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Latent Conditional Independence Test Using Bayesian Network
Item Response Theory

Takamitsu HASHIMOTO†,††, Nonmember and Maomi UENO†, Member

SUMMARY Item response theory (IRT) is widely used for test analy-
ses. Most models of IRT assume that a subject’s responses to different items
in a test are statistically independent. However, actual situations often vi-
olate this assumption. Thus, conditional independence (CI) tests among
items given a latent ability variable are needed, but traditional CI tests suf-
fer from biases. This study investigated a latent conditional independence
(LCI) test given a latent variable. Results show that the LCI test can detect
CI given a latent variable correctly, whereas traditional CI tests often fail to
detect CI. Application of the LCI test to mathematics test data revealed that
items that share common alternatives might be conditionally dependent.
key words: item response theory, Bayesian network model, local indepen-
dence, conditional independence test, latent variable

1. Introduction

Lord and Novick [1] used a modern mathematical statisti-
cal approach to formulate the basic constructs of the item
response theory (IRT). Since then, a great deal of research
effort has been spent in developing their idea from differ-
ent perspectives (e.g., statistical theory and parameter esti-
mation algorithms). There are many possible IRT models,
which differ in the mathematical form of the item charac-
teristic function and/or the number of parameters specified
in the model, for example, the Rasch model [2], the nor-
mal ogive model [1], the two parameters logistic model [3],
and the three parameters logistic model [4]. There are more
general and well-known IRT models such as the graded re-
sponse model [5], the free response model [6], the partial
credit model [7], and the nominal response model [8]. All
IRT models incorporate one or more parameters describing
the subject. IRT rests on three basic postulates: (1) The per-
formance of a subject for a test item can be predicted (or
explained) by a set of factors called traits, latent traits, or
abilities. (2) The relation between the subject’s item per-
formance and the set of traits underlying item performance
can be described using a monotonically increasing function
called an item characteristic function or item characteristic
curve. (3) When the ability variables influencing the test
performance are held constant, the subject’s responses to
any pair of items are statistically independent, which is often
called local independence. It should be particularly noted
that assumption (3) states that a subject’s responses to dif-
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ferent items in a test are statistically independent (Fig. 1).
For this assumption to be true, a subject’s performance for
one item must not affect, either positively or negatively, the
response to any other item in the test. Regarding this con-
ditional independence (CI) assumption, Yen [9] previously
pointed out that actual situations often violate this assump-
tion. Furthermore, many previous studies [10]–[13] have
shown that the parameter estimation often fails when the CI
assumption is violated.

Consequently, CI tests among items given a latent vari-
able are necessary for the application of IRT to test data.
However, it is difficult to realize the CI test given a la-
tent variable. Considering this problem, several CI tests
given a latent variable have been proposed. For example,
Yen’s Q3 statistic [9] is defined as the correlation coeffi-
cient of two items’ fitting errors between the expected and
actual responses. Chen and Thissen’s G2 statistic [10] is
the log-likelihood ratio of an observed frequency to an ex-
pected frequency derived from an IRT model. These statis-
tics marginalize out the latent variable and provide CI tests
of only the two target items. Namely, the traditional meth-
ods implicitly assume that the CI tests of two variables are
not affected by any other two items’ dependencies when the
latent variable is marginalized out. However, in the present
study, we found through some simulation experiments that
this assumption does not hold. That is, we show that the
other two variables dependencies affect the CI test of the two
target variables even when the latent variable is marginal-
ized out.

To solve this problem, we propose a new CI test be-
tween two items given a latent variable. The unique fea-
ture of our method is a CI test of the target items given all
the other items, which are assumed to be mutually depen-
dent (complete structured variables). In addition, we use
Bayesian network IRT [14], which alleviates the CI assump-
tion given the latent variable, to calculate our CI test. We

Fig. 1 Graphical expression of a conditionally independent structure
given a latent ability variable.
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also prove that our CI test correctly detects the dependency
of the target variables given the latent variable even when
two other items are dependent. The effectiveness of our test
was confirmed in some simulation experiments.

This paper is organized as follows. Section 2 briefly re-
views IRT. Section 3 explains the traditional CI tests. Sec-
tion 4 describes the problems of the traditional CI tests. Sec-
tion 5 presents our proposal for solving the problem. Sec-
tion 6 describes some experiments in comparison with tradi-
tional CI tests and Sect. 7 presents examples of application
to real data. Section 8 discusses the results and presents our
conclusions.

2. IRT

IRT represents the probability of an examinee answering an
item correctly as a function of the examinee’s latent ability
variable θ. In the usual dichotomous response formulation
of IRT, the correctness of the i-th item in a test is indicated
by a random response variable Xi taking the value 1 for a
correct response and 0 for an incorrect response. For exam-
ple, a two-parameter logistic (2PL) model [4], which is the
most popular IRT model, is expressed by

P(Xi = 1|θ, ai, bi) =
1

1 + exp{−1.7ai(θ − bi)} , (1)

where item parameters ai and bi are called the “discrimina-
tion parameter” and “difficulty parameter”, respectively.

When the discrimination parameters of all items are
equivalent, this model is called the one-parameter logis-
tic model or Rasch model [2]. When one more item pa-
rameter, called the “guessing parameter”, is added to the
2PL model, the model is called the three-parameter logis-
tic (3PL) model [4].

The likelihood function of the 2PL model is given by

L(X|θ, ξ) =
N∏

j=1

m∏
i=1

[
1

1 + exp{−1.7ai(θ j − bi)}
]x ji

·
[
1 − 1

1 + exp{−1.7ai(θ j − bi)}
]1−x ji

,

(2)

where

X = { x ji } ( j = 1, · · · ,N; i = 1, · · · ,m)

x ji =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 for the j−th examinee′s incorrect
response to the i−th item

1 for the j−th examinee′s correct
response to the i−th item

θ = { θ j } ( j = 1, · · · ,N)

θ j : the j−th examinee′s latent ability variable

ξ = { ξi } (i = 1, · · · ,m)

ξi = (ai, bi)
t (i = 1, · · · ,m)

N : number of examinees

m : number of items

Equation (2) assumes that a subject’s responses to dif-
ferent items are conditionally independent given the vari-
able θ. This assumption is called the “local independence”
of items. However, as described in Sect. 1, in actual ed-
ucational assessment, many factors violate the local inde-
pendence assumption. For example, Yen [9] pointed out the
following causes of local dependence of items: external as-
sistance or interference, speed, fatigue, practice, item or re-
sponse format, passage dependence, item chaining, expla-
nation of a previous answer, and scoring rubrics or raters.

If we apply the IRT model to data that do not satisfy
the local independence assumption, it will suffer seriously
biased estimates. Therefore, it is important to detect items
that violate the local independence assumption and remove
them in order to estimate parameters reliably.

3. Previous Work on CI Detection Given a Latent Vari-
able

Several methods for testing CI between a pair of items given
a latent variable have been proposed.

Yen [9] proposed the use of the Q3 statistic as a score
for identifying pairs of items that display CI given a latent
variable. The Q3 statistic of the i-th and i′-th items is the
correlation coefficient of the following dhi and dhi′ :

dhi = xhi − P̂i(θ̂h) , dhi′ = xhi′ − P̂i′ (θ̂h), (3)

where xhi denotes the score of the h-th examinee for the i-th
item, θ̂h denotes the estimate of the h-th examinee’s esti-
mated latent variable, and P̂i(θ̂h) represents the probability
of the correct answer given the estimated parameters. Ac-
tually, Q3 requires estimates of latent variables and item pa-
rameters. These estimates are obtained assuming local in-
dependence of all items, even when some items are locally
dependent. Thus, the estimates are biased and cause error
in local independence detection. Moreover, Q3 has a high
computational cost because it requires estimation of the la-
tent variable.

Another statistic suggested for identifying CI given a
latent variable is the G2 statistic developed by Chen and
Thissen [10]. Unlike Q3, G2 does not require any estimation
of latent variables. The G2 statistic is calculated through the
following procedure.

Let Nxi xi′ be the number of examinees whose responses
to the i-th item Xi and i′-th item Xi′ are xi and xi′ (xi, xi′ =

0, 1), respectively; let N be the total number of examinees.
Under a null hypothesis, the expected number of examinees
with xi and xi′ is given by

Exi xi′ = N
∫

P̂i(θ)
xi P̂i′ (θ)

xi′ ·
[
1 − P̂i(θ)

]1−xi
[
1 − P̂i′ (θ)

]1−xi′
p(θ)dθ.

(4)

Here, P̂i(θ) is the item characteristic curve in which item
parameter estimates are substituted. The G2 statistic is com-
puted as
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G2 = 2
1∑

xi=0

1∑
xi′=0

Nxi xi′ loge

Nxi xi′

Exi xi′
. (5)

Although G2 integrates out the latent variable, it still
requires estimates of item parameters. Since these estimates
are obtained under the local independence assumption, the
same problem as that of Q3 occurs: detection bias caused by
parameter estimation bias.

The following simulation experiments demonstrated
this problem.

4. Problems of Previous Work

Yen’s Q3 statistic [9] and Chen and Thissen’s G2 statis-
tic [10] implicitly assume that the CI tests of two items are
not affected by the dependencies of any other two items
when the latent variable is marginalized out. In this sec-
tion, we describe how we applied these tests to two locally
independent items when some other items were locally de-
pendent.

4.1 Method

We considered the following six structures in our simulation
experiments.

Three structures each consisted of 7 items. The fol-
lowing three cases were assumed: (a) completely indepen-
dent case, (b) one pair dependent case, and (c) two pairs de-
pendent case. In case (a), all items are locally independent
(Fig. 2). This is the case assumed by traditional methods. In
case (b), one pair of items were locally dependent, and the
other pairs of the items were locally independent (Fig. 3). In
case (c), two pairs of items were locally dependent, and the
other pairs of the items were locally independent (Fig. 4).

The other three structures each consisted of 20 items.
The following three cases were assumed: (d) completely in-
dependent case (Fig. 5), (e) one pair dependent case (Fig. 6),
and (f) nine pairs dependent case (Fig. 7). Only case (d) met
the assumption of the traditional methods.

For these cases, item parameters were determined as
follows.

Fig. 2 Case (a) (completely independent case).

Fig. 3 Case (b) (one pair dependent case).

Parameters of locally independent items In all cases, some
items were locally independent of the other items. In
Figs. 2–7, such items are not linked to the other items
by arcs. Parameters of such items were generated ran-
domly from the following distributions:

log2 ai ∼ N(0, 1)

bi ∼ N(0, 1).

Parameters of locally dependent items In cases (b) and
(c), some items were assumed to be locally dependent.
The responses to some items changed the difficulty of
other items. Items that changed difficulty parameters of
other items were designated “parent” items, and items
with difficulty parameters that were changed by par-
ent items were designated “child” items. Parameters of
parent items were generated in the same way as inde-
pendent items. When an examinee answered the parent
item correctly, the difficulty parameter of the child item
was assumed to be smaller. Otherwise, that parameter
was assumed to be larger. Parameters of child items
were generated as

log2 ai ∼ N(0, 1)

bi ∼ N(0, 0.25)

d ∼ N(1.85, 0.25)

Fig. 4 Case (c) (two pairs independent case).

Fig. 5 Case (d) (completely independent case).

Fig. 6 Case (e) (one pair dependent case).

Fig. 7 Case (f) (nine pairs independent case).
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Fig. 8 Frequency distributions of Q3 of locally independent pairs (num-
ber of items: 7).

Fig. 9 Frequency distributions of Q3 of locally independent pairs (num-
ber of items: 20).

bi0 = bi + d

bi1 = bi − d,

where bi0 denotes the difficulty parameter of the i-th
child item when the answer to the parent item was in-
correct, and bi1 denotes the difficulty parameter when
the answer to the parent item was correct.

These parameters were used to generate 10,000 exam-
inees’ responses randomly. In this way, 1000 sets of data
were generated for each case.

In all cases, X1 and X2 were locally independent. Local
independence between X1 and X2 was tested by Yen’s Q3 [9]
and Chen and Thissen’s G2 [10].

4.2 Results

Frequency distributions of Q3 in cases (a), (b), and (c) are
shown in Fig. 8. The solid line is the distribution when items
other than the target pairs were locally independent, which
is a necessary assumption for Q3. Compared with the dis-
tribution in case (a), values of Q3 in cases (b) and (c) were
larger.

When the number of items was 20 (Fig. 9), the distri-
butions in cases (e) and (f) did not fit the distribution in case
(d).

Frequency distributions of G2 in cases (a), (b), and (c)
are shown in Fig. 10. In cases (b) and (c), excessively large

Fig. 10 Frequency distributions of G2 of locally independent pairs (num-
ber of items: 7).

Fig. 11 Frequency distributions of G2 of locally independent pairs (num-
ber of items: 20).

values were obtained. Distributions in cases (b) and (c) did
not fit the distribution in case (a).

However, when the number of items was 20 (Fig. 11),
the distribution in case (e) fitted the distribution in case (d).
On the other hand, the distribution in case (f) did not fit the
distribution in case (d).

These results show that, when the number of locally
dependent items other than the targets increases, the statis-
tics of traditional CI tests are seriously biased. Therefore,
this bias might cause bias of CI detection.

5. Proposed Method

The traditional CI tests implicitly assume that all items
except the two target items are conditionally independent
given a latent variable. However, our simulation experi-
ment revealed that these CI tests are biased when this as-
sumption does not hold. Here, we propose a new method to
solve this problem. Our method uses the Bayesian network
IRT model [14], which alleviates the local independence as-
sumption of traditional IRT models.

5.1 Bayesian Network IRT

Bayesian network IRT [14] is an IRT model that relaxes the
CI assumption given a latent variable. This model intro-
duces different item parameters for responses to other items.
An item whose response changes the item parameter value
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Fig. 12 Example of the structure of items and the latent variable.

of the i-th item is designated the parent item of the i-th item.
Consequently, the Bayesian network IRT model is regarded
as an IRT model containing parent items. This model is de-
scribed in detail below.

Let a certain examinee’s response pattern to m items be

x = (x1, x2, · · · , xi, · · · , xm)t,

where

xi =

{
0 for an incorrect response
1 for a correct response

. (6)

When Bs encodes the CI assertions in a model, the joint
probability of scores is given by

P(X1 = x1, · · · , Xm = xm|θ, ξ, Bs)

=

m∏
i=1

2pi−1∏
j=0

{
P(Xi = 1|θ, ξi, X̃i j)

xiui j ·
[
1 − P(Xi = 1|θ, ξi, X̃i j)

](1−xi)ui j
}
, (7)

where

ui j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for the j−th response pattern to parent

items of the i−th item
0 for the other patterns

pi : number of parent items of the i−th item,

X̃i j : j−th response pattern to parent items of

the i−th item,

ξi : parameter vector for X̃i j

ξ =
(
ξt1, ξ

t
2, · · · , ξti , · · · , ξtm

)
Bs : conditional dependence structure among items

The dependence structure among items in the Bayesian
network IRT model can be expressed as a directed graph.
In the graph, two conditionally dependent items are linked
by a directed arc, whereas conditionally independent items
are not linked. The direction of the arc indicates the parent
and child: the arc’s tail is the parent item and its head is the
child item. For example, in the structure shown in Fig. 12,
dependencies exist between X3-X4, X3-X5, and X4-X5. X3 is
the parent of X4 and X5, and X4 is the parent of X5.

Bayesian network IRT can express a conditional item
characteristic curve given the responses to other items. For
example, item 3 in Fig. 12 is the parent item of item 4, and
the item characteristic curve of item 4 P(X4 = 1|θ, ξ4, X̃4 j)
can be written as

P(X4 = 1|θ, ξ4, X̃4 j)

=

1∏
j=0

P(X4 = 1|θ, ξ4, X̃4 j)
u4 j

= P(X4 = 1|θ, a4, b40, b41, X3 = 0)u40 ·
P(X4 = 1|θ, a4, b40, b41, X3 = 1)u41 , (8)

where a4 is the discrimination parameter of item 4 and b4x3

is the difficulty parameter of item 4 when the response to
item 3 is x3 (x3 = 0, 1).

In this paper, we use the concept of this model to pro-
pose a new CI test given a latent variable.

Furthermore, it should be noted that in Bayesian net-
work IRT, the order of test items should be fixed because
the parameter estimates are affected by the order. However,
our purpose in this paper is to detect the local dependency of
two items, so the detection results are not affected by vary-
ing the order.

5.2 Conditional Mutual Information Measure

The conditional mutual information measure is a measure
of dependence between two random variables. It is used
for learning the Bayesian network skeletons, for example,
in the PC algorithm [15] and MMPC algorithm [16]. When
X, Y , and Z are random variables, the conditional mutual
information between X and Y given Z, which is written as
I(X; Y |Z), is calculated as follows.

I(X; Y |Z)

=
∑

z

P(Z = z) ·
∑

x

∑
y

P(X = x,Y = y|Z = z) ·

log2
P(X = x,Y = y|Z = z)

P(X = x|Z = z)P(Y = y|Z = z)
(9)

Moreover, in the Bayesian network IRT model [14],
conditional dependence between two items given a latent
variable is measured using the following conditional mutual
information measure.

I(Xi; Xi′ |θ, ξ, Bs)

=

∫
p(θ) ·

1∑
xi=0

1∑
xi′=0

P(Xi = xi, Xi′ = xi′ |θ, ξ, Bs) ·

log2
P(Xi = xi, Xi′ = xi′ |θ, ξ, Bs)

P(Xi = xi|θ, ξ, Bs)P(Xi′ = xi′ |θ, ξ, Bs)
dθ.

(10)

To calculate Eq. (10), we need to know the structure Bs

and item parameters ξ. In this study, we assumed a struc-
ture Bs in which all items are mutually dependent (Fig. 13).
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Fig. 13 Structure of Bc
s (completely dependent structure given a latent

variable).

Such a structure is designated as a completely dependent
structure (complete graph) and denoted Bc

s. The direction of
the arc from a previously shown item to a later shown item
is determined by the test item order.

Let the target items be Xi and Xi′ . Assuming Bc
s means

that all items except the targets, which are denoted X¬ii′ ,
are regarded as parents of the targets. In this case, if the
topology order of items is given, the conditional proba-
bilities given X¬ii′ correspond to the conditional probabil-
ities given the estimated latent ability variable θ̂ because,
according to Neyman factorization theorem [17], an exam-
inee’s response pattern is sufficient for estimation of the
latent variable θ when the number of items is sufficiently
large. Consequently, in this study we define the following
I(Xi; Xi′ |X¬ii′ , ξ, Bc

s), in which an examinee’s response pat-
tern X¬ii′ substitutes for his/her latent ability variable θ in
Eq. (10).

Definition 1: I(Xi; Xi′ |X¬ii′ , ξ, Bc
s)

=

2m−2−1∑
j=0

P(X¬ii′ = x¬ii′
j |ξ, Bc

s) ·

1∑
xi=0

1∑
xi′=0

P(Xi = xi, Xi′ = xi′ |X¬ii′ = x¬ii′
j , ξ, B

c
s)·

log2

P(Xi = xi, Xi′ = xi′ |X¬ii′ = x¬ii′
j , ξ, B

c
s)

P(Xi = xi |X¬ii′ = x¬ii′
j , ξ, B

c
s)P(Xi′ = xi′ |X¬ii′ = x¬ii′

j , ξ, B
c
s)
,

(11)

where

m : number of items

Xi : i−th item

Xi′ : i′−th item

X¬ii′ : all items except Xi and Xi′

x¬ii′
j : j−th response pattern to X¬ii′

( j = 0, · · · , (2m−2 − 1))

ξ : item parameters of the model

Bc
s : parent variable set of the i−th

and i′−th items with a completely

dependent structure

Fig. 14 Graph showing when θ is integrated out from the graph of
Fig. 12.

Namely, I(Xi; Xi′ |X¬ii′ , ξ, Bc
s) is the conditional mutual

information measure between Xi and Xi′ given all items ex-
cept Xi and Xi′ .

Using Eq. (11), we can derive the following theorem.

Theorem 1: When I(Xi; Xi′ |X¬ii′ , ξ, Bc
s) = 0 for ∀i, i′, the

i-th and i′-th items are conditionally independent given a
latent variable.

When I(Xi; Xi′ |X¬ii′ , ξ, Bc
s) > 0 for ∀i, i′, the i-th and i′-

th items are conditionally dependent given a latent variable.

Proof 1: For ∀i, i′, j,

1∑
xi=0

1∑
xi′=0

P(Xi = xi, Xi′ = xi′ |X¬ii′ = x¬ii′
j , ξ, B

c
s)

log2

P(Xi = xi, Xi′ = xi′ |X¬ii′ = x¬ii′
j , ξ, B

c
s)

P(Xi = xi |X¬ii′ = x¬ii′
j , ξ, B

c
s)P(Xi′ = xi′ |X¬ii′ = x¬ii′

j , ξ, B
c
s)

≥ 0.

(12)

Then, I(Xi; Xi′ |X¬ii′ , ξ, Bc
s) = 0 when and only when

P(Xi = xi, Xi′ = xi′ |X¬ii′ = x¬ii′
j , ξ, B

c
s)

= P(Xi = xi|X¬ii′ = x¬ii′
j , ξ, B

c
s) ·

P(Xi′ = xi′ |X¬ii′ = x¬ii′
j , ξ, B

c
s).

(13)

When all items are assumed to depend on the latent
variable θ, as shown in Fig. 12, for ∀i, i′, both the i-th and i′-
th items are made marginally dependent by integrating out
θ: the dependence structure of the items is a probability net-
work model of a completely dependent structure, as shown
in Fig. 14. An examinee’s response pattern is sufficient for
estimation of the ability variable θ. Neyman factorization
theorem [17] states that, when x = (x1, . . . , xn) is a random
variable with probability density function f (x; θ), a neces-
sary and sufficient condition for a statistic t(x) to be suffi-
cient for θ is that

f (x; θ) = q(t(x); θ) · r(x), (14)

where q(t(x); θ) is the probability density function of t(x)
and r(x) is a function of x that does not depend on θ. In
Eq (7), the values of the variables X̃i j, xi, and ui j are fixed
when an examinee’s response pattern x is given. Conse-
quently, Eq (7) can be regarded as the probability function of
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the response pattern x given parameters θ, ξ, and Bs. There-
fore, the response pattern is sufficient for estimating θ when
ξ and Bs are given, so θ in (10) can be replaced by the cor-
responding response pattern.

For sufficiently large m,

p(θ|X, ξ, Bc
s) ≈ p(θ|X¬ii′ , ξ, Bc

s). (15)

These are the main ideas of this paper.
Accordingly, if

P(Xi = xi, Xi′ = xi′ |X¬ii′ = x¬ii′
j , ξ, B

c
s)

= P(Xi = xi|X¬ii′ = x¬ii′
j , ξ, B

c
s) ·

P(Xi′ = xi′ |X¬ii′ = x¬ii′
j , ξ, B

c
s)

(16)

for ∀i, i′, j, then

P(Xi = xi, Xi′ = xi′ |θ, ξ, Bc
s)

= P(Xi = xi|θ, ξ, Bc
s) · P(Xi′ = xi′ |θ, ξ, Bc

s). (17)

Consequently, when I(Xi; Xi′ |X¬ii′ , ξ, Bc
s) = 0 for ∀i, i′,

the i-th and i′-th items are conditionally independent. In the
same manner, when I(Xi; Xi′ |X¬ii′ , ξ, Bc

s) > 0 for ∀i, i′, the
i-th and i′-th items are conditionally dependent.

Equation (11) includes four conditional probabilities,
which are parameters of Bernoulli distributions. The max-
imum likelihood estimates of those parameters are obtain-
able as

P̂(X¬ii′ = x¬ii′
j |ξ, Bc

s) =
Nj

N
(18)

P̂(Xi = xi, Xi′ = xi′ |X¬ii′ = x¬ii′
j , ξ, B

c
s) =

Nxi xi′ j

N j

P̂(Xi = xi|X¬ii′ = x¬ii′
j , ξ, B

c
s) =

Nxi j

N j
(19)

P̂(Xi′ = xi′ |X¬ii′ = x¬ii′
j , ξ, B

c
s) =

Nxi′ j

N j
, (20)

where the number of examinees whose response pattern is
x¬ii′

j is defined as Nxi xi′ j, and

Nxi j = Nxi0 j + Nxi1 j

Nxi′ j = N0xi′ j + N1xi′ j

N j = N00 j + N01 j + N10 j + N11 j

N =
2m−2−1∑

j=0

Nj.

Substituting them into Eq. (11), we get the proposed
conditional mutual information measure between the i-th
and i′-th items as follows.

I(Xi; Xi′ |X¬ii′ , ξ, Bc
s)

Fig. 15 Frequency distributions of LCI test statistic of locally indepen-
dent pairs (number of items: 7).

=

2m−2−1∑
j=0

Nj

N

1∑
xi=0

1∑
xi′=0

Nxi xi′ j

N j
log2

Nxi xi′ j

N j

Nxi j

N j

Nxi′ j

N j

=
1
N

2m−2−1∑
j=0

1∑
xi=0

1∑
xi′=0

Nxi xi′ j log2

Nxi xi′ jN j

Nxi jNxi′ j
. (21)

The response pattern X¬ii′ contains a lot of missing
data. If we ignore the missing data, then Eq (21) can be
transformed into

I(Xi; Xi′ |X¬ii′ , ξ, Bc
s)

=
1
N

J′−1∑
j′=0

1∑
xi=0

1∑
xi′=0

Nxi xi′ j′ log2

Nxi xi′ j′Nj′

Nxi jNxi′ j′
, (22)

where J′ is the number of observed patterns. Therefore,
even though the number of items m is large, the actual
amount of computation is O(N). According to Eqs. (3) and
(4), the amount of computation for traditional CI tests is also
O(N).

As mentioned in Proof 1, the main idea of this paper is
to obtain the conditional probability given a latent variable,
with replacing θ by X¬ii′ using Neyman’s theorem. This re-
duces the computational costs to O(N) from O(2m). That is,
the amount of computation for our method is the same as
that for traditional methods.

Using I(Xi; Xi′ |X¬ii′ , ξ, Bc
s) in Eq. (22), we can define

the following latent conditional independence (LCI) test
given a latent variable.

Definition 2: (Latent conditional independence (LCI)
test)
If I(Xi; Xi′ |X¬ii′ , ξ, Bc

s) ≥ ε
→ the i-th and i′-th items are conditionally dependent

when a latent variable is given
else
→ the i-th and i′-th items are conditionally independent

when a latent variable is given,
where ε is a certain threshold.
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Fig. 16 Frequency distributions of LCI test statistic of locally indepen-
dent pairs (number of items: 20).

The LCI test can correctly detect CI given a latent vari-
able even when items other than the target pairs are mutu-
ally dependent. When the LCI test was applied to the same
simulation data as used in Sect. 4, differences between the
distributions were reduced (Figs. 15 and 16). It means that
the LCI test was not affected by other item dependencies.

6. Evaluation of LCI Test

This section evaluates how correctly the LCI test can detect
CI between two items given a latent variable.

6.1 Method

When a data set contains locally dependent items and a CI
test is applied to such a data set, item pairs are classified into
one of four categories:

• dependent pairs incorrectly judged as independent (a)
• dependent pairs correctly judged as dependent (b)
• independent pairs correctly judged as independent (c)
• independent pairs incorrectly judged as dependent (d)

To evaluate the performances of detecting local dependen-
cies, we obtained ratio a/(a + b). Moreover, we also ob-
tained ratio c/(c + d) to evaluate performances of detecting
local independencies.

In Sect. 4, we generated data that contained locally de-
pendent pairs of items. We applied the proposed LCI test
and two traditional CI tests to these data and calculated the
two abovementioned ratios.

Furthermore, we generated data using the structure
(Fig. 17) estimated from an actual test [14], which is called
“case (g)”. The estimated item parameters are given in Ap-
pendix A. For details of item contents, see [14]. The number
of examinees was 10,000, and 10 sets of data were gener-
ated.

For all the experiments, 0.01, 0.05, and 0.10 were used
as the LCI test thresholds ε, and performances were com-
pared.

6.2 Results

The results for cases (b) and (c) are given in Table 1. All CI

Fig. 17 Structure from actual test (Note: although the latent variable θ is
implicit in this graph, all items depend on θ.).

Table 1 Average ratio of correctly detected dependencies and indepen-
dencies (number of items: 7).

Case (b) (one pair dependent case)
CI test dependency independency

LCI (ε = 0.01) 0.977 0.737
LCI (ε = 0.05) 0.959 0.976
LCI (ε = 0.10) 0.902 0.996

G2 0.992 0.176
Q3 0.922 0.214
Case (c) (two pairs dependent case)

CI test dependency independency
LCI (ε = 0.01) 0.998 0.853
LCI (ε = 0.05) 0.963 0.988
LCI (ε = 0.10) 0.912 0.998

G2 0.999 0.139
Q3 0.936 0.246

tests detected more than 90 percent of the local dependen-
cies, and G2 detected the greatest number of local depen-
dencies. However, traditional CI tests often failed to detect
local independencies, whereas the LCI test detected local in-
dependencies with high accuracy. This means that the LCI
test could avoid overfitting problems which the traditional
CI tests suffered from in these cases.

The results for cases (e) and (f) are given in Tables 2.
Although the overfitting problem of G2 was mitigated in
case (e), G2 still suffered from this problem in case (f).
When ε was 0.01 or 0.05, the LCI test also failed to detect
local independencies. However, when ε was 0.10, the LCI
test kept high accuracy for detecting both dependencies and
independencies in cases (e) and (f).

The results for case (g) is given in Table 3. Whereas G2

and Q3 often failed to detect local independencies, the LCI
test detected both dependencies and independencies accu-
rately when ε was 0.01. However, when ε was 0.10, the LCI
test failed to detect local dependencies. Therefore, for the
LCI test, a method of investigating an appropriate ε must be
explored.

Summarizing the results, we can say that traditional CI
tests suffer from the overfitting. On the other hand, when
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Table 2 Average ratio of correctly detected dependencies and indepen-
dencies (number of items: 20).

Case (e) (one pair dependent case)
CI test dependency independency

LCI (ε = 0.01) 0.995 0.164
LCI (ε = 0.05) 0.953 0.659
LCI (ε = 0.10) 0.845 0.995

G2 1.000 0.779
Q3 0.977 0.392
Case (f) (nine pairs dependent case)

CI test dependency independency
LCI (ε = 0.01) 0.997 0.641
LCI (ε = 0.05) 0.966 0.981
LCI (ε = 0.10) 0.889 1.000

G2 1.000 0.452
Q3 0.981 0.298

Table 3 Average ratio of correctly detected dependencies and indepen-
dencies (case (g)).

CI test dependency independency
LCI (ε = 0.01) 0.860 1.000
LCI (ε = 0.05) 0.530 1.000
LCI (ε = 0.10) 0.270 1.000

G2 1.000 0.095
Q3 0.947 0.344

an appropriate threshold is determined, the LCI test can cor-
rectly detect both local independence and local dependence.
However, since the performance of the LCI test is highly
sensitive to the choice of threshold ε, a suitable method of
determining the threshold, for example, by bootstrapping or
cross validation, must be used.

7. Application to Real Data

In this section, our method is applied to real data.

7.1 Method

A mathematics test answered by 367 freshmen at five na-
tional universities in Tokyo was analyzed. The test con-
tained seven items. Items Q1, Q2, and Q3 were questions
about inequalities of the second degree, and Q3 required the
correct response to Q2. Items Q4, Q5, Q6, and Q7 were
questions about logical expressions. See Appendix B for
details.

7.2 Results

The values of the LCI test statistics are given in Table 4.
When the threshold ε was 0.10, only Q2 and Q3 were lo-
cally dependent. In contrast, when ε was 0.01, 17 out of 21
pairs were locally dependent. In this section, we interpret
the result when ε was 0.05. Pairs of items that were judged
to be locally dependent are shown linked in Fig. 18.

Between the second-degree-inequality items (Q1, Q2,
and Q3) and the logical-expression items (Q4, Q5, Q6, and
Q7), almost all values of LCI statistics were smaller than ε.
In contrast, within the logical-expression items, most of the

Table 4 LCI test statistics for seven items of a real test.

items Q1 Q2 Q3 Q4 Q5 Q6 Q7
Q1 0.012 0.012 0.005 0.017 0.000 0.019
Q2 0.159 0.009 0.022 0.004 0.031
Q3 0.029 0.032 0.018 0.048
Q4 0.066 0.020 0.053
Q5 0.010 0.052
Q6 0.056
Q7

Fig. 18 Pairs whose LCI statistics were greater than 0.05.

values were larger than ε. These results indicate that items
belonging to different areas were locally independent given
a latent variable.

The largest LCI was between Q2 and Q3. Since Q3
explicitly required the correct response to Q2, this local de-
pendence might reflect the item makers’ intentions.

Within the logical-expression items (Q4, Q5, Q6, and
Q7), four pairs were judged to be locally dependent. These
four items share the same alternatives. Such sharing of al-
ternatives might cause local dependence.

8. Conclusion

In this study, we investigated the latent conditional indepen-
dence (LCI) test given a latent variable to detect condition-
ally independent items. The performances were compared
with those of traditional conditional independence (CI) tests
such as Q3 and G2. There were two main findings.

First, when some items that are not targets are condi-
tionally dependent given a latent variable, traditional CI test
statistics are seriously biased. On the other hand, the LCI
test statistic is robust irrespective of other items. Secondly,
when an appropriate threshold ε is chosen, the LCI test can
detect both local independencies and local dependencies,
whereas traditional CI tests often fail to detect local inde-
pendencies. The application of the LCI test to actual data
suggests that the sharing of alternatives might cause condi-
tional dependence.

However, some problems remain unsolved. As de-
scribed in this paper, we knew which item was the parent
because items in the test data were sequentially arrayed. For
cases in which directions are unknown, a method of deter-
mining the parent item is necessary. In addition, the perfor-
mance of the LCI test is highly sensitive to the choice of ε.
Therefore, methods of determining an appropriate value of
ε, for example, by bootstrapping or, cross validation, should
be used. When these problems have been solved, the LCI
test should be more useful.
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Appendix A: Item Parameters of Case (g) in Sect. 6.

item a b
X1 0.511 −3.243
X2|X1 = 1 0.847 −2.154
X2|X1 = 0 3.463
X3|X2 = 1 0.905 −1.139
X3|X2 = 0 3.124
X4|X1 = 1 0.537 −1.322
X4|X1 = 0 3.463
X5|X4 = 1 0.826 −0.277
X5|X4 = 0 2.679
X6 1.281 −1.326
X7|X6 = 1 1.176 −1.022
X7|X6 = 0 3.269
X8|X7 = 1 1.127 −1.010
X8|X7 = 0 3.246
X9|X7 = 1 0.981 0.697
X9|X7 = 0 3.969
X10|X3 = 1 1.129 −0.440
X10|X3 = 0 2.217
X11|X5 = 1 1.313 0.212
X11|X5 = 0 2.647
X12|X10 = 1, X11 = 1 1.534 0.330
X12|X10 = 0, X11 = 1 3.366
X12|X10 = 1, X11 = 0 2.216
X12|X10 = 0, X11 = 0 3.366
X13|X12 = 1 1.226 −0.130
X13|X12 = 0 2.896
X14|X13 = 1 1.372 −0.153
X14|X13 = 0 3.004
X15|X9 = 1, X14 = 1 1.227 2.649
X15|X9 = 0, X14 = 1 3.370
X15|X9 = 1, X14 = 0 3.384
X15|X9 = 0, X14 = 0 3.844

Appendix B: Test Used in Section 7

Please answer Q1 through Q7.

[1] In a rectangle ABCD, AB = CD = 8 and BC = DA =
12. For a point P on side AB, a point Q on side BC, and a
point R on side CD, the following relation holds.

AP = BQ = CR

Let AP = x (0 < x < 8).

Q1. The area of the trapezoid PBCR is ? .

Q2. The area of 	PQR is

S = x2 − ? x + ? .

Q3. If S < 24 holds, then x must be in the range of

? < x < ? .
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[2] Fill in boxes A through D selecting for each
box one option from 0© through 3© below. You may select
the same options as many times as you wish.

m and n are natural numbers. There are three condi-
tions: p, q, and r.

p: m + n is divisible by 2.
q: n is divisible by 4.
r: m is divisible by 2, and n is divisible by 4.

Let the negation of condition p be p̄ and let the negation
of condition r be r̄. Then,

Q4. p is A for r.

Q5. p̄ is B for r̄.

Q6. “p and q” is C for r.

Q7. “p or q” is D for r.

0© a necessary and sufficient condition
1© a necessary condition but not a sufficient condition
2© a sufficient condition but not a necessary condition
3© neither a necessary condition nor a sufficient condition
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