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Parameter Estimation for Non-convex Target Object Using

Networked Binary Sensors*
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SUMMARY  We describe a parameter estimation method for a target
object in an area that sensors monitor. The parameters to be estimated are
the perimeter length, size, and parameter determined by the interior angles
of the target object. The estimation method does not use sensor location in-
formation, only the binary information on whether each sensor detects the
target object. First, the sensing area of each sensor is assumed to be line-
segment-shaped, which is a model of an infrared distance measurement
sensor. Second, based on the analytical results of assuming line-segment-
shaped sensing areas, we developed a unified equation that works with gen-
eral sensing areas and general target-object shapes to estimate the parame-
ters of the target objects. Numerical examples using computer simulation
show that our method yields accurate results.

key words: parameter estimation, shape estimation, sensor network, ubiq-
uitous network, integral geometry

1. Introduction

Recent developments in electronics and micromechanics
have enabled the fabrication of small, low-cost, low-power
sensor nodes that have communication capabilities and
built-in batteries. Such sensor nodes communicating via
a wireless link for transmitting sensory data on detected
events of interest can be used to build wireless sensor net-
works [1]-[3].

In most previous developments, sensor networks have
used ad hoc multi-hop network technologies. In these sen-
sor networks, sensor nodes require CPU computing power
to calculate routes and handle complicated protocols, and
wireless links require enough bandwidth to transmit rout-
ing protocol messages. Consequently, they consume a non-
negligible amount of battery life. This implies that sensor
nodes are similar to personal computers, which are nor-
mally expensive and offer high performance, and that wire-
less links connecting sensor nodes typically use a wireless
LAN, which is normally high-speed, short or medium range.
This network is suitable for sensor networks that have a lim-
ited number of sensor nodes with advanced functions and
high performance. The sensor nodes are placed in accor-
dance with a careful design or may have GPS functions.

In contrast, use of a newly proposed network such
as Wide Area Ubiquitous Network [4] may open up a new
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sensing paradigm, because this network is similar to cellu-
lar phone network architecture, supports terminals with low
performance and functionalities, and has a long-range, low-
speed wireless link with very low power consumption. That
is, instead of having a few sensors with advanced functions
and high performance, many sensors with simple functions
and low performance are distributed randomly. They are
networked and send reports, each of which includes only
a small amount of information, over a low-speed wireless
link. However, from the network as a whole, we can extract
a significant amount of information.

Considering such sensor networks, we studied a
method for estimating parameters (the perimeter length, the
size, and a parameter determined by the interior angles of
the target object) of a target object by using networked bi-
nary sensors whose locations are unknown. An individual
sensor is simple. It monitors its environment and reports
whether it detects the target object. It does not have a posi-
tioning function, such as a GPS, nor does it monitor the size
and shape of the target object, such as with a camera. In ad-
dition, its placement is not carefully designed. By collecting
reports from individual sensors, we can statistically estimate
parameters related to the size and shape of the target object.
The possibility of estimating parameters related to the size
and shape through the use of binary data sensed at unknown
locations is not intuitive.

This research is an extension of our prior studies. Ref-
erence [5] is based on the coverage process theory [6] and
its application to sensor networks [7]-[9]. In [5], sensors
that measure the size of a detected part of the target ob-
ject are used for estimating the overall size. For estimat-
ing a parameter related to its shape, the shape category
(such as rectangular or doughnut-shaped) of the target object
must be known a priori to calculate the object’s detectable
area. We removed such problems and developed an esti-
mation method for parameters related to the shape and size
of the target object using binary sensors that send reports on
whether they detect the target object [10]. That study mainly
focused on the cases in which both the target object and the
sensing area are convex and the sensing area is disk-shaped.
The developed method was evaluated through an experiment
where the target object was a box and the sensor was an in-
frared distance measurement sensor [11]. The experimental
results showed that our theoretical results are valid, although
we need some assumptions to derive those theoretical re-
sults. However, we have not obtained a theory applicable
to the estimation of non-convex target objects when we use
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such an infrared distance measurement sensor. We now ex-
tend the previous method to a more general method applica-
ble even to non-convex target objects when an infrared dis-
tance measurement sensor is used. Our new method enables
the practical estimation of both a convex and a non-convex
target object by using sensors for which the sensing areas are
line-segment-shaped. Furthermore, we extend this method
to estimate both a convex and a non-convex target object by
using sensors for which the sensing areas are of any shape.
The rest of this paper is organized as follows. Sec-
tion 2 describes the model used in this work and summa-
rizes the past results. Section 3 presents the analytical re-
sults for the detectable area of the target object. Section 4
describes the estimation method developed on the basis of
the results in the previous section. Section 5 gives numeri-
cal examples using computer simulations to verify our new
estimation method. Section 6 presents the conclusion.

2. Model

Assume that a target object 7 exists in 2-dimensional space
R2. Its size is ||77|| and its perimeter length is |77], where || x]|
denotes the size of x and |x| denotes the perimeter length of
x. The location of the target object is unknown.

To determine the size ||7||, the perimeter length |71,
and a parameter related to the shape of the target object 77,
a sensor network operator deploys sensors in 2-dimensional
space without knowing their resulting locations. The sen-
sors are networked, and the mean density of these sensors is
A. Each sensor has a sensing area, and it monitors the en-
vironment and detects events within that area. Therefore, if
and only if the target object is in that area, will the sensor de-
tect the target object. This model is called the Boolean sens-
ing model [8], [12]-[14] because whether a point is sensed
is clearly distinguished.

Assume that a sensor is located at (x, y) and the sens-
ing area reference line, which is an arbitrary line attached
to the sensing area and is rotated if the sensing area is ro-
tated, is rotated by 8 from the referenced position. Denote
its sensing area as A(x, y, 6) c R? (Fig. 1). Each sensor can
communicate with the sensor operation center and send a
report indicating whether or not the sensor detects the target
object. That is, the report is 1(A(x,y,0) N T # 0), where
1(w) is an indicator function that becomes 1 if a statement
w is true and O if otherwise. The sensor network operator
receives the report from each sensor through the network.

Assume that if and only if a sensor of which sensing
area is A is located in a detectable area D(7, A) ¢ R3 of
the target object does it detect the target object. That is,
1(A(x,y,) NT # 0) = 1 if and only if (x,y,0) € D(T, A).
Equivalently, D = {(x,y, O)|A(x,y,0) N T # 0}. In the rest
of this paper, we analyze the detectable area D and its size
DIl = % f@ dxdydf. The objective of this analysis is to
show that [|D|| can be described by the linear combination
of the size, the perimeter length, and a parameter(s) related
to the shape of the target object.

For a convex target object, we have obtained the fol-
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lowing equation and developed an estimation method for its
perimeter length |77] and size ||77||, where the sensing area A
is also convex [10].

1
DI = 71 1A+ IT 1l + 1AL (D
/8

However, for target objects that are not convex, there
has been no equation applicable to all cases, and an esti-
mation method has not been thoroughly explored. To the
best of the authors’ knowledge, the only result pertaining
to non-convex targets is from our previous research [10]. In
that paper, we conjectured an equation for the case of disk-
shaped sensing areas and for a certain class of non-convex
target objects.

Due to this, we have not been able to implement the es-
timation method for non-convex target objects through sen-
sors using, for example, lasers and infrared emitting diodes,
as described in [11], because their narrow and sharp sensing
areas cannot be modeled as a disk. Our current study focuses
on parameters such as perimeter length and size estimation
of non-convex target objects.

3. Analysis

This section gives a theoretical background of the estima-
tion method proposed later. It can estimate parameters of
r-tractable (2r-tractable) target objects. Roughly speaking,
an r-tractable target object is one that does not have dents
less-than-r wide. The formal definition of “r-tractable” is in
the Appendix. Practically, many target objects are approxi-
mated by r-tractable (2r-tractable) target objects.

3.1 Line-Segment-Shaped Sensing Area

This subsection assumes that the sensing area of each sen-
sor is a line segment of length r, which is a typical model
of sensing areas of lasers and infrared emitting diodes. The
size of the detectable area that is associated with the target
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object and with the line-segment-shaped sensing area is pre-
sented. When the sensor of the line-segment-shaped sensing
area is located at (x, y) with the rotation angle 6, the sensing
area is a line segment from (x, y) to (x + rcos 6,y + rsin6),
where 0 < 6 < 27

We can then obtain an equation for the size of the de-
tectable area under the line-segment-shaped sensing area.
[Proposition for line-segment-shaped sensing areas]

Assume that the sensing area of each sensor is a line
segment of length r. The target object 7 is r-tractable, and
its boundary is a simple closed curve consisting of line seg-
ments. Then,

,
DIl = ar” + ZITTHITL 2

Here, @ = = 3, 1(m < ¢p){—1+(~m+¢;) cos ¢;/ sin ¢;} where
¢; is the i-th interior angle of the target object.

Proof is shown in Appendix. A convex target object
is r-tractable and @ = 0. Thus, Eq. (1) is a special case of
Eq. (2) for line-segment-shaped sensing areas.

Applying similar discussions used for the exterior
boundary to the interior boundary, we can extend this propo-
sition to target objects containing holes. That is,
[Corollary for target object containing holes with line-
segment-shaped sensing areas]

Assume that each (exterior or interior) boundary of the
target object is a simple closed curve consisting of line seg-
ments. If all the line segments of the boundary are assumed
to be r-tractable, Eq. (2) is valid.

For the disk-shaped holes, we obtain the following
corollary. Note that a hole in a target object is not r-
tractable.

[Corollary for target object containing disk-shaped holes
with line-segment-shaped sensing areas]

Assume that the sensing area of each sensor is a line
segment of length r. Consider a target object 7. Let D be
its detectable area. Construct a new target object by making
a disk-shaped hole of radius @ > r. Then, the size of the
detectable area O and the perimeter length and size of the
new target object 7~ are given as follows:

1Dl = 1Dl - (2a2 cos”! (é) —arq|1- (é)z) 3)

[T = T + 2na, 4)
and
171 = 171 - ma™. 5)

The corollary mentioned above is given as follows. If
there is a hole, the detectable area size reduces by the size
of the intersection area made by two disks for which the
radiuses are a and for which the centers are r apart (see
Fig.2). The size of the intersection is 2(a? cos‘l(ré—z) -

arsin(cos™' (“2)/2).
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3.2 Disk-Shaped Sensing Areas

By using the concept “r-tractable,” we can prove the follow-
ing proposition, which has the same equation conjectured in
[10], under assumptions different from those used in [10].
Proof is shown in the Appendix.

[Proposition for disk-shaped sensing areas]

Assume that the sensing area of each sensor is a disk of
radius r. The target object 7 is 2r-tractable, and its bound-
ary is a simple closed curve consisting of line segments.
Then,

DIl = ar? + AT + 171l (6)

Here, a = Zj{l(¢1 < ﬂ)n_fj + 1(¢j > 71') 1-:[10;757}

[Corollary for target object containing holes with disk-
shaped sensing areas]

Assume that each (exterior or interior) boundary of the
target object is a simple closed curve consisting of line seg-
ments. If all the line segments of the boundary are assumed
to be 2r-tractable, Eq. (6) is valid.

For the disk-shaped sensing area and the target object
with a disk-shaped hole, the detectable area size is given in
[10].

3.3 Sensing Area of General Shape

For the line-segment-shaped sensing areas, Eq. (2) is valid.
In addition, for disk-shaped sensing areas, Eq. (6) is valid.
Therefore, we conjecture that a similar equation is valid
for much broader classes of sensing areas than disk-shaped
and line-segment-shaped ones. As a candidate for a unified
equation including Egs. (1), (2), and (6) as special cases, we
propose the following.
[Unified equation for convex sensing areas]

Define r = maxy, x,ealX1 — X2|. The target object 7~ is
r-tractable, and its boundary is a simple closed curve con-
sisting of line segments. Then,

1
DI = 11771+ 1Al - 7] +BiIlAP + BallAll. )
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Here, 8 = X, 52 = ; is the j-th interior angle
smaller than 7, and «; is a constant determined only by the
i-th interior angle larger than 7 of the target objects.

Note that };¢; = (n — 2)r for the convex target ob-
ject with n vertexes. Thus, Eq.(7) is identical to Eq. (1)
for the convex target object. In addition, for the disk-
shaped sensing area for which the radius is r, |A| = 2ar
and ||A|l = nr?. Therefore, Eq.(7) is identical to Eq.(6)
for the disk-shaped sensing area. Furthermore, for the line-
segment-shaped sensing area for which length is r, |A| =
and || Al = 0. Therefore, Eq. (7) is identical to Eq. (2) for the
line-segment-shaped sensing area. The validity of this equa-
tion is checked through numerical examples shown later in
this paper.

4. Estimation Methods

The analytical results in the previous section enable us to es-
timate the parameters of a target object by using the report
from a binary sensor, even if there is no sensor location in-
formation. The essence of this estimation method is based
on the following three points: (1) the expected number of
sensors detecting the target object is A||D||, where A is the
mean sensor density; (2) the sample value of this number is
the number of reports detecting the target object; and (3) the
size and perimeter length of the target object and a parame-
ter a (parameters 81 and 3,) are expressed as a function of
the detectable area size and the sensing area parameters.

We introduce three (four) types of sensors that have dif-
ferent sensing-area perimeter lengths for estimating the un-
known parameters, size, and perimeter length of the target
object, and a parameter « (parameters 3, and 3,). By apply-
ing the three steps mentioned above, we can obtain a set of
least square error estimators for unknown parameters. In the
following subsection, we describe this in more detail. When
we emphasize the fact that D is a function of a sensing area
radius r, D(r) is used.

4.1 Additional Notation

Assume that the target object moves. (This assumption is
not essential. If the target object does not move, we use
the sensory data at a single time instant.) At ¢ = #, the i-th
sensor sends a report, I;(#;), describing whether it detects the
target object.

Multiple sensor types that have different perimeters of
sensing areas are introduced. Let A; be the mean density
of type-j sensors. Assume that the n;_ +1,---,n;-th sen-
sors are type-j sensors and ng = 0. ij(tk) = :Zn/-_.ﬂ Ii(ty)
denotes the number of type-j sensors detecting the target
object at f;, and T i = 2y Ij(t)/m denotes its time aver-
age. We assume that the sensor network operator knows the
sensor type of each sensor sending a report.

4.2 Estimation

In this subsection, we introduce three types of sensors and
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assume that the sensing area of the type-j sensors is line-
segment-shaped with length r; (disk-shaped with radius r;).

We use /(#) as an estimator of A4{|D(r;)|| for j = 1,2,3
and apply Eq. (2) (Eq. (6)). Note that A;[|D(r)|l = E[L;(t)].
Thus, Eq. (2) or (6) can be rewritten as

Ii(n) = (ar + uI‘TI + II'TII) +e(t) ®)

where e; = fj(tk) - E[ij(tk)], and |A;| is the perimeter length
of the type-j sensor’s sensing area and is 2nr; for a disk-
shaped sensing area and 2r; for a line-segment sensmg area.

Consider the least square error estimators |‘T| ||‘T|| and
a for |77, ||77]|, and a.

m A 5
M‘%%ZEPM> ©)

If |[A;| (j = 1,2,3) are different from each other, we
can obtain explicit formulas of estimators that minimize the
sum of square errors.

[Proposition of least square error estimators]

If|A;| (j = 1,2, 3) are different from each other, Eq. (9)

has the following solution.

(T, @) =

|/7':| 2n 11(7'3—1‘2) IZ(r]_r'j) I’i(rz_rl)
C /11 /12 /13
(10)
L (P\A| -2 A) LRIA - PA)
171 = +
/l]C /lzC
L(P\ A - r3|A
N 3(P1A| = A (11
A3C
& = {(1;(|A| = | A/ 41 + L(A3| = [ A/ A2
+ LA - 1A/ 43}/ C, (12)

where C = r}(|A| - [Az)) + r3 (Az| = | AL + 3 (AL = |A).
Proof: By replacing e () with I; (t)—A; (ar +|ﬂ’ VAEIIVAD)
in Eq. (9) and differentiating it w1th VARIVA || and @,

S It =+ SHT|+ITID)(-2,52) =0

Su (1) —4; (Ozr +|ﬂ’ [T1+IT1D)(=1,)=0 (13)

zwumaaw#mvmvm«w%o
That is,

5T = A + ST+ I, 58 = 0

>, - um+wvuwmuw— (14)

>, - JWrﬂmvuwwxﬂﬂ—

Thus, if Eq. (15) with j = 1,2, 3 has a set of solutions (|‘7'|

||T|| @), the above three equations are satisfied and |T |, ||T||
and & become the least square error estimator.

_ L, Ml = =
I =2;|ar; + 2—7;|'r| + 7] (15)
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Equations (10), (11), and (12) satisfy Eq.(15) with j =
1,2,3.0

Equations (10) and (11) are unbiased estimators. If we
assume that Eq. (7) is valid, we can obtain a similar estima-
tion method by using four types of sensors that have differ-
ent |[Aj| (1 < j < 4) from each other.

Therefore, we obtain the following estimation method.
(1) At 1, receive the report I;(#;) from each sensor whose
location is unknown. (2) Calculate the sum 7 i) =
2?':""/_7]“ I;(t;) for each sensor type (j = 1,2,3). (3) At

t,, take the time average from #; to t, to obtain ] ;o=
S L) /m (G = 1,2,3). (4) Calculate Eqs. (10), (11), and
(12) to obtain the estimators for |7, |77, and a.

Remark:

We should note that the estimators are not dependent
on the movement model of the target object. If a target ob-
ject moves slowly, the sensor reports may have a large cor-
relation with the previous reports. Therefore, to make the
estimates accurate, more data may be needed when the tar-
get object moves slowly. However, the estimation method
does not depend on the speed or movement of the target ob-
ject. In addition, in general, if the total number of sensors
is fixed, high-density sensor deployment in a small area is
equivalent to low-density deployment in a large area. If the
current position of the target object does not overlap with
that in the previous measurement epoch, the current sensory
reports become independent of the previous reports. Then,
the estimation variance is determined only by the total num-
ber of reports. Because the total number of reports is fixed if
the total number of sensors and the number of measurement
epochs are fixed, high-density sensor deployment in a small
area is equivalent to low-density deployment in a large area.
Numerical examples for various speed and those for various
sensor densities are shown in [15].

5. Numerical Examples

This section illustrates the results of computer simulations
executed to check the validity of our developed estimation
method. The following conditions were set for the simula-
tions. (1) Each simulation run length was 100 units of time.
(2) Each sensor senses and sends a report at every unit of
time, i.e., ; = 1,2,---,100. (3) One thousand simulation
runs were performed to obtain each point in each graph. (4)
A; = 1 for all i if it is not explicitly specified. (5) The tar-
get object moved 1 unit length per unit time in a 200 x 200
square unit-length area if not explicitly specified. (6) Sen-
sors were deployed in a homogeneous spatial Poisson pro-
cess.

5.1 Estimations for T-Shaped and Cap-Shaped Target Ob-
jects

This subsection shows the estimation results for a target ob-
ject that is T-shaped or cap-shaped (Fig. 3), where the sens-
ing area is line-segment-shaped. In the numerical examples,
we used the sets of parameters listed in Table 1 for the target
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Fig.3  Examples of target objects.

Table 1  Parameter values of target object.
T-shaped Cap-shaped

No. X Y b4 X Y b4
1 0 05 10 0 0.5 10
2 05 05 10|05 05 10
3 3 05 10 3 0.5 10
4 10 05 10| 10 05 10
5 0 3 10 0 3 10
6 0.5 3 10 | 0.5 3 10
7 3 3 10 3 3 10
8 10 3 10 | 10 3 10
9 0 10 10 0 10 10
10 | 0.5 10 10 | 05 10 10
11 3 10 10 3 10 10
12 10 10 10 | 10 10 10

objects.

The estimation method described in the previous sec-
tion was used. That is, the perimeter length, size, and param-
eter « of the target object were estimated through Egs. (10),
(11), and (12).

The estimated results for T-shaped target objects with
error size bars are shown in Figs. 4 and 6, and those for cap-
shaped target objects are in Figs.5 and 7. The error sizes
used here are the standard deviations of the estimates under
the assumption of mutual independence among I}, I, and I
from each other while the observed variations of the sample
I; are used (see the Appendix for details). Error sizes were
very small for these examples and are sometimes not visible
in these figures.

The estimation of ||77]| and |77| was accurate through
our method for T-shaped target objects even when they were
not r-tractable for some r. This suggests that we can relax
the conditions making Eq. (2) valid. The accuracy remains
good for the combination of (ry, 72, r3).

The estimation of ||77]| and |7| is also accurate through
the proposed method for cap-shaped target objects, except
for a few cases. The most difficult case is the estimation for
a target object with x = 0.5 (No. = 2, 6, 10). For this case,
there is no combination of line-segment-shaped sensing ar-
eas where the target object is r-tractable for r = ry, ry, 3.

An interesting feature is found in the estimation of a.
a is determined only by the interior angles of the target ob-
jects. For T-shaped target objects with x > 0, @ = —1/2n
for a line-segment sensing area. For T-shaped target objects
with x = 0 (i.e., when T-shaped target objects become rect-
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Fig.4 Estimated size ||77]| and perimeter length |77| of T-shaped target
object by line-segment-shaped sensing areas.
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Fig.5 Estimated size ||77]| and perimeter length |77| of cap-shaped target
object by line-segment-shaped sensing areas.

angular), @ = 0 for a line-segment sensing area. Thus, there
is a jump of « at x = 0. However, the sensor cannot detect
the jump at x = 0. When x is only slightly greater than 0
(small x > 0), the estimated a can approximately be equal
to a at x = 0 or it takes an incorrect value. That is, the sensor
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Fig.6  Estimation of « for T-shaped target object by line-segment-shaped
sensing areas.
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Fig.7 Estimation of « for cap-shaped target object by line-segment-
shaped sensing areas.

cannot distinguish between a T-shape (cap-shape) of small
x > 0 and a rectangle or it becomes disorientated.

For the small sensing area combination (ry,r,73) =
(0.1,0.5, 1), even for small x > 0, & at x > 0 is different from
that at x = 0. Thus, this small sensing area combination
can sensitively detect the shape for small x > 0. However,
this combination is likely to yield estimates of « that are too
small. This is a side effect of the sensitive detection of the
T-shape. When x > 0 is not small, other combinations are
better for estimating «.

Similarly, for the disk-shaped sensing area, the esti-
mated results for T-shaped target objects with error size bars
are shown in Figs. 8 and 10, and those for cap-shaped target
objects are in Figs.9 and 11. The results using the disk-
shaped sensing area are quite similar to those using the line-
segment-shaped sensing area, although the error sizes of the
former are a little smaller than that of the latter.

5.2 Target Object with Holes

This subsection checks the validity of corollaries through a
numerical example.

Consider a doughnut-shaped target object with the
outer radius r, and the inner radius a. This target object
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Fig.9  Cap-shaped target object estimation by disk-shaped sensing areas.

can be considered to be formed from an original disk-shaped
target object of radius r, with an added hole of radius a. Be-
cause the original target object is convex, Eq. (1) holds. In
addition, by applying Eq. (3), we can obtain the theoretical
value T, of [|D||. We compare the theoretical values T, and
the simulation sample I;/A;, which is the expected value of
[|D]|. If Eq. (3) holds true, these two values will show good
agreement.
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The relative errors 100(7;/4;/T, — 1) in percentages are
plotted in Fig. 12. The relative error size is small and is
less than 1% for all cases. Thus, we can conclude that
the [Corollary for target object containing disk-shaped holes
with line-segment-shaped sensing areas] is valid. Actually,
there is a small positive bias. This seems to be because the
simulation uses a circular-sector-shaped sensing area with a
very small central angle instead of the line segment.

For a fixed inner radius, as the outer radius (outer di-
ameter) increases, the relative error decreases. In contrast,
for a fixed outer radius, as the inner radius (inner diam-
eter) increases, the relative error also increases. In addi-
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tion, a smaller r, i.e., a smaller sensing area (a shorter line-
segment-shaped sensing area) provides more accurate re-
sults.

Then, we check the validity of the [Corollary for tar-
get object containing holes with line-segment-shaped (disk-
shaped) sensing areas]. The target object is a disk of ra-
dius b with a square hole at the center of the disk, where
the length of a side of the square is a. Disk-shaped sens-
ing areas or line-segment-shaped sensing areas are assumed.
We obtain a theoretical value T, of [|D|| by applying Eq. (2)
with @ = —1/x for a line-segment-shaped sensing area and
Eq. (6) with @ = m — 4 for a disk-shaped sensing area. Con-
sidering that the sampled value of ||D|| is I /4, we plot the
relative errors 100(/;/4;/T, — 1) in percentages in Fig. 13.
We find that the relative error is small and is less than
1.3% for all cases satisfying the condition of 2r-tractable
(r-tractable). The figure shows that a smaller sensing area
and a large target object yields more accurate results. As a
reference, the relative errors for the cases not satisfying the
condition of 2r-tractable (r-tractable) are shown in Fig. 14.
There, the relative error is much larger than in the cases
satisfying the condition of 2r-tractable (r-tractable); it is
larger by more than 10%, sometimes reaching more than
hundreds of percents. In particular, disk-shaped sensing ar-
eas show results that are not as good as those obtained by
line-segment-shaped sensing areas.
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Hr=1(line)
r=10 (line)
®r=0.1(disk)
r=1(disk)
r=10 (disk)

Relative error (%)

0.6
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(inner edge a, outer radius b)

Fig.13  Relative errors for disk-shaped target object with square hole
(condition satisfied).
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5.3 Sensing Area of General Shape

Finally, we check the validity of Eq. (7) through a numerical
example. The target object in this numerical example is as-
sumed to be T-shaped or cap-shaped. For this target object
shape, we find that 8, = 1/2. When a T-shape or cap-shape
becomes rectangular (that is, when x = 0), 8, = 0.

Thus, we plot (DIl = [|771] = [ Al - |T1/27 = Bol|All) as a
function of |A* by replacing ||D|| with I;/A; and using exact
values of ||| and |7]. If the plots are in a straight line,
we can construe that 8 is constant and that Eq. (7) is valid
for various sensing areas. The sensing area used for this
example has circular-sector-shapes with the radius r and the
central angle 7.

Figure 15 plots the results for T-shaped target objects,
and Fig. 16 plots the results for cap-shaped target objects
estimated by sector-shaped sensing areas with the radius r =
0.1,0.5, 1,5, 10 and the central angle n = 7r/2, 1. We can see
that the plotted points are almost on four lines. Thus, Eq. (7)
seems to be valid. However, there should only be two lines if
the parameter 3 is determined only by interior angles. Each
line corresponds to each value of x in these figures. The line
corresponding to x = 0 (the rectangular target object) is far
from the other three lines corresponding to x > 0 (T-shaped
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£ 200 1000 20003000
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or cap-shaped target objects). This suggests that, although
1 is mainly determined by interior angles, it also depends
on other shape-dependent factors. This may be an indication
for a new estimation method dependent on shape.

6. Conclusion

We presented a method for estimating the parameters of a
target object that may be non-convex. These parameters are
size, perimeter length, and parameter(s) determined only by
interior angles. This method uses the reports sent by net-
worked sensors whose locations are unknown. Each re-
port from each sensor is binary information on whether or
not the sensor detects the target object in its sensing area,
which is disk-shaped or line-segment-shaped. It is counter-
intuitive that the binary information from the sensors at un-
known locations can estimate the parameters related to its
shape, but our method produced accurate estimation results
in the numerical examples. In addition, we proposed a uni-
fied equation applicable to generic sensing areas, includ-
ing disk-shaped and line-segment-shaped sensing areas and
non-convex target objects. A numerical example showed
that the unified equation may hold true for a general sensing-
area shape and non-convex target objects.

We implicitly assumed that there is a single target ob-
ject in the monitored region. In future studies, we will
present results for possible multiple target objects in a mon-
itored region [16].
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Appendix A: Proof of Proposition for Line-Segment-
Shaped Sensing Areas [15]

A.1 Definitions

We introduce some definitions for the proof of the proposi-
tion. We assume that the target object boundary is a simple
closed curve consisting of line segments.

Definition 1.

Each line segment of the exterior boundary of the target
object is called a boundary line segment.
Definition 2.

Consider a boundary line segment L. The r-relevant
area of the boundary line segment L is the area attached to
the boundary line segment L outside the target object and
consists of three parts (Fig. A- 1). The first part is the rectan-
gle. One side of the rectangle is the boundary line segment
L. The length of the sides vertical to the boundary line seg-
ment L is r. The other two parts are circular-sector-shaped
areas. Their centers are located at the two end points of the
boundary line segment L, the arch radius is r, and the center
angle is /2. They are attached to the outside of the rectan-
gle.

We use the symbols o and e to denote whether or not
two boundary line segments are adjacent. That is, for two
boundary line segments L and L', L o L’ means they are
adjacent (LN L' # @) and L e L’ means they are not adjacent
(LNL =0).

Definition 3.

Consider the r-relevant area of a boundary line segment
L. If the r-relevant area does not include any point of any
boundary line segment L” where L’ e L, the r-relevant area

r-relevant area of boundary

line segment L
[ A

Boundary line segment L

Target object

Fig.A-1  Relevant area of boundary line segment.
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is called r-tractable. The target object is called r-tractable if
all r-relevant areas of all the boundary line segments of the
target object are tractable.

For any r, a convex target object is r-tractable. A
non-convex target object, however, may or may not be r-
tractable. For example, the T-shaped or cap-shaped target
objects shown in Fig. 3 are r-tractable if x, y, z > r. They are
not r-tractable if min(x, y,z) < r.

Definition 4.

Consider a boundary line segment. The detectable
parallelogram generated from the boundary line segment L
with the interior angle £ is the parallelogram attached to the
boundary line segment L outside the target object (Fig. A-2).
One of the sides of the parallelogram is the boundary line
segment L. The length of the sides that are not parallel to the
boundary line segment is r. The interior angle between the
boundary line segment L and the right side of the parallel-
ogram when the side attached to the boundary line segment
L is located at the bottom is &, where 0 < & < &. The orien-
tation of the boundary line segment is the counterclockwise
trace of the boundary. When we consider a boundary line
segment and are conscious of its orientation, we call it an
oriented boundary line segment.

For a fixed rotation angle 6 of the sensing area, the de-
tectable area is the sum of the target object and all the de-
tectable parallelograms generated from some of the bound-
ary line segments (Fig. A-3). Note that the boundary line
segments for which angles i are between 8 and 6 + 7 do not
generate the detectable parallelogram. Here, the angle ¢ of
the boundary line segment L is defined by the angle between

Detectable parallelogram

[

Boundary line segment

¢ Target object b,

Fig.A-2  Detectable parallelogram.

Sensor

Fig.A-3  Detectable area with line-segment-shaped sensing area.
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the x-axis and the oriented boundary line segment L. As a
result, the interior angle ¢ of the detectable parallelogram is
&=y —0—m(mod 2nr).

A.2 Proof

Consider an oriented boundary line segment L. Let ¢; be
the interior angle at its root end point and ¢, be that of
its top end point. Assume that the boundary line segment
generates a detectable parallelogram with the interior angle
¢ (Fig. A-2). Consider another boundary line segment L’
(Fig. A- 4). If there are overlaps between the detectable par-
allelogram generated by the boundary line segment L and
that generated by another boundary line segment L', a part
of the boundary line segment L’ must be in the detectable
parallelogram of the boundary line segment L.

Note that the detectable parallelogram is included in
the r-relevant area. Because the target object is r-tractable,
there can be no point on any boundary line segment L” in
the detectable parallelogram generated by the boundary line
segment L, where L” o L. Therefore, the boundary line seg-
ment L’ must be adjacent to the boundary line segment L,
i.e., L’ o L. If any boundary line segment L’ that satisfies
L’ o L intersects the detectable parallelogram generated from
the boundary line segment L, these two boundary segments
cause an overlap. The overlap is between the detectable par-
allelogram and the target object itself (Fig. A-5).

When ¢ + & > 2nfor 0 < ¢ < 2mrand 0 < € < 7,
the detectable parallelogram has an overlap where ¢ is the
interior angle of the detectable parallelogram. Thus, ¢ > 7.
As shown in Fig. A-5, the size of the overlap is given by

rcos(m/2 — &)(—rsin(m/2 — &)

+rcos(n/2 — &) tan(¢; —31/2))/2, for0 < é < m/2,

rsin(m — &)(r cos(m — &)

+rsin(r — &) tan(¢; — 37/2))/2,
= —r?sin&sin(é + ¢1)/(2sin ;).

Similarly, when ¢, + (7 — &) > 2, the detectable par-
allelogram has another overlap. Then, ¢, > m. The size of
this overlap is —r? sinésin(mr — € + ¢2)/(2 sin ¢y).

When ¢; + & > 2mr and ¢, + 1 — & > 2m, there are two
overlaps that do not overlap each other because the target
object is r-tractable.

By removal of the size of the overlapped areas, the ac-

form/2 <& <,

Sensor

Sensing
area

r-relevant area

~

Ve V \
/ r // Detectable parallelogra \

I \E

Boundary line segment L

\

é/—\ |

Fig.A-4  Detectable parallelogram and r-relevant area.
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rtan(¢,—31/2)sin(n—-&)
| rcos(n—&)|

7 rsin(n-¢)

I
(|)2 (|)1

o, +&>2m, o, + & <2m

Fig.A-5  Overlap of detectable area with line-segment-shaped sensing

area.

tual size s(a, @1, ¢z, &) of this detectable parallelogram gen-
erated by this boundary line segment is given by arsiné +
r2siné{l(gy + & > 2m)sin(é + ¢y)/sing + Ly + 1 — & >
2m) sin(m—&+¢,)/ sin ¢, }/2, where the length of this bound-
ary line segment is a. Then,

L S(Cl, ¢1’¢2’ é':)df

2
= dar + %{1(n < d)(=1 + (=7 + ¢1) cos b / sin ;)

+1(m<d2)(=1 + (=7 + §2) cos ¢/ sin o)} (A-1)

Let a; be the length of the i-th boundary line segment,
¢:1 and ¢;, be the interior angles at the root and top of the i-
th boundary line segment, respectively, and &; be the interior
angle of the detectable parallelogram generated from the i-th
boundary line segment. Then,

1 27
DIl = 1711 + EZJ; s(ai, i1, in. §)do

1 T
=171 + gz fo s(ai, $i1, Bins ENdE;

1 2
=71+ 5 Z (2a,-r + %(a,-,l + )

= [T + AT |/7 + ar?, (A-2)

where o = 1(7T < ¢i,j)(_1 + (—m+ ¢i,j) COoS ¢i,j/ sin ¢i,j)

(=12 a =14 31w < ¢){-1+ (-7 +¢;) cos ¢;/ sin¢;}.
]

Appendix B: Proof of Proposition for Disk-Shaped
Sensing Areas

B.1 Definitions

In additions to the definitions in Appendix A, we introduce
some definitions for the proof of the proposition for disk-
shaped sensing areas. We assume that the target object

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.4 APRIL 2011

Overlapping detected area

~N
R o !
~ 6" sector- shaped area

x(n Ly L)

4
77X
~ ’
~ //thd)}\/ Detectable circular

Fig.A-6  Detectable rectangles and circular-sector-shaped areas.

boundary is a simple closed curve consisting of line seg-
ments.
Definition 5.

Consider a boundary line segment L (Fig. A-6). The
r-detectable rectangle p(r, L) generated from the boundary
line segment L is the rectangular area attached to the bound-
ary line segment outside of the target object. One of the
sides of the rectangle is the boundary line segment. The
length of the sides vertical to the boundary line segment is
r.

Definition 6.

For a convex vertex, we define an r-detectable circular-
sector-shaped area y(r, L, L"). Its center is located at the ver-
tex, which is the common end point of boundary line seg-
ments L and L’ where L o L', the arch radius is r, and the
center angle is m — ¢, where ¢ is the interior angle of the
vertex. The circular-sector-shaped area is attached to and
lies between two detectable rectangles p(r, L) and p(r, L’)
(Fig. A- 6).

B.2 Preliminaries for Proof of Proposition for Disk-
Shaped Sensing Areas

To prove Proposition for disk-shaped sensing areas, we pro-
vide the following lemmas.
Lemma 1.

Assume that the sensing area of each sensor is a disk of

radius r. The target object 7 is 2r-tractable, and its bound-
ary is a simple closed curve consisting of line segments.
Consider a boundary line segment L of the target object
and its generated r-detectable rectangle p(r, L). p(r, L) does
not overlap with any other r-detectable rectangles p(r, L')
that satisfy L’ e L or any detectable circular sector-shaped
area y(r, Ly, L) that L}, L, # L. The overlap of p(r, L) and
x(r,Ly,Ly) that L) or L, = L is the common line segment
length r and its size is 0.
Proof of Lemma 1. Around the detectable rectangle, define
the possible overlap area: {(x, y)| min, ) (x — a)’ +y-b)? <
r?,(a,b) € p(r,L)}). As shown in Fig. A-7, we can plot the
possible overlap area by drawing circles of radius r around
the detectable rectangle.
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2r-relevant area

Detectable
I/ r r \
rectangle

— -
/ _ " Possible

) overlap area
Boundary line
segment L

Fig.A-7

Possible overlap area.

If no point of a boundary line segment L'(# L) is in
the possible overlap area, a detectable rectangle p(r, L") or a
detectable circular sector-shaped area y(r, L', L") (L # L)
cannot overlap with p(r, L). Conversely, if there is a point
of a boundary line segment L’ in the possible overlap area,
a detectable rectangle p(r, L") or a detectable circular sector-
shaped area y(r,L’,L”) may overlap with the detectable
rectangle p(r, L) generated from the boundary line segment
L. Thus, we focus on a boundary line segment that has a
point in the possible overlap area.

In the remainder of this proof, we take the following
steps. The first step considers the shaded area (i.e., the area
in the possible overlap area outside of the 2r-relevant area)
in Fig. A- 7. The second step considers the intersection area
of the possible overlap area and the 2r-relevant area. In each
of these steps, we will show that p(r, L) does not overlap
with p(r, L") where L’ o L and that p(r, L) does not over-
lap with y(r,L;,L;) where L;,L, # L. We should note
that the possible overlap area is covered by the two areas
that are considered in these two steps. As the final step,
we will show that there is no overlap between a detectable
rectangle p(r, L) and a detectable circular sector-shaped area
x(r, Ly, Ly) where L or L, = L.

As the first step, consider the shaded part of the pos-
sible overlap area in Fig. A-7. The shaded area is outside
of the 2r-relevant area of the boundary line segment L. As-
sume there is a point of a boundary line segment L’ in the
shaded area where L’ o L. If p(r, L") and p(r, L) overlap each
other, the 2r-relevant area of the boundary line segment L’
includes a part of the boundary line segment L. This is a
contradiction of the definition of the 2r-relevant area. Thus,
p(r, L") does not overlap with p(r, L).

Assume that there is a convex vertex shared by two
boundary line segments L; and L, in the shaded area and
that the vertex is the center of a detectable circular sector-
shaped area x(r,Li, L) (L;,L, # L). First, we consider
the case that L; o L. We can easily show that a circular
sector-shaped area y(r, L, L,) whose center is in the shaded
area and of which one line segment L; is adjacent to L
cannot overlap with p(r, L) without overlapping of p(r, L)
and p(r, L,). Note that L, ¢ L. Due to the first step men-
tioned above, p(r, L) and p(r, L,) cannot overlap each other.
Thus, the circular sector-shaped area y(r, L, L,) described
just above cannot overlap with p(r, L)
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Next, we consider the case that Ly, Lye L. If x(r, L1, L)
overlaps with p(7, L), at least one of two 2r-relevant areas of
two boundary line segments L; and L, includes a part of the
boundary line segment L. This is again a contradiction of
the definition of the 2r-relevant area. Thus, a detectable cir-
cular sector-shaped area whose center is in the shaded area
does not overlap with p(r, L). As a result, a boundary line
segment that has a point in the shaded area (the part of the
possible overlap area that is outside of the 27-relevant area of
the boundary line segment L) cannot make areas that overlap
with the detectable rectangle p(r, L).

As the second step, consider the remaining part of the
possible overlap area (i.e., the non-shaded area included in
the possible overlap area). This part is covered by the 2r-
relevent area. Thus, there is no point on a boundary line
segment L” where L’ e L. Therefore, the detectable rectangle
p(r, L) has no overlap with detectable rectangles p(r, L’) or
circular sector-shaped areas y(r,L;,L,) where L' e L and
Ly, L, # L.

Finally, we should note that there is no overlap between
p(r, L) and x(r, Ly, L,) except for two common line segments
in their boundaries where L; or L, = L because of the defi-
nition of the detectable circular sector-shaped area.

Consequently, the r-detectable rectangle p(r, L) does

not overlap with other r-detectable rectangles p(r, L") (Lo L")
or any detectable circular sector-shaped area y(r, L;, L,). O
Lemma 2. Assume that the sensing area of each sensor
is a disk of radius r. The target object 7 is 2r-tractable,
and its boundary is a simple closed curve consisting of line
segments. Consider detectable circular sector-shaped areas.
There are no intersections between two such areas.
Proof of Lemma 2. Consider a detectable circular sector-
shaped area with the arch radius r at a vertex V for which
the interior angle is ¢ and for which boundary line segments
are L) and L,. (Note 0 < ¢ < 7.)

Lemma 1 has already concluded that an overlap cannot
occur between a detectable rectangle and a detectable cir-
cular sector-shaped area. This implies that any straight line
segment part of a detectable circular sector-shaped area does
not have intersections with other detectable circular sector-
shaped areas. Thus, we can focus on analyzing whether
there are intersections between the circular part of the de-
tectable circular sector-shaped area and that of another de-
tectable circular sector-shaped area without any intersection
of their straight-line-segments parts.

Consider the relationship between the detectable circu-
lar sector-shaped area and the 2r-relevant area. If 7/2 < ¢ <
m, the detectable circular sector-shaped area is included in
the 2r-relevent areas of the boundary line segments L; and
L, (Fig. A-8). If ¢ < m/2, any point in the detectable cir-
cular sector-shaped area is included in at least one of the
2r-relevent areas of the boundary line segments L; and Lj.
That is, the detectable circular sector-shaped area for which
circular radius is r and for which the center is the vertex V is
included in a circular sector-shaped area (', whose circular
radius is 2r and center is vertex V. Y is the union of two
circular sector-shaped areas of the 2r-relevent areas of the
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Fig.A-8 Detectable circular sector-shaped area and relevant areas.

boundary line segments L; and L,. Thus, there are no in-
tersections between the circular part of the detectable circu-
lar sector-shaped area and that of another detectable circular
sector-shaped area without any of the straight-line-segment
parts intersecting. O

Lemma 3.

Assume that the sensing area of each sensor is a disk
of radius r. The target object 7 is 2r-tractable, and its
boundary is a simple closed curve consisting of line seg-
ments. Consider two adjacent detectable rectangles p(r, L)
and p(r, L) generated from boundary line segments L and L’
where L o L’. Let ¢ be the interior angles between L and L’.
The size of the overlapped area made by these two adjacent
detectable rectangles is —1(¢ > m)r>(1 + cos ¢)/ sin ¢.
Proof of Lemma 3. Overlaps between two adjacent de-
tectable rectangles occur only when 7 < ¢(< 271). We need
to consider two cases: (i) 7 < ¢ < 37/2 and (ii) 37/2 < ¢ <
2n (Fig. A+ 9). Because the lengths of the boundary line seg-
ments are larger than —r(cos ¢ + 1)/ sin ¢, the overlap area
shape is as shown in Fig. A-9. Here, the lengths of the two
sides of the right-angled triangle, which is half of the over-
lap area, are r and —r(1 + cos ¢)/ sin ¢. Thus, we obtain the
size of the overlapped area as —r*(1 + cos ¢)/ sin ¢ for both
n<¢<3n/2and3n/2 < ¢ <2n. O

B.3 Proof of Proposition

Note that the detectable area of the target object consists
of the target object itself, the detectable rectangles associ-
ated with each boundary line segment, and the detectable
circular-sector-shaped areas associated with each convex
vertex. However, there may be some overlaps among them
(Fig. A- 6). If a detectable rectangle or a detectable circular-
sector-shaped area overlaps the target object itself, this
means it also overlaps other detectable rectangles or de-
tectable circular-sector-shaped areas. Thus, we focus on the
possibility of overlaps among detectable rectangles and de-
tectable circular-sector-shaped areas, i.e., the possibility of
overlaps between (i) two detectable rectangles, (ii) two de-
tectable circular-sector-shaped areas, and (iii) a detectable
rectangle and a circular-sector-shaped area.

By using Lemma 1, we find that a non-zero size over-
lap for the detectable rectangle p(r, L) can happen only with
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Fig. A-9  Overlapped detectable area with disk-shaped sensing area.

p(r, L") where L’ o L. That is, we can remove the possibility
of (iii) mentioned above and need to consider the possibility
of (i) with the condition L’ o L for two detectable rectangles
p(r, L) and p(r, L’). In addition, by using Lemma 2, we can
remove the possibility of (ii).

We should note that the detectable area size is the sum
of the target object size, the sizes of the detectable rectan-
gles, and the sizes of the detectable circular-sector-shaped
areas minus the sizes of the overlapping areas. We also note
that | Dl = 5 [,,dxdyd6 = [, dxdy because the size of the
detectable area for the disk-shaped sensing area is indepen-
dent of 6. Thus, by using Lemma 3 and notations that g;
be the length of the i-th boundary line segment, ¢; be the
j-th interior angle smaller than r, and ¢; be the k-th interior
angle larger than 7 (i, j,k = 1,2,--+),

IDI = TN+ Y ar+ > P = ¢,)/2
i J
- Z{—rz(l + cos )/ sin ¢y}
k

= |7 + AT + ar?,

where @ = 3 (m — ¢,)/2 + X (1 + cos ¢y)/ sin ¢ O

(A-3)
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Appendix C: Error Size

In the numerical example, the estimation error sizes
(perimeter length estimation error size €(|7]), size estima-
tion error size €(||7|), and @ estimation error size €(a)) were
defined as follows. Based on Eqgs. (10), (11), and (12),

(7)) = zn(a,(r§ - 1)+ - 13)?
1/2
+53(r§—r%)2) /ICl, (A-4)
e(l71) = (51(r§|ﬂ3| = 3D + D3| A | = A )
1/2
+ U3(rf|Aa| - r§|ﬂ1|)2) /ICl,  (A-5)
() = (alaﬂﬂ — AN + 52(1A3] = A ])?

1/2
+ 03(1 A - |ﬂz|>2) /ICI, (A-6)

where 7; = var,-//li2 (i = 1,2,3) (var; are variations of the
sample I,). We used var; measured in the simulation. These
estimation error sizes are the standard deviations of the es-
timates under assumption of independence of I;, I», and I
from each other.
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