Description Description Description Constant Sector Const

SUMMARY Let Q be the set of all primitive words over a finite alphabet having at least two letters. In this paper, we study the language D(1) of all non-overlapping (d-primitive) words, which is a proper subset of Q. We show that D(1) is a context-sensitive language but not a deterministic context-free language. Further it is shown that $[D(1)]^n$ is not regular for $n \ge 1$.

key words: primitive word, non-overlapping word, d-primitive word, context-sensitive, context-free

1. Introduction

The notion of primitivity of words plays a central role in algebraic coding theory and combinatorial theory of words (See [8], [10], [11]). Many studies have been done on context-freeness for the language Q of all primitive words, and furthermore context-freeness for some subsets of Q has been shown in [2], [3], [7].

On the other hand, various research efforts have been done on the langaluge D(1) of all non-overlapping words among subsets of Q. (See, [1], [4], [9], [13], for example.) However there are very few results of D(1) with respect to Chomsky-hierarchy except for [9].

In this paper, we discuss D(1) and related lanaguaes with respect to the Chomsky-hierarchy. In Sect. 2, some basic definition and results are presented. In Sect. 3, we show that D(1) is context-sensitive but not deterministic contextfree. In Sect. 4, we show that $[D(1)]^n$ is not regular for $n \ge 1$. For the cases of n = 1 and n = 2, the authors have already proved this in [9].

2. Preliminaries

Let Σ be an alphabet consisting of at least two letters. Σ^* denotes the free moniod generated by Σ , that is, the set of all finite words over Σ , including the empty word ϵ , and $\Sigma^+ = \Sigma^* - \{\epsilon\}$. For *w* in Σ^* , |w| denotes the length of *w*. A *language* over Σ is a set $L \subseteq \Sigma^*$.

For a word $u \in \Sigma^+$, if u = vw for some $v, w \in \Sigma^*$, then v(w) is called a *prefix (suffix)* of u, denoted by $v \leq_p u$ ($w \leq_s u$, *resp.*). For a word w, let *Pref*(w) (*Suff*(w)) be the set of all prefixes (suffixes, resp.) of w.

A nonempty word *u* is called a *primitive word* if u =

Manuscript received July 16, 2010.

[†]The authors are with the School of Science and Engineering, Kokushikan University, Tokyo, 154–8515 Japan.

a) E-mail: moriya@kokushikan.ac.jp

DOI: 10.1587/transinf.E94.D.707

Tetsuo MORIYA^{†a)} and Itaru KATAOKA[†], Members

 f^n , $f \in \Sigma^+$, $n \ge 1$ always implies that n = 1. Let Q be the set of all primitive words over Σ . A nonempty word uis a *non-overlapping word* if u = vx = yv for $x, y \in \Sigma^+$ always implies that $v = \epsilon$. Let D(1) be the set of all nonoverlapping words over Σ . A word in D(1) is also called a *d-primitive word* (See [1] and [12]). The comlement of D(1)with respect to Σ^* is denoted by $\overline{D(1)}$, that is $\overline{D(1)} = \Sigma^* -$ D(1). Define $[D(1)]^1 = D(1)$ and $[D(1)]^n = [D(1)]^{n-1}D(1)$ for $n \ge 2$.

Fact 1: Let $a, b \in \Sigma$, and $n \ge 1$. (1) For $k_1 > k_2 \ge 0$, $w_1 = a^{n+k_1}b^{n+k_2}a^nb^n \in D(1)$. (2) For $k_2 > k_1 \ge 0$, $w_2 = a^{n-k_1}b^{n-k_2}a^nb^n \in D(1)$. (3) For 0 < i, j < n, and $l \ge 0$, $a^{n+l}b^ia^jb^na^nb^n \in D(1)$. (4) For 0 < i, j < n, and $k \ge 0$, $a^nb^ia^jb^{n+k}a^nb^n \in D(1)$.

3. D(1) and D(1) in the Chomsky-hierarchy

In this section, we show that D(1) is context-sensitive but not deterministic context-free.

Proposition 2: $\overline{D(1)}$ is not a context-free language.

Proof.

Suppose that $\overline{D(1)}$ were a context-free language. Then $L = \overline{D(1)} \cap a^+b^+a^+b^+ = \{a^i b^{j+k} a^{i+m} b^j | i \ge 1, j \ge 1, k, m \ge 0\}$ would also be a context-free language. We shall prove that *L* is not context-free using the pumping lemma. (see [5], for example). Let *n* be an integer sufficient large for *L* and pick $z = a^n b^n a^n b^n$. We may write z = uvwxy subject to the usual constrains $|vwx| \le n$ and $vx \ne \epsilon$. There are several cases to consider, depending where uvw is in *z*.

(Case 1) $|uvwx| \le n$; $vx \in a^+$.

Let |vx| = k, where k > 0. Then $uv^2wx^2y = a^{n+k}b^na^nb^n$ is in D(1).

(Case 2) |uvw| < n < |uvwx|

Set |v| = l, $|x| = k_1 + k_2$, $x = a^{k_1}b^{k_2}$, where $0 \le l, k_1, k_2 < n$, and $0 < l + k_1 + k_2 \le n$.

Since $k_1 \neq 0$, $k_2 \neq 0$, and $k_1, k_2 < n$, we have $uv^2wx^2y = a^{n+l}b^{k_2}a^{k_1}b^na^nb^n$ is in D(1) by Fact1 (3). (Case 3) $|uv| \leq n \leq |uvw|$

Set $v = a^{k_1}$ and $x = b^{k_2}$, where $k_1, k_2 \ge 0$.

If $k_1 \neq 0$, then $uv^2wx^2y = a^{n+k_1}b^{n+k_2}a^nb^n$ is in D(1) by Fact 1 (1). If $k_2 \neq 0$, then $uwy = a^{n-k_1}b^{n-k_2}a^nb^n$ is in D(1) by Fact 1 (2).

(Case 4) $|u| \le n < |uv|$

Set $|v| = l_1 + l_2$, |x| = k, $v = a^{l_1}b^{l_2}$, where $0 \le l_1, l_2, k < n$, and $0 < l_1 + l_2 + k \le n$. If $l_1 \ne 0$, then $uv^2wx^2y = l_1v^2wx^2y = l_2v^2w^2y^2$.

Copyright © 2011 The Institute of Electronics, Information and Communication Engineers

Manuscript revised October 28, 2010.

 $\begin{array}{l} a^{n}b^{l_{2}}a^{l_{1}}b^{n+k}a^{n}b^{n}\in D(1) \text{ by Fact 1 (4). If } l_{1}=0, \text{ then } uwx=\\ a^{n}b^{n-l_{2}-k}a^{n}b^{n}\in D(1) \text{ by Fact 1 (2).}\\ (\text{Case 5) } n<|u|<2n \text{ and } |uv|<2n\\ (5-1) |uvwx|<2n; vwx\in b^{+} \text{ Let } |v|=l, |x|=k \text{ with } 0<\\ l+k\leq n. uwy=a^{n}b^{n-k-l}a^{n}b^{n}\in D(1) \text{ by Fact 1 (2).}\\ (5-2) |uvwx|>2n; v\in b^{+}. \text{ Let } |v|=l.\\ (5-2-1) |uvw|<2n\\ \text{ Set } |x|=k_{1}+k_{2}, \text{ and } x=b^{k_{1}}a^{k_{2}}, \text{ where } k_{1},k_{2}>0. \text{ We}\\ \text{ have } uwy=a^{n}b^{n-l-k_{1}}a^{n-k_{2}}b^{n}\in D(1).\\ (5-2-2) |uvw|\geq 2n\\ \text{ Set } |x|=k, \text{ and } x=a^{k}, \text{ where } k>0. \text{ We have } uwy=a^{n}b^{n-l-k_{1}}a^{n-k_{2}}b^{n}\in D(1).\\ (\text{ Case 6) } n<|u|<2n \text{ and } |uv|\geq 2n\\ \text{ Let } |x|=k, |v|=l_{1}+l_{2}, v=b^{l_{1}}a^{l_{2}}. \text{ We have that } \end{array}$

Let |x| = k, $|v| = l_1 + l_2$, $v = b^n a^{r_2}$. We have that $uwy = a^n b^{n-l_1} a^{n-l_2-k} b^n$. (Case 7) $|u| \ge 2n$

The argument is symmetric to the above cases. ::

Corollary 3: D(1) is not deterministic context-free.

Proof. The result holds since the class of deterministic context-free languages is closed under complement (See [5].) ::

Proposition 4: $\overline{D(1)}$ is context-sensitive.

Proof. Let *M* be a Turing machine with an input tape T_1 and a working tape T_2 . *M* operates the following steps for a given word *w* on T_1 : Let |w| = n.

(1) For k = 1 to n/2, *M* iterates (1.1)–(1.2).

(1.1) *M* puts the prefix *x* and suffix *y* with |x| = |y| = k of *w* on T_2

(1.2) *M* checks whether *x* is equal to *y*; if *x* is equal to *y*, then *M* halts in a state "Yes"; otherwise, *M* turn back to step (1.1) (for the next k) again.

(2) *M* halts in a state "No"

Since the length of a given word *w* is finite, one needs only |w| space on both of the tapes. Therefore *M* is a linear bounded automaton which accepts $\overline{D(1)}$. ::

Corollary 5: D(1) is context-sensitive.

Proof. The result holds since the class of context-sensitive languages is closed under complement. [6]

4. Regularity of $[D(1)]^n$

In this section, we show that $[D(1)]^n$ is not regular for $n \ge 1$. First we present some lemmas necessary for the proof of the aimed proposition as follows.

Lemma 6: Let $m \ge 1$, $x, x' \in \Sigma^+$ with $x' \le_s x, u', u'', y \in \Sigma^*$. For any $u \in D(1)$, if $x'(yx)^m = u'uu''$, then $|u| \le |yx|$.

Proof. Suppose that |yx| < |u|.

(Case 1) u = zxyw for some $z, w \in \Sigma^*$, with |zw| > 0. Since $z \leq_s y$ and $w \leq_p x$, we have that u = zwvzw for some $v \in \Sigma^*$. Thus $u \notin D(1)$.

(Case 2) u = z'yxw' for some $z', w' \in \Sigma^*$, with |z'w'| > 0. By the same argument as in Case 1, $u \notin D(1)$.

(Case 3) u = y'xy" for some $y' \leq_s y$ and some $y'' \leq_p y$.

Since |y'y''| > |y|, we have that $u = y_1v'y_1$ for some $v' \in \Sigma^*$ and some $y_1 \in Pref(y') \cap Suf(y'') - \{\epsilon\}$. Thus $u \notin D(1)$ (Case 4) u = x'yx'' for some $x' \leq_s x$ and some $x'' \leq_p x$. By the same argument as in Case 3, $u \notin D(1)$. ::

Lemma 7: Let $m \ge 1$, $r \ge 1$, $f, f' \in \Sigma^+$, with $f' \le_s f$. If $f'f^m = u_1u_2...u_r$ with $u_i \in D(1)$, i = 1,...,r, then $|u_i| \le |f|$.

Proof. Immediate by Lemma 6. ::

Lemma 8: Let $m \ge n \ge 1$. For any $f, f' \in \Sigma^+$, with $f' \le s$ $f, f'f^m \notin [D(1)]^n$.

Proof. Suppose that $f'f^m \in [D(1)]^n$. Then there exist $u_1, \ldots, u_n \in D(1)$ such that $f'f^m = u_1 \ldots u_n$. By Lemma 7, for $1 \le i \le n$, $|u_i| \le |f|$. However, $|u_1 \ldots u_n| \le n|f| \le m|f| = |f^m| < |f'f^m|$. This shows that $u_1, \ldots, u_n \in D(1)$ is not true. ::

Lemma 9: For any $f \in D(1), f' \in \Sigma^+$, with $f' \leq_s f$ and $n \geq 1, f'f^n \notin [D(1)]^n$.

Proof. Immediate by Lemma 8. ::

Corollary 10: For $k, n \ge 1, m \le k, a^m b^k (a^k b^k)^n \notin [D(1)]^n$.

Proof. Put $f = a^k b^k$, $f' = a^m b^k$ in Lemma 9. ::

Fact 11: For $k \ge 1$, $a^{k+1}b^k a^k b^k \in D(1)$. ::

Proposition 12: For $n \ge 1$, $[D(1)]^n$ is not regular.

Proof. By Fact 11, $x = (a^{k+1}b^k a^k b^k)(a^k b^k)^{n-1} = a^{k+1}b^k(a^k b^k)^n \in [D(1)]^n$, since $a^k b^k \in D(1)$.

Let *k* be the integer in the Pumping Lemma.

Then the word x can be written as uvw for some $u, w \in \Sigma^*$, $v \in \Sigma^+$. Since $|uv| \le k$, uv is in a^+ . Moreover, we have that uw is in $[D(1)]^n$ by the pumping lemma. However, since $uw = a^m b^k (a^k b^k)^n$ for some $m \le k$, uw is not in $[D(1)]^n$ by Corollary 10. This is a contradiction. ::

Concluding Remark 1: We proved that D(1) is contextsensitive but not deterministic context-free. The following problem is still unsolved.

"Is D(1) context-free ?"

References

- C.-M. Fan, H.J. Shyr, and S.S. Yu, "D-words and d-languages," Acta Informatica, vol.35, pp.709–727, 1998.
- [2] P. Domosi, S. Horvath, and M. Ito, "Formal languages and primitive words," Publ. Math. Debrecen, vol.42, no.3-4, pp.315–321, 1993.
- [3] P. Domosi, S. Horvath, M. Ito, L. Kazonyi, and M. Katsura, "Formal languages consisting of primitive words," Lect. Notes Comput. Sci., vol.710, pp.194–203, 1993.
- [4] S.C. Hsu, M. Ito, and H.J. Shyr, "Some properties of overlapping order and related languages," Soochow J. Mathematics, vol.15, pp.29– 45, 1989.
- [5] J.E. Hopcroft, R. Motwani, and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison Wesley Longman, 2001.
- [6] N. Immerman, "Nondeterministic space is closed under complementation," SIAM, J. Comput., vol.17, no.5, pp.935–938, Oct. 1998.
- [7] L. Kaszonyi and M. Katsura, "On the context-freeness of class of

primitive words," Publ. Math. Debrecen vol.51, no.1-2, pp.1–11, 1997.

- [8] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
- [9] I. Kataoka and T. Moriya, "D-primitive words and D(1)concatenated words," IEICE Trans. Inf. & Syst., vol.E92-D, no.8, pp.1557–1579, Aug. 2009.
- [10] R.C. Lyndon and M.P. Sh*ü*tzenberger, "The equation $a^M = b^N c^P$ in

a free group," Michigan Math. J., vol.9, pp.289–298, 1962.

- [11] H.J. Shyr, "Disjunctive languages and codes," Proc. FCT77, Lect. Notes Comput. Sci., vol.56, pp.171–176, Springer, Berlin, 1977.
- [12] H.J. Shyr, Free monoids and languages, Hon Min Book Company, Taichung, Taiwan, 2001.
- [13] Z. Li and Y.S. Tsai, "Three-element codes with one d-primitive word," Acta Informatica, vol.41, no.2/3, pp.171–180, 2004.