M. Ito, and H.J. Shyr, "Some properties of overlapping order and related languages," Soochow J. Mathematics, vol.15, pp.2945, 1989.
[5] J.E. Hopcroft, R. Motwani, and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison Wesley Longman, 2001.
[6] N. Immerman, "Nondeterministic space is closed under complementation," SIAM, J. Comput., vol.17, no.5, pp.935-938, Oct. 1998.
[7] L. Kaszonyi and M. Katsura, "On the context-freeness of class of
primitive words," Publ. Math. Debrecen vol.51, no.1-2, pp.1-11, 1997.
[8] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
[9] I. Kataoka and T. Moriya, "D-primitive words and D(1)concatenated words," IEICE Trans. Inf. \& Syst., vol.E92-D, no.8, pp.1557-1579, Aug. 2009.
[10] R.C. Lyndon and M.P. Shützenberger, "The equation $a^{M}=b^{N} c^{P}$ in
a free group," Michigan Math. J., vol.9, pp.289-298, 1962.
[11] H.J. Shyr, "Disjunctive languages and codes," Proc. FCT77, Lect. Notes Comput. Sci., vol.56, pp.171-176, Springer, Berlin, 1977.
[12] H.J. Shyr, Free monoids and languages, Hon Min Book Company, Taichung, Taiwan, 2001.
[13] Z. Li and Y.S. Tsai, "Three-element codes with one d-primitive word," Acta Informatica, vol.41, no.2/3, pp.171-180, 2004.

[^0]: Manuscript received July 16, 2010.
 Manuscript revised October 28, 2010.
 ${ }^{\dagger}$ The authors are with the School of Science and Engineering, Kokushikan University, Tokyo, 154-8515 Japan.
 a) E-mail: moriya@ kokushikan.ac.jp

 DOI: 10.1587/transinf.E94.D. 707

