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Efficient Discovery of Highly Interrelated Users in One-Way

Communications

Jihwan SONG ', Student Member, Deokmin HAAM', Yoon-Joon LEE',

SUMMARY In this paper, we introduce a new sequential pattern, the
Interactive User Sequence Pattern (IUSP). This pattern is useful for group-
ing highly interrelated users in one-way communications such as e-mail,
SMS, etc., especially when the communications include many spam users.
Also, we propose an efficient algorithm for discovering IUSPs from mas-
sive one-way communication logs containing only the following informa-
tion: senders, receivers, and dates and times. Even though there is a dif-
ficulty in that our new sequential pattern violates the Apriori property, the
proposed algorithm shows excellent processing performance and low stor-
age cost in experiments on a real dataset.
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1. Introduction

Recently, various one-way communication services (e.g., e-
mail, SMS) have been used in connection with crime. To
prevent, investigate, detect, or prosecute serious crimes that
use such services, law enforcement agencies (e.g., police,
FBI) are legally permitted to access electronic records of
the communications, often called logs. The logs usually
include senders, receivers, dates and times, and locations;
however, communication content is excluded owing to pri-
vacy or technical issues®. Unfortunately, the process of man-
ual log analysis is both time-consuming and labor-intensive
because logs are usually massive and, moreover, include a
lot of meaningless information generated by spam users.

To effectively find highly interrelated users from mas-
sive one-way communication logs, we introduce a new
sequential pattern, the Interactive User Sequence Pattern
(IUSP). First, an Interactive User Sequence (IUS) is a se-
quence of users that communicate interactively; for exam-
ple, supposing a user A sent a message to a user B and then
B back to A, a user sequence (AB) can be formed from the
interactive communication between A and B. (The formal
definitions with the time constraints and more details are
given in Sect.2.) The sequence (AB) is called an IUS. As
shown Fig. 1 (a), if an IUS is derived from frequent interac-
tive communications, it is called an [IUSP. Here, frequent in-
teractive communications mean that the frequency of com-
munication is greater than or equal to a user-specified value.
Generally, users included in an IUSP can be considered to be
highly interrelated because frequent interactive communica-
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Fig.1  Examples of (a) an IUSP (AB) derived from frequent interactive
communications, (b) non-interactive (unilateral) communication, and (c)
the Apriori property violation for IUSs.

tions between users indicates the close relationship of those
users. In contrast, if a user unilaterally sends messages to
others, as shown Fig. 1 (b), the recipients can hardly be said
to be highly interrelated to the sender. Typical examples of
this scenario are email or SMS spams; i.e., most users get-
ting spam messages ignore them and might not reply to the
spam senders.

However, most existing sequential pattern mining algo-
rithms [1]-[5] may not be able efficiently to discover IUSPs
from the massive logs because the downward-closure prop-
erty of sequential patterns, a.k.a. the Apriori property™,
does not hold for IUSs. In general, the Apriori property
violation causes performance degradation because the exist-
ing algorithms directly or indirectly use the property to in-
crease their performance. Figure 1 (c) shows an example of
the Apriori property violation for IUSs. Depending on the
counting scheme of applications, the IUS (ABC) has from
at least one to at most four interactive communications; i.e.,
at most, it can be derived from the following four interactive
communications: A 2! B2 C, A2, B2} C,A2B
<:>43‘ C,and A ;’é B <:>i C. (Here, u; <:>2 Uy means u; sent
a message to up at time #; and then u, back to u; at time
t;.) However, the IUS (BC), the sub-sequence of (ABC),
has only one interactive communication B <:>i C. Hence,
the Apriori property does not always hold for IUSs.

In this paper, we propose an efficient algorithm, the
IUSPMiner, for discovering IUSPs from a massive one-way
communication log. To improve performance, our algorithm
reduces search space by pruning infrequent interactive com-
munications of IUSs that do not violate the Apriori prop-
erty in the middle of the process. To do this, IUSPMiner,
first, finds some part that may cause a violation of the Apri-

“EU: Data Retention Directive (Directive 2006/24/EC); UK:
Anti-Terrorism, Crime and Security Act 2001.

“*If a sequence is frequent, then all of its sub-sequences must
also be frequent.
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ori property; then, the interactive communications related to
the violation part are protected from being pruned. This is
because IUSs derived from protected interactive communi-
cations may violate the Apriori property. Our performance
study over a real dataset shows that [IUSPMiner outperforms
the Depth-First-Search (DFS)-based IUSPMiner, which is
a variation of a DFS-based sequential pattern mining algo-
rithm to discover IUSPs. Note that DFS-based sequential
pattern mining algorithms such as PrefixSpan [4] show the
best performance in many general cases.

2. Interactive User Sequence Patterns

This section formally defines an IUSP and its related termi-
nology. First, a communication event, denoted by (u;, uj, t,),
consists of two distinct users #; and u; and a date and time
t,, which means u; sent a message to u; at t,. A commu-
nication log is a set of communication events and can be
represented in the text-based (left) or graphic-based (right)
form, as shown in Fig. 2 (a).

An Interactive Communication Pair (ICP) p, denoted
by (u;,uj,ty,t,), means a pair of communication events
(ui, uj, t,,) and (uj, u;, t,) such that 0 < 7, — t,, < W,,,,. Here,
u; denoted by SRC(p), u; by DST(p), t,, by ST(p), and 1,
by ET(p) are called the source, destination, starting time,
and ending time of p, respectively. Also, t, — t,, denoted
by RT(p) and [t,,, t,] by T1(p) mean the response time and
time interval of p, respectively. Especially, W, is a user-
specified maximum response deadline; i.e., we assume that
the two communication events (A, B, ;) and (B, A, 1,) are to-
tally unrelated to each other if |t; — 71| > W,y4y. For Wy, =
20, Fig.2 (b) shows all ICPs in the communication log of
(a).

An Interactive Communication Sequence (ICS), de-
noted by (po p1 ...pn-1), is a sequence of n ICPs
Pos Pls --vs Pn-1 such that (1) DST(p;) = SRC(pi+1),
(2) SRC(py) ¢ Uj—h ISRC(p} U ADST(p,-1)), (3)
TI1(p;) completely includes T1(p;s1), and (4) RT(p;) <
UpperRespDeadLine(p;+1) + a, where RT (p,-1) < a and
UpperRespDeadLine(p) = a X [@'I. Here, a is a

user-specified two-party response deadline; i.e., we as-
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Fig.2 (a) a communication log: text-based (left) and graphic-based
(right) representation, (b) ICPs, (c) ICSs, and (d) IUSs and their corre-
sponding supports.
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sume p; and p;y; are related to each other if RT(p;) <
UpperRespDeadLine(p;+1) + «, where RT(p,-1) < «a.
When a = 5, all ICSs from the ICPs of (b) are shown in
Fig.2(c).

Lastly, an Interactive User Sequence (IUS), denoted by
(up uy ...uy—1), is a sequence of n users ug, Uy, ..., Up_|
such that at least one ICS (py p; ...pn—2) exists, where
SRC(po) = up, SRC(p1) = uy, ..., SRC(pp-2) = uy-2,
and DST(p,—2) = u,—1. Since an IUS can be derived from
one or more ICSs, the frequency of an IUS is defined as the
number of its ICSs; i.e., the frequency of an IUS u, denoted
by Freq(u), is k if u is derived from k ICSs. An Interac-
tive User Sequence Pattern (IUSP) is an IUS u such that
Freq(u) > minsup. Here, minsup is a user-specified mini-
mum support. Figure 2 (d) shows all IUSs in the ICSs of (c)
with their frequencies. (The number after the “:” sign indi-
cates the frequency of corresponding IUSs.) If minsup = 3,
IUSs (C D), (B C D), and (A B C D) become IUSPs, since
only these IUSs have three or more ICSs.

3. IUSP Mining

We propose an algorithm, the JUSPMiner, to efficiently dis-
cover IUSPs from the massive communication log. TUSP-
Miner consists of three phases: (1) Overlap Detection, (2)
ICSFrag Protection, and (3) IUSP Generation.

3.1 Overlap Detection

The first phase is to detect overlaps between ICPs, which
are likely to cause violations of the Apriori property. First,
the algorithm finds all the ICPs from the given communica-
tion log and then divides them into groups called ICPGroups
according to their response times. Given W,,,, and @, n ICP-
Groups, go, &1, ---» &u-1, are created such that g; has ICPs
whose response times are between interval (iX «, (i+ 1) X a],
where n = [Wm‘“] Here, i is called a group number of g;,
denoted by GN(p), where p € g;. After the ICP discov-
ery, the algorithm finds overlaps between ICPs. As shown
in Fig. 3, two ICPs p and p’ overlap one another if the fol-
lowing conditions hold: (1) T1(p) overlaps with TI(p’), (2)
SRC(p) = SRC(p’) and DST(p) = DST(p"), 3) IGN(p) -
GN(p)| < 1, and (4) MAX(GN(p),GN(p’)) > 0. For
each of the overlaps between ICPs p and p’, the algorithm
forwards a tuple (o, M, d) called ICP Overlap Information
(IOInfo) to the next phase, where o is an overlapped time
interval (OTI) [Max(ST(p),ST(p")), Min(ET (p), ET(p"))],
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Fig.3  Overlaps between ICPs, where |GN(p) —
MAX(GN(p),GN(p’)) > 0.

GN(p’)l < 1 and



716

D 0

A

Overlap

7 : I
ho
Protected

Fig.4 A protected ICSFrag (u; up u3 us) when ICPs (ug, uy, 1, t9) and
(uo, uy,t2,t10) overlap one another.

M is MAX(GN(p),GN(p’)), and d is DST(p) or DST(p’).
3.2 ICSFrag Protection

In the second phase, the algorithm protects some ICS frag-
ments (ICSFrags) using the [OInfo forwarded from the
first phase. Here, ICSFrags can be part of ICSs if sev-
eral conditions hold, and, particularly, ICSs including pro-
tected 1CSFrags are likely to cause Apriori property viola-
tion. Suppose that g; is a non-empty ICPGroup, an ICS-
Frag f is an ordered list of ICPs, {po pi ...pn-1), Where
pj € gi, if the following conditions hold: (1) n = 1 or (2)
n>1,DST(p;) = SRC(ij) T1(p;) completely includes
TI(pj.1). and SRC(p;) & Ui=!, | (SRC(pi)} U (DS T (py-1)}.
Here, py is denoted by FirstICP(f) and i is called a group
number of G;, denoted by GN(f), where f € G;. First, the
algorithm finds all ICSFrags from each of the non-empty
ICPGroups and then divides them into groups called /CS-
FragGroups according to their origins; i.e., ICSFragGroup
G; has only the ICSFrags discovered from ICPGroup g;. Af-
ter the discovery of ICSFrags, as shown Fig. 4, for each tuple
(0, M, d) of all IOInfo, the algorithm protects an ICSFrag
f such that TI(FirstICP(f)) is completely included in o,
IGN(f) — M| < 1,and d = SRC(FirstICP(f)).

3.3 IUSP Generation

Lastly, the algorithm merges ICSs and ICSFrags to make
new ICSs and derives [USPs from the newly created ICSs, as
shown in Fig. 5. In the figure, [-ICSs and [-ICSFs mean ICSs
and ICSFrags with length /; i.e., they all consist of / ICPs.
First, the algorithm makes 1-ICSs from 1-ICSFrags in ICS-
FragGroup Gy, since 1-ICSFrags themselves in Gy are all 1-
ICSs, that is, they satisfy all the conditions for ICSs. Then,
the algorithm derives 1-IUSs from the 1-ICSs and picks out
TUSPs. At this point, the algorithm prunes unnecessary ICSs
that both are not deduced to IUSPs and do not include pro-
tected ICSFrags, which removal leads to performance im-
provement. To generate I-ICSs (/ > 1), the algorithm merges
J-ICSFrags in G; with (I — j)-ICSs, where 0 < j < [ and
0 < i < MIN(l,m). After generating [-ICSs, the algorithm
derives IUSPs and prunes unnecessary ICSs. This process
is repeated until no more ICSs are newly created. Figure 6
describes the pseudo code of Algorithm IUSP_Generation.
Note that procedure DeriveAndPrune(temp, ResultSet, min-
sup) in Step 21 performs deriving of IUSs and pruning of
unnecessary ICSs as follows: (1) it derives IUSs from temp
that stores ICSs, (2) it adds IUSPs to ResultS et, and (3) it
prunes unnecessary ICSs.
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Fig.5 Merging ICSs and ICSFrags and deriving IUSPs.

Algorithm [USP_Generation

Input:
minsyp: a minimum support threshold
Gy, G, ..., G,,.: ICSFragGroups

Output:
RmultSet a set for [lUSPs

Description:
01: ResultSet < {}, ICSSet < {}
02: /€1

03 s repeat
temp €& ‘;
05: G(e_ne]rale ICSs from [-ICSFrags in G, and add the /-/CSs into temp

07:  while i < MIN(/, m) do
08: ifi </-1 then

10: jwhlle/ <ldo
11: Generate /-/CSs by merging j-ICSFrags in G; with (/- j)-ICSs in ICSSet
12: Add the [-ICSs info temp

erjld wjhlle
else
Generate /-/CSs by merging 1-/CSFrags in G; with (/-1)-ICSs in ICSSet
Add the /-ICSs info temp
end if
i<itl
end while
DeriveAndPrune (temp, ResultSet, minsup)
ICSSet € ICSSet U temp
23: 1< +1
24: until no more newly generated /CSs

1 I bttt it e 1

N
]

Fig.6  IUSP_Generation algorithm.

4. Experiments

In the experiments, we compared IUSPMiner with a Depth-
First-Search (DFS)-based IUSPMiner (DFS-IUSPMiner).
Since no previous work for discovering IUSPs exists, we
made the DFS-IUSPMiner find IUSPs by modifying an ex-
isting sequential pattern mining algorithm based on depth-
first-search, generally following the pattern of the best-
performing algorithm [4] in sequential pattern mining; it
works like a DFS-based sequential pattern mining algorithm
but does not prune any ICSs that are not deduced to IUSPs
because of the Apriori property violation of IUSPs.

We created a real communication log generated from
the Enron e-mail dataset [6], which is a rich source of in-
formation showcasing the internal working of an actual cor-
poration over the period of 1998 to 2002. In the midst of
Enron’s legal troubles in 2002, the Federal Energy Regu-
latory Commission in the United States made the dataset
available to the public. The communication log contain at
most 650,000 communication events as generated from the
information of senders, receivers, and dates and times of
the Enron e-mail dataset between 1 Oct. 2000 and 30 Sep.
2001. To compare the performance of the two algorithms,
we measured their running times and peak memory usages.
All experiments were repeated ten times, and the average
was taken.

First, we present the results of scale-up experiments;
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Fig.7 Running times (left) and peak memory usages (right) with varia-
tion of the size of communication log.
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Fig.8 Running times (left) and peak memory usages (right) with varying
of minsup.

i.e., the number of communication events was increased
thirteen times from 50,000 to 650,000. Here, @ was set to
14,400 s (4 hours), W, to 172,800 s (2 days), and minsup
to 20. Figure 7 shows the running times (left) and peak
memory usages (right) of the two algorithms while vary-
ing the size of the communication log. At 50,000 com-
munication events, both algorithms showed similar perfor-
mance. However, by increasing the number of communica-
tion events, the running time of DFS-IUSPMiner increased
more rapidly than that of [TUSPMiner; for 650,000 commu-
nication events, [USPMiner was about 3.42 times faster than
DFS-IUSPMiner. In the case of peak memory usages of
the two algorithms, [IUSPMiner consumed less memory than
DFS-IUSPMiner. This is because [USPMiner can prune un-
necessary ICSs, whereas DFS-IUSPMiner cannot.

Also, we compared two algorithms with minsup var-
ied from one to thirteen. Here, 650,000 communication
events were used, and « and W,,,, were set to 14,400 s and
172,800, respectively. Figure 8 shows the running times
(left) and peak memory usages (right) of the two algorithms
with varying of minsup. The running time of ITUSPMiner
was decreased as minsup increased while DFS-IUSPMiner
kept similar running times with any minsup. This improve-
ment is because of the protecting and pruning systems of
IUSPMiner. However, the peak memory usages of two al-
gorithms were nearly unchanged.
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From the results so far, we can confirm that IUSPMiner
needed less time and consumed less memory than DFS-
IUSPMiner.

5. Conclusion

This paper introduces a new sequential pattern called an
TUSP to group highly inter-related users in one-way commu-
nications. The distinct characteristic of the new pattern is to
violate the Apriori property. This feature leads to lower per-
formance for existing sequential pattern mining algorithms
for discovering IUSPs, since unnecessary intermediate re-
sults cannot be pruned. Our proposed algorithm IUSPMiner
overcomes this difficulty by protecting part of the Apriori
property violation; i.e., the algorithm prunes unnecessary
intermediate results that both are not deduced to frequent
patterns and do not include protected parts. This new pro-
tecting and pruning strategy yields better performance and
will help other algorithms mine some sequence patterns that
disobey the Apriori property.
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