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3D Face Landmarking Method under Pose and Expression
Variations

Yuan HU†a), Student Member, Jingqi YAN†, Wei LI††, and Pengfei SHI†, Nonmembers

SUMMARY A robust method is presented for 3D face landmarking
with facial pose and expression variations. This method is based on Multi-
level Partition of Unity (MPU) Implicits without relying on texture, pose,
orientation and expression information. The MPU Implicits reconstruct 3D
face surface in a hierarchical way. From lower to higher reconstruction
levels, the local shapes can be reconstructed gradually according to their
significance. For 3D faces, three landmarks, nose, left eyehole and right
eyehole, can be detected uniquely with the analysis of curvature features
at lower levels. Experimental results on GavabDB database show that this
method is invariant to pose, holes, noise and expression. The overall per-
formance of 98.59% is achieved under pose and expression variations.
key words: 3d face, landmark, face localization, MPU

1. Introduction

Automatic face recognition has achieved great progress in
the last two decades. Most of the studies have focused on
2D intensity images, but the performance of 2D face recog-
nition [1] still suffers from pose, illumination, occlusion and
expression variations. The potential of 3D face recogni-
tion [2] to alleviate these limitations is one of the main rea-
sons for the significant attention given to this area. 3D data
contains more geometrical information of shape and size
and is immune to illumination variations. Furthermore, 3D
face data is robust to pose changes.

Face landmarking plays an important part in face
recognition. The most frequently used approach in the de-
tection of 3D facial landmarks is based on curvature anal-
ysis. Gordon [3] presents an accurate analysis of the face
based on curvatures. Moreno [4] segments the faces using
surface curvatures. The idea of curvature segmentation is
also adopted by Colombo [5]. Although curvature analysis
method is robust to translation and rotation, it usually gen-
erates too many candidates for one landmark and does not
work on 3D data with noise, holes and occlusion. However,
3D data obtained from laser scanners usually contain many
holes around eyes, eyebrows, nosewing, hair and so on.

In this paper, we propose a novel robust face landmark-
ing method to identify the location of the nose and eyeholes
in 3D facial mesh data. The proposed algorithms are based
on Multi-level Partition of Unity (MPU) Implicits [4] that
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relax the constraints on feature map thresholding and do not
need the prior knowledge of orientation and pose of the data.
The 3D facial mesh is reconstructed by MPU Implicits in
a hierarchical way and the holes are filled simultaneously.
The curvature analysis is carried out on different level recon-
structed facial surfaces. Candidate regions, including nose
and eyeholes, are isolated using mean and Gaussian curva-
ture features maps that highlight the curvature properties.
This proposed method is invariant to pose, holes, noise and
expression and only one candidate can be detected for one
landmark.

This paper is organized as follows. In Sect. 2, we de-
scribe the method for 3D face landmarking based on hierar-
chical MPU Implicits. Experimental results are presented in
Sect. 3 and Sect. 4 concludes the paper.

2. 3D Face Landmarking Based on MPU Implicits

2.1 MPU Implicits

The multi-level partition of unity implicits surface
(MPU) [6] allows us to construct surface models from very
large sets of points. There are three key ingredients to
MPU: 1) piecewise quadratic functions that capture the local
shape of the surface, 2) weighting functions (the partitions
of unity) that blend together these local shape functions, and
3) an octree subdivision method that adapts to variations in
the complexity of the local shape.

For a bounded domain Ω in a Euclidean space, given
a set of nonnegative compactly supported functions {wi(x)},
an approximation of a function f (x) defined on Ω is given
by:

f (x) =
∑

wi(x)Qi(x)∑
wi(x)

(1)

where, Qi(x) is the local approximation set of functions with
each subdomain.

For approximation purposes we use the quadratic B-
spline b(t) to generate weight functions

wi(x) = b

(
3|x − ci|

2Ri

)
(2)

Given a set of scattered points P equipped with normals
N, we approximate the signed distance function f (x) from
P.

wi(x) =

[
(Ri − |x − ci|)+

Ri|x − ci|
]2

(3)
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where (a)+ =

{
a i f a > 0
0 otherwise

, ci is the center of a cubic

cell that was generated during the subdivision process, and
Ri is a spherical support of radius.

First, we use an octree-based adaptive space subdivi-
sion of Ω to control the error of the approximation while
adapting the complexity of the representation to the com-
plexity of the shape.

Second, we use piecewise quadratic functions resulting
from Boolean operations for the accurate representation of
sharp features. One of three local approximations is used:

(a) A general 3D quadric, which is used to approximate
larger parts of the surface. A local shape function is given
by:

Q(x) = xT Ax + bT x + c (4)

(b) A bivariate quadratic polynomial in local coordi-
nates, which is used to approximate larger parts of the sur-
face. A local shape function is given by:

Q(x) = w − (Au2 + 2Buv +Cv2 + Du + Ev + F) (5)

(c) A piecewise quadric surface that fits an edge or a
corner. For the surface P with an edge, we subdivide P into
two clusters P1 and P2 according to normals. The quadratic
fit procedure is applied separately to P1 and P2 and a non-
smooth local shape function approximate P is constructed
via the max/min Boolean operations. For the surface N with
a corner, we subdivide N into three sets, N1 and N2 are con-
structed as above. For the corners of degree four, the third
cluster is subdivided into two pieces. If the resulting four
clusters of normals correspond to either a convex or con-
cave corner, it is reconstructed via Boolean operations. Oth-
erwise, we go to (a) and a general quadric is fitted to P.
More complex types of sharp features are approximated by
smooth functions.

2.2 Hierarchical Reconstruction

The MPU Implicits is used for reconstruction of face surface
in a hierarchical way. The coarse to fine strategy is adopted
to reconstruct face surfaces with increasingly subdivision
using MPU Implicits. For the first level L0, a quadratic
polynomial is applied to fit the face surface. For the second
level L1, L0 is subdivided into 8 parts; a quadratic polyno-
mial is applied to fit each cell. For the third level L2, the
8 parts of L1 is subdivided and fitted continually. Figure 1
shows the hierarchical reconstruction of 3D face surface. L0
reconstruct face surface as one smooth surface with no or-
gans. With the hierarchical process, the contours of organs

Fig. 1 The hierarchical reconstruction of 3D face surface.

emerge successively. The nose appears in L1, eyes present
in L2, and mouth emerges in L3. L4 is quiet sufficient for
reconstruction of features of surface. L6 can describe fine
features of face surface.

This method also fit the face surface with holes, by re-
constructing it, which fills up the holes automatically. The
second row of Fig. 1 shows the original sample with holes in
the right eyebrow. With MPU reconstruction, it fills up the
holes automatically.

2.3 Curvature Analysis

To analyze the curvature of surface of different level, we let
P be the surface defined by a twice differentiable real valued
function

f : U → R, defined on an open set U ⊆ R2:
P = {(x, y, z)|(x, y) ∈ U; z ∈ R; f (x, y) = z}
For every point (x, y, z) ∈ P we consider two curva-

tures, the mean curvature (H) and the Gaussian curvature
(K), which can be calculated by [7]:

H =
(1 + f 2

y ) fxx − 2 fx fy fxy + (1 + f 2
x ) fyy

2(1 + f 2
x + f 2

y )3/2
(6)

K =
fxx fyy − f 2

xy

(1 + f 2
x + f 2

y )2
(7)

Where, fx, fv, fxv, fxv, fvv are the first and the second
derivative of f in (x, y).

Figure 2 shows the mean and the Gaussian curvature
maps of L0 to L4.

Based on the signs of the mean and the Gaussian cur-
vatures, an HK classification [4], [5], [8] is adopted to obtain
the description of local surface shape, as show in Table 1.

Fig. 2 Curvature analysis for different level faces reconstructed by MPU
Implicits. The first row is the result of reconstruction from L0 to L4, the
second row is the mean curvature map and the third row is the Gaussian
curvature map.

Table 1 Surface shape classification.

Shape Hyperbolic Convex Convex Planar Concave Concave
cylindrical elliptical cylindrical elliptical

H / >0 >0 0 <0 <0
K <0 0 >0 / >0 >0
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(a) (b) (c) (d)

Fig. 3 (a) The convex elliptical regions extracted from an original face
after smoothed. (b) The concave elliptical region extracted from an original
face after smoothed. (c) The convex elliptical region extracted from L1
reconstructed face by MPU implicits. (d) The concave elliptical regions
extracted from L2 reconstructed face by MPU implicits.

2.4 Landmarks Detection

On the face, the nose has the most distinct geometry prop-
erty and eyeholes are typical elliptical concave. The nose
and eyeholes are well-isolated and immune to expression
and hair. As other regions, like the mouth, or forehead, or
cheeks, do not present particular or simple curvature char-
acteristics and easily influenced by expression and beard.

Applying HK-classification on original face surface, a
lot of candidates of nose tip and eyeholes can be obtained.
The convex elliptical regions, as candidates of nose regions,
are extracted by HK-classification on the original face af-
ter smoothed, as shown in Fig. 3 (a). The concave elliptical
regions, as candidates of eyehole regions, are extracted by
HK-classification on the original face after smoothed. It is
noted that many candidates will be detected on the original
face surface. Some methods [4], [5] based on curvature anal-
ysis have to use prior knowledge or classifier to detect land-
marks. However, these regions are exclusive on the lower
level surfaces reconstructed by MPU implitics. The nose
region can be found in L1, which is elliptical convex with
high value of the mean and Gaussian curvature, as shown
in Fig. 3 (c). The eyehole regions are found from the high
negative mean curvature and high Gaussian curvature in L2,
as shown in Fig. 3 (d). The number of the candidates will
enhance with increasing level. In our experiment, only one
candidate nose can be detected on L1 as well as two candi-
date eyeholes on L2.

3. Experimental Results

The experiment has been performed using models from the
GavabDB database [9]. This includes 3D facial surfaces of
61 individuals (45 males and 16 females). The total of the
individuals are Caucasian and their age is between 18 and
40 years old. Each image is given by a mesh of connected
3D points of the facial surface in the VRML format with-
out texture. For each person, 7 different models are taken,
differing in terms of viewpoint, resulting in 427 facial mod-
els. In particular, for each subject there are 1 looking up,
1 looking down, 2 frontal, 1 random gesture, 1 laugh and
1smile models. Due to errors in the acquisition steps, some
of the faces contain significant amount of noise or holes on
the face. Some artifacts such as hair, beard and moustache

Table 2 The error number and correctly localized rates for different
scans.

Total number Error number Correctly localized rate
Looking down scans 61 1 98.36%

Looking up scans 61 0 100%
Frontal scans 122 1 99.18%

Random gesture scans 61 2 96.72%
Laugh scans 61 2 96.72%
Smile scans 61 0 100%
Total scans 427 6 98.59%

Fig. 4 Three sample subjects showing 3D face registration of seven scans
(looking down, looking up, frontal 1, frontal 2, random gesture, laugh and
smile). The first, third and fifth row are the original scans, the second,
forth and sixth row are the registered faces with detected feature points.
The black point is the detected nose tip and the red points are the detected
eyeholes.

are also presented.
Based on MPU Implicits, each faces are reconstructed

into the second level (L1) and the third level (L2). Surface
curvature is exploited respectively to L1 and L2. Depend-
ing on an HK classification, the nose region can be found in
L1 and the eyehole regions are found in L2 uniquely. Af-
ter applying the landmarking method introduced in Sect. 2,
the results show a global 98.59% success rate over the 427
scans. Table 2 shows the error number and correctly local-
ized rates for different scans.

Figure 4 shows the registration results of three sub-
jects, each subject contains seven models (looking up, look-
ing down, 2 frontal, random gesture, laugh and smile mod-
els). The first, third and fifth row are the original scans, the
second, forth and sixth row are the registered faces with de-
tected feature points. The black point is the detected nose tip
and the red points are the detected eyeholes. Figure 5 shows
some challenging examples which can be correctly localized
by our method, such as pose variations, holes, noise, hair oc-
clusion, beard, expression. Our method can overcome these
challenges effectively. The six failures are caused by null
information in nose region, hair occlusion seriously and ex-
aggerated expression, as shown in Fig. 6.
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Table 3 Comparing our work with other’s work.

Database Method Correctly localized rates(%) Correctly localized rates(%)
on Neutral Frontal Faces on faces with pose and expression

nose tip eyehole total nose tip eyehole total
Our method GavabDB(61 individual) MPU+ curvature 99.18 100 99.18 98.83 99.53 98.59

FRGC 1.0 100 100 100 / / /

A. Moreno [4] GavabDB(60 individual) Curvature+ prior knowledge 100 95.15 / 99.8 94.09 /

AA. Salah [11] FRGC 1.0 3D 96.7 98.4 / / / /

3D+GOLLUM 98.2 99.3 / / / /

3D+BILBO 96.9 98.2 / / / /

FRGC 2.0 3D / / / 96.7 97.2 /

3D+GOLLUM / / / 98 97.1 /

3D+BILBO / / / 96.8 96.3 /

C. Conde [12] FRAV Spin image / / 98.65 / / /

X. Dong [13] BJUT 3D 3DRLS+profile 99.2 97(2D) / / / /

Fig. 5 Some challenging examples.

Fig. 6 Six incorrect localized scans.

Furthermore, we compare our method with four differ-
ent approaches for 3D face landmarking. To prove the ad-
vance of our method, experiments also have been performed
on FRGC 1.0 database [10]. A. Moreno [4] segmented the
range images into isolated subregions using the traditional
curvature analysis and prior knowledge based upon the Gav-
abDB database. They achieved 99.8% correctly localized
rates of nose tip for 3D faces with pose and expression,
which is better than the result (98.83%) of our method. This
is due to: 1) they distinguished the nose tip as the highest
number of convex elliptic nodes and we do not use any prior
knowledge, our method is more robust to any poses; 2) they
deleted one individual of the GavabDB database and we use
the whole database; 3) the only one incorrectly landmark of
nose tip on neutral frontal face based on our method is due to
the missing data of raw data (as the second column of Fig. 6
shown). For eyehole landmarks, our method achieve local-
ized rate of 99.53%, which is a better performance than [4].

For FRGC 1.0 database, we obtain localized rate of

100% which is better than AA. Salah’s results [11]. FRGC
2.0 database contains two facial expressions: neutral and
smiling. GavabDB database is more complicated than
FRGC 2.0 on pose and expression. Our experimental results
on GavabDB are better than AA. Salah’ work on FRGC 2.0.

For neutral frontal face, we obtain localized rate of
99.18% on GavabDB database and 100% on FRGC 1.0
databse. However, C. Conde [12] achieved localized rate of
98.65% on FRAV database and X. Dong [13] obtained the
nose tip localized rate of 99.2% using 3DRLS and profile
analysis on BJUT 3D database.

Table 3 summarizes their results as well as ours. As
the results shown, our method based on MPU implicits and
curvature analysis for landmarking has a better performance
for 3D face with pose and expression.

4. Conclusion

In this paper, we have proposed a novel 3D facial landmark-
ing method based on MPU Implicits and curvature analysis.
The 3D facial surface is reconstructed by MPU Implicits in
a hierarchical way and the holes are filled simultaneously.
By analyzing the mean and Gaussian curvature in the lower
levels, the nose region can be found in the second level (L1)
and the eyehole regions are found in the third level (L2) ac-
curately and uniquely. This proposed method is invariant to
pose, holes, noise and expression. Finally, the experimen-
tal results with GavabDB database and FRGC 1.0 database
have shown its excellent performance.
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