
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011
79

PAPER

Checking Behavioral Compatibility between Objects by Extending
the Methods Rule

Heung Seok CHAE†a), Joon-Sang LEE††b), Nonmembers, and Jung Ho BAE†c), Member

SUMMARY Behavioral compatibility between subtypes and super-
types in object-oriented systems is a very important issue to enable the
substitution between object types since it supports the extension and evo-
lution of an object oriented system. In other words, the subtype must be
guaranteed that it can provide all behaviors (operations) of the supertype for
replacing the supertype with the subtype. Invocation consistency checking
is one of techniques to verify behavioral compatibility between two object
types. The technique confirms weather an object type can accept all se-
quence of operations of the other object type or not. The classical methods
rule checks behavioral compatibility by verifying invocation consistency of
two object types. The rule argues that subtypes meet behavioral compati-
bility with supertypes if the subtypes’ preconditions of inherited operations
are weakened and postconditions are strengthened. Noting that the clas-
sical methods rule is not sufficient for checking behavioral compatibility
between objects, we propose an extended methods rule on the basis of the
classical methods rule. Based on the proposed extended methods rule, we
have implemented a tool, BCCT, to automatically check behavioral com-
patibility between two objects.
key words: object oriented programming

1. Introduction

An object-oriented system can be viewed as a group of ob-
jects collaborating with one another. From the perspective
of an individual object, the other objects serve as an environ-
ment context. In other words, each object plays its own role
in collaborations. During a maintenance phase, some ob-
jects might be evolved to accommodate some functional ex-
tensions or requirements changes. In such a situation, soft-
ware system must be preserved with its original set of col-
laborative behaviors in spite of substitution of such objects.
To perform reliable maintenance activities, it is very impor-
tant to verify whether an object can be safely substituted for
another one. This problem is often referred to as behavioral
compatibility, in contrast to syntactical compatibility which
only guarantees success in compilation without modifying
the environment context. In software system, syntactical
compatibility can be verified through a static analysis such
as signature checking. On the other hand checking compat-
ibility with respect to object behaviors needs more contrac-

Manuscript received March 29, 2010.
Manuscript revised August 22, 2010.
†The authors are with the Department of Computer Science

and Engineering, Pusan National University, Busan 609-735, Re-
public of Korea.
††The author is with Monitor Laboratory, LG Electronics, Re-

public of Korea.
a) E-mail: hschae@pusan.ac.kr
b) E-mail: tim.lee@lge.com
c) E-mail: jhbae83@pusan.ac.kr

DOI: 10.1587/transinf.E94.D.79

tual conditions.
The problem of behavioral compatibility could be ad-

dressed from the perspective of software reuse and evolu-
tion. In object-oriented programming, there is a language
feature for maintaining behavioral compatibility based on
class inheritance hierarchies. However, it is not guaranteed
that all of the collaborative behaviors are preserved in spite
of replacing an object O1 with another object O2, such that
the class of O1 is a superclass of O2 class. A newly sub-
stituted object must not interfere with the other existing ob-
jects. In order to maintain the issue of behavioral compati-
bility, it is necessary to develop a clear criterion for checking
behavioral compatibility in additions to the concept of inher-
itance or subtyping. In this paper, we propose a new rule, the
extended methods rule, for checking behavioral compatibil-
ity between objects.

In component-based software development, the issue
of behavioral compatibility becomes critical and more im-
portant [1]. Commercial Off-The Shelf (COTS) components
may be delivered without source code, with which the sys-
tem assembler could determine how suitable they are to be
used within an expected software architecture (i.e. environ-
ment context). There would be various kinds of architectural
mismatch in reusing existing software components [2]. Al-
though they focused on the problems resulting from the dif-
ferent assumptions on low-level details of interoperability,
architectural mismatch can be regarded as a kind of behav-
ioral compatibility.

As one of the fundamental features for object-oriented
systems, inheritance defines a relationship between two ob-
ject types, where one object type called subtype inherits all
of the structure and behavior from the other object called su-
pertype. In general, a subtype object can be used instead of
its supertype object. However, a simple use of inheritance
does not necessarily guarantee the behavioral compatibility
between object types related with inheritance. Instead, the
behavior of subtype object should be so cautiously designed
as to specialize the behavior of its supertype object accord-
ing to some clearly defined criteria. Consequently, it would
be an important issue to find out necessary and sufficient cri-
teria for the behavioral compatibility between supertype and
its subtypes [3]–[5].

As one of such criterion for checking compatibility of
dynamic behavior between supertype and subtype, Ebert
and Engels [6] pointed out that dynamic behaviors can be
compared on the basis of what a user observes (observa-
tion consistency) and which operations a user may invoke

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

80
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

on an object (invocation consistency). Observation consis-
tency indicates that each sequence of operation invocations
observable in a subtype object must result in an observable
sequence of its corresponding supertype object. Invocation
consistency requires that each sequence of invocable opera-
tions in a supertype object is also invocable behavior for its
subtype objects. In other words, all sequences of operations
in a supertype object should be preserved by its subtype ob-
jects.

The invocation consistency is concerned with the idea
that objects of a subtype can be used in the same way as
objects of the supertype. For example, AlarmClock can be
regarded as a subtype of Clock if AlarmClock can provide
extra functionalities in addition to those of Alarm. The invo-
cation consistency requires that all operation sequences sup-
ported by Clock should be applied to objects of its subtype
AlarmClock. This suggests that objects of AlarmClock can
be used safely wherever objects of Clock are needed. There-
fore, the invocation consistency can be a useful criterion for
checking behavioral compatibility between a supertype and
its subtypes.

In this paper, we present formal definitions for invoca-
tion consistency between objects whose dynamic behaviors
are expressed as extended finite state machine (EFSM). An
EFSM describes the dynamic behavior of an object. That is,
an EFSM specifies all possible sequences of method calls
which may be invoked on an object. A trace is used to indi-
cate one possible sequence of method calls that could hap-
pen on an object. For invocation consistency, each possible
trace in a supertype must be also preserved in its subtype.

Our proposed method checks functional behavioral
compatibility of a subtype object with its supertype object.
That is, the method shows that the subtype object can accept
all operations of the supertype, but does not concerned about
performance change. For checking non-functional behavior
including timing and schedulability, other specification such
as temporal-logic and UML Profile for Schedulability, Per-
formance, and Time can be used. In this paper, we note that
non-functional properties likes timed constraints are not in-
terested in.

There have been few studies on behavioral compatibil-
ity of object behavior represented as a state machine. In
this paper, we extend the notion of invocation consistency
for a more precise and practical application context by con-
sidering guard conditions of transitions. Early approaches
to behavioral compatibility are based on signatures of op-
erations, requiring operations of the subtype to be consis-
tent with the corresponding operations of the supertype in
terms of pre/post conditions. The basic rule, called meth-
ods rule [5], states that at subtypes preconditions of inher-
ited operations are weakened (i.e., pre-condition rule) and
postcondition are strengthened (i.e., post-condition rule).

We note that the simple application of the classical
methods rule to each transition of trace is not sufficient to
guarantee the invocation consistency. This paper proposes
an extended methods rule which can guarantee the invoca-
tion consistency in a sound fashion. In other words, the pro-

posed rule does not guarantee the self-compatibility. It is the
character of the sound rules. However, Syntactical compat-
ibility checking is enough to verify compatibility between
same types [7], [8].

We also present an algorithm for checking behavioral
compatibility using the proposed approach and describe
BCCT, an automated tool. The BCCT is implemented as
a plugin for Together [9] and can extract two EFSMs infor-
mation from the current project and investigate behavioral
compatibility by the proposed extended methods rule.

The remainder of this paper is organized as follows.
Section 2 briefly presents the formal definitions of dynamic
behavior for object type based on extended finite state ma-
chines and illustrates the notion of invocation consistency
using a simple example. Section 3 presents an approach to
checking invocation consistency by describing the weakness
of the classical methods rule and proposing the extended
methods rule. Section 4 presents an algorithm and its au-
tomated tool, BCCT. Section 5 presents the previous work
regarding the behaviorial compatibility issues. Section 6 is
for concluding remark with a promising future work.

2. Backgrounds

2.1 Dynamic Behavior of Object Type

Definition 1: An Extended Finite State Machine (EFSM)
for an object type ot is represented by efsmot = (S ot,Iot,Oot,
−→x ot

,Σot, sot
0 , S

ot
ψ) where S ot, Iot, Oot, −→x ot and Σot are finite

sets of states, input symbols, output symbols, variables and
transitions, respectively, and sot

0 ∈ S ot and S ot
ψ ⊆ S ot are

an initial state and finite set of final states. Each transition
t ∈ Σot is a 6-tuple: t = (st, s′t , et, ot,Pt,Qt) where st, s′t , et ∈
Iot and ot ∈ Oot are the source (current) state, sink (next)
state, input and output, respectively. Predicates Pt(−→x) and
Qt(−→x) are a precondition and a postcondition on the current
variable values −→x , respectively.

Initially, the machine is at an initial state s0 ∈ S with
initial variable values −→x 0. Suppose that the machine is at the
state st with the current variable values −→x . Upon an input et,
if −→x is valid for Pt, i.e. Pt(−→x) = TRUE, then the machine
follows the transition t, outputs ot, changes the current vari-
able values to −→x which valid for Qt, and moves to the state
s′t .

A particular behavior of an object type can be described
by the sequence of the transitions. And, all the possible se-
quence of the transitions describe the complete behavior of
the object type.

2.2 Invocation Consistency

Informally speaking, the invocation consistency states that
each trace possible in the supertype object should be possi-
ble in its subtype objects. Let us explain the invocation con-
sistency using simple examples. Figure 1 shows dynamic
models of three clock object types using finite state ma-
chines. For simplicity, the examples do not include some

CHAE et al.: CHECKING BEHAVIORAL COMPATIBILITY BETWEEN OBJECTS BY EXTENDING THE METHODS RULE
81

features of EFSM such as transition with guard condition.
Figure 1 (a) describes a very simple behavior of a clock,

which just displays the current time whenever the event tick
arrives between two events on and off. Figure 1 (b) shows
a simple alarm clock, which additionally supports alarming
based on the Clock. The alarm clock starts alarming when
event alarm time reached arrives while displaying the cur-
rent time, and stops its ringing at the event of alarm off.
Figure 1 (c) shows a behavior of a simple stopwatch, which
displays the elapsed second after the event of start. The
stopwatch returns to the state idle from the state counting at
the event of stop.

Definition 2: A trace of an EFSM t1 · tn−1 · · · tn is a se-
quence of adjacent transitions; that is, s′ti = sti+1 for i=1
. . . n-1.

We can obviously recognize that all the possible tran-
sition sequences in the clock can also occur in the alarm
clock. The set of traces of the clock is on · (tick)∗ ·off, which
is evidentially allowed in the dynamic model of the alarm
clock. Therefore, there is invocation consistency between
the clock and the alarm clock. However, some traces of
the clock are not possible in the stopwatch. For example,
the trace on · tick · off can not be realized in the stopwatch
since the stopwatch requires the event start before accept-
ing the event tick. Therefore, the invocation consistency is
not satisfied between the clock and the stopwatch. These
relationships between the three objects suggests that objects
of alarm clock can be used instead of objects of clock, but
objects of stopwatch not.

Invocation consistency indicates that each invocable
behavior at the level of a supertype is also an invocable be-
havior for its subtype. Using the notion of trace in EFSM,
invocation consistency can be defined as follows:

Definition 3: (Invocation Consistency) Let Tot1 and Tot2 be
sets of all traces of object types ot1 and ot2, respectively. If
Tot1 ⊆ Tot2 , ot2 is defined to be invocation consistent with
ot1.

(a) Clock (b) Alarm Clock

(c) Stopwatch

Fig. 1 Examples for invocation consistency.

3. Checking Invocation Consistency

This section presents a criterion for invocation consistency
in EFSM and gives a simple proof that the presented crite-
ria guarantees invocation consistency. We propose an ex-
tended methods rule to overcome shortcoming of the classi-
cal methods rule.

3.1 Invocation Consistency in EFSM

Consider Fig. 2 which shows two EFSMs for two object
types ot1 and ot2. The diagram has a typical form of an
EFSM where each transition is described by a notation
input{pre-condition} / output{post-condition}. Note that
true pre/post-condition is omitted for simplicity. Each tran-
sition is associated with an unique label for the sake of nam-
ing. It is obvious that S 0 and S ′0 are the initial states of
EFS Mot1 and EFS Mot2 .

Definition 4: (Satisfiability). A pre/post condition P satis-
fies an other pre/post condition Q, denoted by P → Q iff let−→
X = {−→x | P(−→x) = TRUE }, Q(−→x) = TRUE where ∀−→x ∈ −→X .

In Fig. 2, a set of values of variable color
−→
X P which

valid for Pta is {{color = green}}. And a set of values of
variable color

−→
X Q which Qt1 (color) = TRUE is {{color =

green}, {color = yellow}}. On these two predicates, Pta sat-
isfies Qt1 ; that is, Pta → Qt1 because −→X P ⊆ −→X Q.

Definition 5: (Correspondence between states or transi-
tions).

(1) The initial states of object types ot1 and ot2 are simply
defined to be correspondent to each other. That is, sot1

0
corresponds to sot2

0 and sot2
0 corresponds to sot1

0 .
(2) State s2 ∈ S ot2 corresponds to state s1 ∈ S ot1 , denoted

by s2 ⇒ s1 iff ∀t1 ∈ in trans(s1), ∃t2 ∈ in trans(s2) ·
t2 corresponds to t1. in trans(s) is the set of the transi-
tions leading to the state s. That is, in trans(s) = {t ∈
Σ|s′t = s}

(a) EFS Mot1

(b) EFS Mot2

Fig. 2 EFSMs of two example objects.

82
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

(3) Transition t2 ∈ Σot2 corresponds to transition t1 ∈ Σot1 ,
denoted by t2 ⇒ t1, iff st2 ⇒ st1 , and there exist
renaming maps, R(et2 = ot1 and R(ot2 = ot1 , where
R : I ∪ O → I ∪ O is an input/output mapping be-
tween the subtype and the corresponding supertype.

The state sb corresponds to sa, if there exists some cor-
responding transition to sb for each of the incoming transi-
tions to sa. For example in Fig. 2, state s′1 corresponds to
state s1 because the transition t1 is the only incoming tran-
sition to the state s1. At the same time, transition t2, an in-
coming transition to s′1, corresponds to t1 because the source
state of t2, s′0, corresponds to the source state of t1, s0 by the
definition of correspondence between the initial states.

The transition t2 corresponds to t1, if the source state
of t2 corresponds to that of t1, and there is a mapping be-
tween inputs/outputs of t1 and t2. Let’s reconsider efsmot1
and efsmot2 in Fig. 2. Transition t2 can correspond to transi-
tion t1 if the source state of t2, s′0, corresponds to the source
state of t1, s0; that is, s′0 ⇒ s0. At the same time, there exists
a mapping, (i2, i1) and (o2, o1) between the inputs/outputs of
t2 and t1.

Definition 6: (The methods rule: correspondence between
guarded transitions). Transition t2 ∈ Σot2 corresponds to
transition t1 ∈ Σot1 with respect to the methods rule, denoted
by t1 �m t2, if [t2 ⇒ t1] ∧ [(Pt1 → Pt2) ∧ (Qt2 → Qt1)]

This definition is concerned with correspondence be-
tween transitions with guard conditions. That is, each transi-
tion is associated with its enabling condition (pre-condition)
and post-execution condition (post-condition). When con-
sidering pre/post-condition, it is not sufficient to check the
correspondence between their source states and input/output
mapping as discussed in Definition 5.

To take into account pre/post-conditions of transitions,
we adopts contra/covariance approach to pre- and postcon-
ditions of operations [10]. That is, at subtypes preconditions
of inherited operations are weakened and postcondition are
strengthened, which permits an instance of a subtype to be
safely substituted for an instance of a supertype without run-
time errors. This rule was also discussed in [5] and referred
to as the methods rule.

We adopts the methods rule in defining correspondence
between guarded transitions. The Definition 6 covers the
methods rule. That is, the precondition of t1 is weakened
in t2 and the postcondition of t1 is strengthened in t2. We
specify the methods rule by implication relations between
pre/post conditions of two corresponding transitions. For
example, let’s consider transitions t1 and t2 in Fig. 2. Transi-
tion t2 satisfies the method rule against transition t1 because
the preconditions of t1 and t2 are equally true and the post-
condition of t2 implies that of transition t1. Similarly, transi-
tion tq corresponds to transition tp with respect to the meth-
ods rule since the source state of tq, s′1, corresponds to the
source state of tp, s1, and there can be a mapping (ip, iq) and
(op, oq). In addition, the precondition of tp, {color = green
or yellow or white} is preserved by that of tq, {color = green

or yellow or white or red}. The postconditions of them are
assumed to be equally true.

This classical methods rule may be used to check in-
vocation consistency. To put it simply, a trace t1 · t2 · · · tn in
EFS Mot1 can occur correspondently on EFS Mot2 if there is
a trace t′1 · t′2 · · · t′n in EFS Mot2 such that ti �m t′i . In other
words, the preservation of a trace can be evaluated by apply-
ing the methods rule to each corresponding transition pair in
the trace. For example, consider a two-step trace t1 · tp in
efsmot1 . There exists a two-step sequence of transitions t2 · tq
in efsmot2 if t1 �m t2 and tp �m tq hold. Thus, we can argue
that the trace t1 · tp in efsmot1 is preserved as t2 · tq in efsmot2 .

However, we noted that the simple application of the
methods rule to each transition in a trace is not sufficient
to satisfy the invocation consistency. That is, the preser-
vation of trace is not guaranteed by checking the methods
rule against the corresponding transitions. Consider another
trace t1 · ta in efsmot1 . Transition tb obeys the methods rule
against transition ta; that is, ta �m tb. Therefore, it seems
that trace t2 · tb is the corresponding trace of trace t1 · ta.
However, the trace t2 · tb is not possible in efsmot2 because
the precondition of the transition tb cannot be satisfied by
the postcondition of the transition t2.

Figure 3 is Venn diagrams which show the pre/post
conditions of the relevant transitions for describing the dif-
ference between trace t1 · ta and t2 · tb. Figure 3 (a) and (b)

(a) Pt1 → P(t2) (b) Qt2 → Qt1

(c) Pta → Ptb (d) Qtb → Qta

(e) Qt1 → Pta (f) Qt2 → Ptb

(g) Qt2 /→ Ptb

Fig. 3 Venn diagrams for illustrating the methods rules.

CHAE et al.: CHECKING BEHAVIORAL COMPATIBILITY BETWEEN OBJECTS BY EXTENDING THE METHODS RULE
83

illustrate the pre/post condition between transitions t1 and
t2, and (c) and (d) describe the pre/post condition between
ta and tb. These are the result of the classical methods rule
in Definition 6.

First let us consider the case that transition ta is al-
ways firable after transition t1. In other words, Qt1 satisfies
Pta which is shown in Fig. 3 (e). By composing Fig. 3 (b),
(c) and (e), we can obtain Fig. 3 (f) which states that the
postcondition of t2 implies the precondition of tb; that is,
Qt2 → Ptb . Therefore, the trace t2 · tb, that corresponds to
the trace t1 · ta, is always possible. This is the case of traces
t1 · tp and t2 · tq in Fig. 2.

However, there exists the case that the postcondition of
transition t1 does not imply the precondition of transition ta.
In that case, the execution of transition tb after transition t2
is not guaranteed. Figure 3 (g) shows the case that the post-
condition of transition t2 does not imply the precondition of
transition tb when Fig. 3 (e) is not assumed. In summary,
trace cannot be preserved when a transition in the trace can
be conditionally executed depending on the pre/post condi-
tions. The simple application of the classical methods rule
to each transition is not sufficient to check whether a trace
in supertypes can be preserved in subtypes. We propose an
extended methods rule to resolve such a problem,

def: The extended methods ruledef: The extended
methods rule

Definition 7: (The extended methods rule). Transition t2 ∈
Σot2 corresponds to transition t1 ∈ Σot1 with respect to the
extended methods rule, denoted by t1 �s t2, if

(1) t1 �m t2 ∧
(2) for all ta ∈ out trans(s′t1), there exists tb ∈

out trans(s′t2) such that
(2.1) [ta �m tb] ∧
(2.2) [(Pta → Qt1)→ (Qt2 → Ptb)]
out trans(s) is a set of the transition from the state s.
That is, out trans(s) = {t ∈ Σ|st = s}.
Based on the classical methods rule expressed by (1),

the extended methods rule is designed to guarantee the exe-
cution of transition tb after t2 even when transition ta condi-
tionally follows by t1. The term (2.1) states that some transi-
tion tb, the follower of t2, should correspond to transition ta,
the follower of t1, according to the classical methods rule.

Generally, transition ta can be conditionally executed
by its precondition whose evaluation may be affected by the
postcondition of its preceding transition t1. For example,
the execution of transition ta depends on the postcondition
of transition t1 in Fig. 2. In case color is set to green, tran-
sition ta will be fired. The term (2.2) in Definition 7 en-
sures that transition tb is always possible after transition t2
by enforcing that the postcondition of t2 should imply the
precondition of tb; that is, (Qt2 → Ptb). In addition, for
transition ta to follow by transition t1, the precondition of
ta is satisfied by the postcondition of t1. The first clause in
(2.2), (Pta → Qt1) is added to incorporate this condition
into the extended methods rule.

3.2 Checking Behavioral Compatibility by the Extended
Methods Rule

The subtype relation between two EFSM can be defined by
applying the extended methods rule against the correspond-
ing transitions.

Definition 8: (Subtype relation between two EFSM). The
extended finite machine e f sm2 is a subtype of e f sm1, de-
noted by e f sm1 ≺s e f sm2, if there exists a corresponding
transition with the extended methods rule in e f sm2 for each
transition in e f sm1. In other words, e f sm1 ≺s e f sm2 if
∀t1 ∈ Σ1,∃t2 ∈ Σ2 [t1 �s t2]

We formally prove that the definition for the subtype
relation between the EFSM (Definition 8) is sound for in-
vocation consistency. In an EFSM, there are two types of
sequence of transition occurrences: always-possible trace
(APT) and conditionally-possible trace (CPT). The APT
means that every transition on that trace can occur when-
ever the source state from it is activated, and may be se-
lected to occur in an externally non-deterministic fashion.
On the other hand, the CPS means that a trace can occur,
or not depending on the specific states of local variables,
namely conditionally. We assume that all transition traces
on an EFSM have its domain as { (APT ∪ CPT)∗ }.
Axiom 1: The transition t1 can be followed by transition t2
if Qt1 → Pt2 or Pt2 → Qt1 . In the first case, t1 can be always
followed by t2 (i.e., t1 · t2 ∈ APT), and in the second case, t1
can be conditionally followed by t2 (i.e., t1 · t2 ∈ CPT).

We need the following lemma which plays a central
role in proving that Definition 8 is a sufficient condition of
the invocation consistency.

Lemma 1: If e f sm1 ≺s e f sm2, for all trace t1 · ta ∈ APT
(e f sm1) ∪ CPT (e f sm1), there exists some trace t2 · tb such
that t2 · tb ∈ APT (e f sm2) and t2 ⇒ t1 and tb ⇒ ta.

Case 1: Let t1 · ta ∈ APT (e f sm1). By Axiom 1, we know
Qt1 → Pta . The existence of t2 and tb such that t1 �s t2
and ta �s tb is satisfied by Definition 8. Using Defini-
tion 7, we know Pta → Ptb and Qt2 → Qt1 . Applying
transitivity on the three predicates, we conclude that
Qt2 → Ptb . Hence, by Axiom 1, t2 · tb ∈ APT (e f sm2)

Case 2: Let t1 · ta ∈ CPT (e f sm1). The existence of t2 and
tb such that t1 �s t2 and ta �s tb is satisfied by Defi-
nition 8. From Definition 7 (2), we know [(Pta →
Qt1) → (Qt2 → Ptb)]. Applying Axiom 1, Pta → Qt1 .
Thus, Qt2 → Ptb . Therefore, following the above ax-
iom, t2 · tb ∈ APT (e f sm2)

Theorem 1: Definition 8 is a sufficient condition of the in-
vocation consistency.

Definition 8 ensures that all elements of transition se-
quence in e f sm1 are also included by its subtype EFSM
e f sm2. In other words, APT (e f sm1) ∪ CPT (e f sm1) ⊆
APT (e f sm2). Now, we can prove Theorem 1 by each trace

84
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

that could occur in e f sm1 has a corresponding trace in
e f sm2.

The proof is done by mathematical induction on the
length of transitions that compose the trace. We first con-
sider a trace of two transitions. And then, assuming that a
trace of length n is satisfied, we try to prove that the theorem
is satisfied for a trace of length n + 1.

Proof:

Theorem 1 can be rewritten as follows:

If e f sm1 ≺s e f sm2, there is a corresponding trace tr2 in
e f sm2 for each trace tr1 in e f sm1

Base case: Assume that the length of tr1 is 1: The trace
consists of only one transition t1, which by Definition
8 has a corresponding transition t2 such that t1 �s t2.
According to Definition 7, Pt1 → Pt2 . Therefore, if
the transition t1 occurs in e f sm1, t2 also can occur in
e f sm2. Hence, the invocation consistency is satisfied.

Induction case: Let us assume that for a trace tr1 of the
length n in s f sm1, there is a corresponding trace tr2

of the same length in e f sm2. Let t1 and t2 be the last
transition of tr1 and tr2, respectively.
We want to show that for a new trace tr′1 of the length
n + 1 such that a transition ta can follow t1 in e f sm1,
there is a transition tb that follows t2 in e f sm2. If ta
can follow t1 in e f sm1, then t1 · ta ∈ APT (e f sm1) ∪
CPT (e f sm1) by Axiom 1. By Lemma 1, we see that
there must exist some tb that follows t2 in e f sm2. That
is, t2 · tb ∈ APT (e f sm2). Thus, a trace of the length
n + 1 which is constructed by appending one transition
to a trace of the length n in e f sm1 can be preserved in
e f sm2.

Figure 4 shows two EFSMs of NormalReactor and
LightReactorWithCooler. NormalReactor controls reac-
tions of a nuclear reactor. Initially, a reactor operates nor-
mally, generating electricity from chain reaction of the reac-
tor. When NormalReactor reads an event PressureSensed, it
changes its state into HighPressured. The acceptable pres-
sure is assumed to range from 0 to 100, which is denoted by
the transition t1. On the state HighPressured, it can accept
two events concerning the temperature of the reactor. When
an event TooHot is received, it shutdowns the reactor. On
the contrary, when an event Hot is received and the pres-
sure ranges from 50 to 100, it degrades the reactor. When it
receives Hot once more, it shutdowns the reactor.

LightReactorWithCooler is intended to be an exten-
sion of NormalReactor. That is, LightReactorWithCooler is
very similar to NormalReactor except two features. First,
LightReactorWithCooler is designed to operate with less
pressure. That is, LightReactorWithCooler assumes that its
operating pressure ranges from 0 to 50, which is denoted
by the transition t2. Second, LightReactorWithCooler can
suspend the reactor and start cooling when it receives Hot,
which is denoted by the transition from HighPressured to

(a) EFS MNormalReactor

(b) EFS MLightReactorWithCooler

Fig. 4 EFSMs of Normal Reactor and Light Reactor with Cooler.

Cooling. When cooling completes, the reactor can resume
its operation.

LightReactorWithCooler seems to be behaviorally
compatible with NormalReactor since LightReactorWith-
Cooler looks to be an extended version of NormalReac-
tor. However some traces that are allowed in NormalRe-
actor cannot be observed in LightReactorWithCooler. For
example, NormalReactor can shutdown the reactor when it
receives PressureSensed with 50 < P ≤ 100, Hot, and Hot.
However, this trace cannot be possible in LightReactorWith-
Cooler.

This incompatibility cannot be checked only by the
classical methods rule. All the transitions except t1 in Nor-
malReactor have the identical transitions in LightReactor-
WithCooler. Therefore those identical transitions obviously
satisfy the classical methods rule. The transition t1 in Nor-
malReactor and the transition t2 in LightReactorWithCooler
satisfy the classical methods rule; that is Qt2 → Qt1 . Even
though all the transitions in NormalReactor satisfy the clas-
sical methods rule against LightReactorWithCooler, we can-
not discover that the trace HighPressure · Hot · Hot cannot
be preserved by LightReactorWithCooler.

On the contrary, the transition t1 cannot correspond to
the transition t2 according to the extended methods rule.
The extended methods rule requires that trace t2 · tb should
always possible in LightReactorWithCooler for the condi-
tional trace t1 · ta in NormalReactor. Since Qt2 does not
always imply Ptb , we can realize that the trace may not be
observed in LightReactorWithCooler.

CHAE et al.: CHECKING BEHAVIORAL COMPATIBILITY BETWEEN OBJECTS BY EXTENDING THE METHODS RULE
85

4. Tool Support

This section presents an algorithm for checking behavioral
compatibility using the proposed extended methods rule and
then describes an automated tool for supporting our ap-
proach.

4.1 Algorithm for Checking Behavioral Compatibility

Figure 5 shows an algorithm for checking behavioral com-
patibility between objects using the proposed extended
methods rule.

The function CheckBehavioralCompatibility() deter-
mines the behavioral compatibility between the given two
EFSMs S M1 and S M2. The function consists of two phases:
Phase 1 for checking correspondence between states and
transitions and Phase 2 for checking the extended methods
rule between two corresponding transitions.

In Phase 1, the correspondence between two EFSMs
on the basis of their structures only; that is, guards on tran-
sitions are ignored. Phase 1 is realized by CheckStateCor-
respondence() and CheckTransitionCorrespondence(). Two
functions are the straight implementations of Definitions 5.
Pairs of corresponding states and transitions are maintained
in CS and CT, respectively. PCT is used to consider traces
with cycle; that is, a state may depend on each other in a
cyclic manner. Each state/transition in a cycle is set to be
correspondent only when all states/transitions in the cycle
are already “corresponding” or “partially corresponding”.

In Phase 2, the proposed extended methods rule is ap-
plied to each transition pair in CT. First, the conventional
methods rule is evaluated against the given two transitions
themselves. And then, the following transitions are investi-
gated according to the Definition 7 (2).

4.2 BCCT: Behavioral Compatibility Checking Tool

We have developed a tool, named BCCT, to support the
automated analysis for checking behavioral compatibility
based on the proposed extended methods rule. Figure 6 is a
screen shot of the tool.

The BCCT has been implemented as a plugin module
on the Together Platform. Together is one of the popular
UML modeling tools. By using the UML modeling func-
tions from Together, the BCCT can focus only on the anal-
ysis of behavioral compatibility. Together provides an open
API for accessing and manipulating diagrams. Using the
open API, the BCCT extracts necessary information from
state machine diagrams in the currently active project.

Initially, a developer describes dynamic behaviors of
two objects with two state machine diagrams using To-
gether. Currently the state machine diagram for Normal-
Reactor is shown. Developers can interact with the BCCT
by the lower pane, named BCCT. The leftmost pane shows
all state machine diagrams in the current project. The but-
ton “Retrieve StateChart Diagrams” is used to extract all

let S M1 = (S 1, s1
0, S

1
ψ, I

1,O1, σ1,V1), let S M2 = (S 2, s2
0, S

2
ψ, I

2,O2, σ2,V2)

// CS : a set of corresponding states
// CT : a set of corresponding transitions
// PCT : a set of partially corresponding transitions

function CheckBehaviorCorrespondence(S M1 , S M2) boolean begin
CS = ∅, CT = ∅
//Phase 1 : Finding Corresponding States and Transitions
for each s1 ∈ S 1 begin
is corespondence = false
for each s2 ∈ S 2

PCT = ∅
if CheckS tateCorrespondence(s1 , s2) then begin
is corespondence = true; break
end if
end for
if not is corespondence then return false

end for

//Phase 2 : Checking Extended Methods Rule
for each < t1, t2 > ∈ CT
if not CheckExtendedMethodsRule(t1 , t2) then return false

return true
end function

function CheckS tateCorrespondence(s1 ∈ S 1, s2 ∈ S 2) boolean begin
if (s1 = S 1

0 ∧ s2 = S 2
0) ∨ < s1, s2 > ∈ CS then return true

T1 = in trans(s1), T2 = in trans(s2)
for each t1 ∈ T1 begin
f ind correspondence = false
for each t2 ∈ T2 such that there is a mapping t1 to t2 begin
if CheckTransitionCorrespondence(t1 , t2) then begin
f ind correspondence = true; break
end if
end for
if not f ind correspondence then return false

end for
CS = CS ∪ {< s1, s2 >}
return true

end function

function CheckTransitionCorrespondence(t1 ∈ σ1, t2 ∈ σ2) boolean begin
if < t1, t2 > ∈ CT ∨ < t1, t2 > ∈ PCT then return true
PCT = PCT ∪ {< t1, t2 >}
if not CheckS tateCorrespondence(source(t1), source(t2)) then return false
CT = CT ∪ {< t1, t2 >}
return true

end function

function CheckExtendedMethodsRule(t1 ∈ σ1, t2 ∈ σ2) boolean begin
//check Definition 5 (1)
if not (pre(t1)→ pre(t2) ∧ (post(t2)→ post(t1)) then return false
//check Definition 5 (2)
for each ta ∈ out trans(sink(t1)) begin
let tb such that < ta, tb > ∈ CT
if post(t1)→ pre(ta) then continue
else if pre(ta)→ post(t1) and not post(t2)→ pre(tb) then return false
end if

end for
return true

end function

Fig. 5 An algorithm for checking behavioral compatibility.

state machine diagrams from the current project. The next
pane contains two state machine diagrams to be checked;
the first diagram regarded as a supertype and the second as
a subtype. Developers can select/deselect state machine di-
agrams to be checked from the leftmost pane by two but-
tons “==>” and “<==” in the rightmost pane. The message
box in the center shows the result of the behavioral compat-
ibility checking between NormalReactor and LightReactor-

86
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Fig. 6 A screen shot of BCCT under Together platform.

Fig. 7 An overview of BCCT.

WithCooler. The message says that the transitions t1 and t2
are not corresponding.

Figure 7 shows a logical architecture of BCCT. The
figure illustrates the main modules of BCCT for checking
behavioral compatibility between two statechart diagrams
using the proposed approach.

We have adopted CVC3 [11] to support an automatic
evaluation of the extended methods rule. CVC3 is an auto-
matic theorem prover for determining the satisfiability of a
first order formula. CVC3 is the latest in the Cooperating
Validity Checker family of tools, building on its predeces-
sors, CVC [12] and CVC Lite [13]. The base versions of
CVC3 have several applications: a proof-producing deci-
sion procedure for HOL Light [14]; a verification tool for
C programs [15], a translation validator for optimizing com-
pilers [16], and a study on the verification of clock synchro-
nization algorithms [17].

t1 in NormalReactor : From Operating To HighPressured # Pressure-
Sensed[true] / ReadPressure[0 < p and p ≤ 100]
ta in NormalReactor : From HighPressured To Degraded # Hot [50 < p
and p ≤ 100] / Degraded [true]

t2 in LightReactorWithCooler : From Operating To HighPressured #
PressureSensed [true] / ReadPressure [0 < p and p ≤ 50]
tb in LightReactorWithCooler : From HighPressured To Degraded #
Hot [50 < p and p ≤ 100] / Degraded [true]

Fig. 8 Some transitions extracted from state machines NormalReactor
and LightReactorWithCooler.

The evaluation of the extended method rules are per-
formed with the help of CVC3. Therefore, BCCT sup-
ports the pre- and postconditions which can be expressed
in the CVC3. CVC3 supports a variety of types: rational
and integer linear arithmetic, arrays, tuples, records, induc-
tive data types, bit vectors and quantifier. CVC3 supports
many fundamental operators: arithmetic operators, compar-
ison operators and logical operators. Therefore, we think
that pre/post conditions can be easily expressed in CVC3.
Therefore, pre/post conditions can be expressed by a for-
mula which consists of primitive and composite variables
and fundamental operators such as arithmetic, comparison
and logical operators. For a more detailed and complete in-
formation, you can refer to the CVC3 User’s Manual [18].

1. Pre/post condition extraction. Initially, pre/post con-
dition specifications are extracted from each state ma-
chine. BCCT can automatically extract them from
UML state machine diagrams. For example, Fig. 8 is
part of the transition specifications including pre/post
conditions which were extracted from NormalReactor
and LightReactorWithCooler. These are same transi-
tion specifications with the message showed in Fig. 6.
Each line represents a specification of a particular tran-
sition by the internal identifier, the source state, the des-
tination state, an input event with precondition, and an
output event with postcondition. For example, the tran-
sition t1 in NormalReactor is one from Operating to
HighPressured in NormalReactor.

2. CVC3 input generation.
CVC3 requires a special form of input which describes
the formula to be verified. BCCT can automatically
generate such an input file to CVC3 from the pre/post
conditions extracted at the previous step.
As seen from the algorithm in POFFig. 5, the function
CheckExtendedMethodsRule (t1 ∈ ΣNormalReactor, t2 ∈
ΣLightReactorWithCooler) depends on five implication rela-
tionships between pre/post conditions of transitions:
Pt1 → Pt2 , Qt2 → Qt1 , Qt1 → Pta , Pta → Qt1 and
Qt2 → Ptb .
Figure 9 shows the input and the output of CVC3 to
evaluate those five formulas for the transitions t1(=t1
in NormalReactor) and t2(= t1 in LightReactorWith-
Cooler) in Fig. 4. The first column represents the for-
mula to be evaluated. The second column describes the
input for CVC3 to evaluate the implication of the for-

CHAE et al.: CHECKING BEHAVIORAL COMPATIBILITY BETWEEN OBJECTS BY EXTENDING THE METHODS RULE
87

Fig. 9 Evaluation of extended methods rule using CVC3.

mulas given in the first column. Command QUERY in
CVC3 is used for evaluating each implication formula.

3. Extended methods rule evaluation using CVC3. By
invoking CVC3, we can automatically evaluate the im-
plication relationship between pre condition and post
condition and then evaluate the extended methods rule.
In Fig. 9, the third column represents the output from
CVC3 for the input in the second column.
As seen from the figure, Pt1 → Pt2 is valid, Qt2 → Qt1
is valid, Qt1 → Pta is invalid, Pta → Qt1 is valid and
Qt2 → Ptb is invalid. Accordingly, the transition t1
in NormalReactor violates the extended methods rule.
Therefore, a trace t1 · ta in NormalReactor does not
have a corresponding trace in LightReactorWithCooler,
which suggests that LightReactorWithCooler is not be-
haviorally compatible with NormalReactor.

4. Verification result output. BCCT outputs the result
of checking behavioral compatibility between two state
machines. If they are evaluated not to be correspon-
dent, BCCT displays the transition pairs which are not
correspondent.

5. Related Work

Several work has treated the problem of behavioral compat-
ibility between object types; that is, the verification of the
behavioral conformance of subtype objects to that of its su-
pertype object. Some of the research on defining subtype
relations is concerned with capturing constraints on method
signatures via the contra/covariance approach. According
to the contra/covariance approach, the domains of input pa-
rameters are generalized and the domains of output parame-
ters are specialized at subtypes [3], [19].

Design by contracts [10] applies contra/covariance ap-
proach to pre- and postconditions of operations. That is,
at subtypes preconditions of inherited operations are weak-

ened and postcondition are strengthened, which permits an
instance of a subtype to be safely substituted for an instance
of a supertype without run-time errors. Pre/post conditions
are widely used to specify the behavior of procedures or
methods, and to check the behavioral compatibility. How-
ever, the constraint, referred to as the methods rule in [5],
between the contracts of a type and the contracts of its sub-
type does not sufficiently address the behavioral compatibil-
ity with respect to invocation consistency.

Findler and Felleisen discussed the contract soundness
on the basis of the Java operational semantics, but they lit-
tle addressed the issues on behavioral compatibility [20]. As
addressed by many researchers, the methods rule for behav-
ioral compatibility is not sufficient to check the properties of
supertype objects and subtype objects. For example, Cole-
man et al. briefly described that some liveness properties
cannot always be preserved only by the methods rule [21].

Liskov and Wing made an important contribution in the
area of programming languages [5]. Using the Larch spec-
ification language, they defined subtype relations in terms
of implications between pre- and postconditions of individ-
ual mutator operations plus additional constraints. Based on
Larch++, Dhara and Leavens extended the work of Liskov
and Wing [5] by generalizing the scope of the consistency
criteria and by adding an additional consistency type, weak
behavioral subtyping [22], which corresponds to invocation
consistency discussed in this paper. Although they pro-
vide explicit criteria for subtype relation between individual
operations, but subtype relation is not addressed from the
viewpoint of dynamic behavior of objects.

There are researches on behavioral subtyping in the
realm of state diagrams [6], [23]. Those approaches tried
to make a mapping between super- and subtypes based on
graph (homo-)morphisms, similar to the work of Ehrich and
Sernadas [24], [25]. Although they considered transitions
with guards, their approach is concerned with observation
consistency and guard conditions are just considered be-
tween two corresponding transitions, not under the context
of trace.

Schrefl and Stumptner [26]–[28] presented the formal
definitions for the two kinds of consistency under the con-
text of object behavior diagram, which is similar to Petri-
net. In addition, they classified invocation consistency into
weak invocation consistency, which corresponds to the no-
tion of invocation consistency discussed in this paper, and
strong invocation consistency. They proposed a set of neces-
sary and sufficient rules for checking behavior consistency
between object life cycles of object types in specialization
hierarchies. The object life cycle can be represented with
not only a set of operations but also an evolution fashion
over time. So, the concept of object life cycle is similar to
trace of object types in this paper. They define the behav-
ior checking rules in the realm of object behavior diagrams,
something like Petri-net. However, the object behavior di-
agram is not so popular as state diagram; tool support may
not be so easy about object behavior diagrams as state dia-
gram. In addition, the incorporation of guarded transitions

88
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

are not explicitly considered in their approach.
Fischer and Wehrheim proposed four behavioral sub-

typing relations based on the process algebra CSP [29]
in the context of distributed systems [30], [31]. Recently
Wehrheim tried to propose a systematic view of subtyping
for specification integrating state-based and behavior-based
views [32]. Based on that work, Olderog and Wehrheim [33]
investigated the notion of inheritance with CSP-OZ [30],
[34], which is a combination of CSP and Object-Z.

The simulation or bi-simulation relation [35] and lan-
guage containment relation [36], [37] lay its computation
model on process algebra such as CSP, CCS or π-
calculus [38]. The notion of language containment can be
used to examine whether or not a language L is contained
to a language L0 by checking the intersection of L and the
complemented L0. A bi-simulation is a binary relation to
verify if one state transition system simulates the other one,
and vice versa. These two standard definitions are based
on theoretical model of Labeled Transition System (LTS),
where each element is associated with a propositional event
label. Therefore, bi-simulation could be considered for the
problem of behavioral compatibility. However, as far as we
know, pre/post conditions are not generally considered in
LTS and even bi-simulation has not been considerably dis-
cussed for LTS with pre/post conditions.

Recently, there are many ongoing researches toward
behavioral compatibility analysis about Web Service. To
composes web services, Z. Wu et al. and P. Xiong et al. pro-
posed checking methodology which considerate under con-
text [39], [40]. Z. Wu et al. adopted π-calculus formalism to
model service behaviors and interactions in a formal way.
P. Xiong et al. modeled multiple web services interaction
with a Petri-net called Composition net (C-net for short).
The two studies introduced same approaches which validate
compatibility of web services in an interaction aspect. That
is, they have focused on interaction with other web services
rather than correct behavior of supertype. Our study has
verified whole behavior compatibility of object with it’s su-
pertype but, they had verified some operations only what
interact with other objects (web services in their research).
Moreover they didn’t consider the pre/post condition of op-
erations also.

6. Conclusion and Future Work

In this paper, we have proposed an approach to checking
the behavioral compatibility between object types. The pro-
posed approach is based on dynamic object models, i.e. ex-
tended finite state machines. By extending classical meth-
ods rule, we suggested the extended methods rule which can
be used to check the behavioral compatibility between a su-
pertype and a subtype. In addition, we described BCCT
to automate the proposed approach. BCCT, implemented
on Borland Together Platform, extracts pre/post conditions
from UML state diagrams and verifies behavioral compati-
bility based on the extended methods rule.

We are going to extend the scope of our ap-

proach to checking behavioral compatibility of compo-
nents in component-based development [41] and services in
SOA [42]. In particular, behavioral compatibility between
components can be a crucial issue because the maintain-
ability and extensibility of component-based systems can be
achieved mainly by replacing one component with another
one. To guarantee the reliable operation of the systems even
after the replacement of some components, it is very impor-
tant to verify that the new component provides a behavior
compatible with the old one. Our extended methods rule can
also be applied to verifying the behavioral compatibility be-
tween such components. There are a lot of works for check-
ing behavioral compatibility between components [43]–[46]
and between services [47]–[50]. To the best of our knowl-
edge, they do not, however, take into account the notion of
dynamic behaviors with pre/post conditions.

Acknowledgments

This work was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD)” (The
Regional Research Universities Program/Institute of Logis-
tics Information Technology).

References

[1] A. Brown and K. Wallnau, “Engineering of component-based sys-
tems,” Component-Based Software Engineering: Selected Papers
from the Software Engineering Institute, pp.7–15, IEEE Computer
Society Press, 1996.

[2] D. Garlen, R. Allen, and J. Ockerbloom, “Architectural mismatch or
why it’s hard to build systems out of existing parts,” Proc. ICSE ’95,
pp.179–185, 1995.

[3] P. Wegner and S. Zdonik, “Inheritance as an incremental modifica-
tion mechanism or what like is and isn’tlike,” ECOOP ’88 (European
Conference on Object-Oriented Programming), pp.55–77, Springer-
Verlag, London, UK, 1988.

[4] P. America, “Designing an object-oriented programming language
with behavioural subtyping,” Proc. REX School/Workshop on Foun-
dations of Object-Oriented Languages, pp.60–90, Springer-Verlag,
London, UK, 1991.

[5] B. Liskov and J. Wing, “A behavioral notion of subtyping,” ACM
Transactions on Programming Languages and Systems, vol.15, no.6,
pp.1911–1841, Nov. 1994.

[6] J. Ebert and G. Engels, “Observable or invocable behaviour.you have
to choose,” Tech. Rep., Universit: at Koblenz, Koblenz, Germany,
1994.

[7] G. Decker and M. Weske, “Behavioral consistency for b2b process
integration,” Advanced Information Systems Engineering, vol.4495,
pp.81–95, June 2007.

[8] W. van der Aalst, “The application of petri nets to workflow man-
agement,” J. Circuits, Syst. Comput., vol.8, no.1, pp.21–66, 1998.

[9] Boland, “Boland together.” http://www.borland.com/us/products/
together/index.html.

[10] B. Meyer, “Design by contract,” Computer, vol.25, no.10, pp.40–51,
Oct. 1992.

[11] C. Barrett and C. Tinelli, “CVC3,” CAV, pp.298–302, 2007.
[12] A. Stump, C.W. Barrett, and D.L. Dill, “CVC: A cooperating valid-

ity checker,” CAV, pp.500–504, 2002.
[13] C.W. Barrett and S. Berezin, “CVC Lite: A new implementation

of the cooperating validity checker category B,” CAV, pp.515–518,
2004.

CHAE et al.: CHECKING BEHAVIORAL COMPATIBILITY BETWEEN OBJECTS BY EXTENDING THE METHODS RULE
89

[14] S. McLaughlin, C. Barrett, and Y. Ge, “Cooperating theorem
provers: A case study combining HOL-Light and CVC Lite,” Electr.
Notes Theor. Comput. Sci., vol.144, no.2, pp.43–51, 2006.

[15] J.C. Filliâtre and C. Marché, “Multi-prover verification of C pro-
grams,” ICFEM, pp.15–29, 2004.

[16] C.W. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L.D.
Zuck, “TVOC: A translation validator for optimizing compilers,”
CAV, pp.291–295, 2005.

[17] D. Barsotti, L.P. Nieto, and A.F. Tiu, “Verification of clock syn-
chronization algorithms: Experiments on a combination of deduc-
tive tools,” Electr. Notes Theor. Comput. Sci., vol.145, pp.63–78,
2006.

[18] C. Barrett and C. Tinelli, “The CVC3 user’s manual.”
http://www.cs.nyu.edu/acsys/cvc3/doc/index.html, 2007.

[19] P. Canning, W. Cook, W. Hill, and W. Olthoff, “Interfaces for
strongly-typed object-oriented programming,” OOPSLA ’89: Con-
ference Proceedings on Object-Oriented Programming Systems,
Languages and Applications, pp.457–467, ACM Press, New York,
USA, 1989.

[20] R.B. Findler and M. Felleisen, “Contract soundness for object-
oriented languages,” Proc. OOPSLA ’01, pp.1–15, 2001.

[21] D. Coleman, F. Hayes, and S. Bear, “Introducing objectcharts of how
to use Statecharts in object-oriented design,” IEEE Trans. Softw.
Eng., vol.18, no.1, pp.9–18, Jan. 1992.

[22] K. Dhara and G. Leavens, “Forcing behavioral subtyping through
specification inheritance,” Proc. 18th International Conference on
Software Engineering, pp.258–267, IEEE Computer Society Press,
Berlin, Germany, 1996.

[23] G. Saake, R. Jungclaus, R. Wieringa, and R. Feenstra, “Inheritance
conditions for object life cycle diagrams,” Proc. EMISA, pp.79–88,
1994.

[24] H.D. Ehrich, J. Goguen, and A. Sernadas, “A categorial theory of ob-
jects as observed processes,” Proc. Foundations of Object-Oriented
Languages (REX School/Workshop), pp.203–228, 1990.

[25] A. Sernadas and H.D. Ehrich, “What is an object, after all?,” Proc.
IFIP WG 2.6 Working Conference on Object-oriented Databases:
Analysis, Design and Construction, pp.39–70, 1991.

[26] M. Schrefl and M. Stumptner, “Behavior consistent extension of ob-
ject life cycles,” Proc. OOER’95, pp.133–145, 1995.

[27] M. Schrefl and M. Stumptner, “Behavior consistent refinement of
object life cycles,” Proc. ER’97, pp.155–168, 1997.

[28] M. Schrefl and M. Stumptner, “Behavior-consistent specialization of
object life cycles,” ACM Trans. Softw. Eng. Methodol., vol.11, no.1,
pp.92–148, Jan. 2002.

[29] C. Hoare, Communicating Sequential Process, Prentice Hall, 1985.
[30] C. Fischer and H. Wehrheim, “Behavioural subtyping relations for

object-oriented formalisms,” Lect. Notes Comput. Sci., vol.1816,
pp.469–484, 2000.

[31] H. Wehrheim, “Behavioral subtyping relations for active objects,”
Form. Methods Syst. Des., vol.23, no.2, pp.143–170, 2003.

[32] H. Wehrheim, “Behavioral subtyping relations for active objects,”
Formal Methods in System Design, vol.23, no.2, pp.143–170, 2003.

[33] E.R. Olderog and H. Wehrheim, “Specification and (property) inher-
itance in CSP-OZ,” Sci. Comput. Program., vol.55, no.1-3, pp.227–
257, 2005.

[34] C. Fischer, “CSP-OZ: a combination of Object-Z and CSP,” Proc.
2nd IFIP Workshop on Formal Methods for Open Object-Based
Distributed Systems (FMOODS), ed. H. Bowman and J. Derrick,
pp.423–438, Chapman and Hall, Canterbury, UK, London, 1997.

[35] R. Milner, Communication and concurrency, Prentice-Hall, Upper
Saddle River, NJ, USA, 1989.

[36] H. Touati, R.K. Brayton, and R. Kurshan, “Testing language con-
tainment for ω-automata using BDDs,” Inf. Comput., vol.119, no.1,
pp.101–109, April 1995.

[37] B. Finkbeiner, “Language containment checking with nondetermin-
istic BDDs,” TACAS 2001: Proc. 7th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems,

pp.24–38, Springer-Verlag, London, UK, 2001.
[38] R. Milner, Communicating and mobile systems: the π-calculus,

Cambridge University Press, 1999.
[39] Z. Wu, S. Deng, Y. Li, and J. Wu, “Computing compatibility in dy-

namic service composition,” Knowl. Inf. Syst., vol.19, no.1, pp.107–
129, 2009.

[40] Y.F.P. Xiong and M. Zhou, “A petri net approach to analysis and
composition of web services,” IEEE Trans. Syst., Man Cybern., A,
Syst. Humans, vol.40, no.2, pp.376–387, 2010.

[41] P. Vitharana, “Risks and challenges of component-based software
development,” Commun. ACM, vol.46, no.8, pp.67–72, 2003.

[42] S. Jones, “Toward an acceptable definition of service,” IEEE Softw.,
vol.22, no.3, pp.87–93, 2005.

[43] N. Hameurlain, “On compatibility and behavioural substitutability
of component protocols,” SEFM, pp.394–403, 2005.

[44] J. Souquières and S. Chouali, “Verifying the compatibility of com-
ponent interfaces using the B formal method,” Software Engineering
Research and Practice, pp.850–856, 2005.

[45] L. Wang and P. Krishnan, “A framework for checking behavioral
compatibility for component selection,” ASWEC, pp.49–60, 2006.

[46] P.C. Attie, D.H. Lorenz, A. Portnova, and H. Chockler, “Behavioral
compatibility without state explosion: Design and verification of a
component-based elevator control system,” CBSE, pp.33–49, 2006.

[47] M. Mecella, B. Pernici, and P. Craca, “Compatibility of e -services
in a cooperative multi-platform environment,” TES ’01: Proc. 2nd
International Workshop on Technologies for E-Services, pp.44–57,
Springer-Verlag, London, UK, 2001.

[48] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Compatibility verifi-
cation for web service choreography,” ICWS ’04: Proceedings of the
IEEE International Conference on Web Services (ICWS’04), p.738,
IEEE Computer Society, Washington, DC, USA, 2004.

[49] V.D. Antonellis, M. Melchiori, and P. Plebani, “An approach to
web service compatibility in cooperative processes,” SAINT-W ’03:
Proc. 2003 Symposium on Applications and the Internet Workshops
(SAINT’03 Workshops), p.95, IEEE Computer Society, Washing-
ton, DC, USA, 2003.

[50] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella, “When are two
web services compatible?,” TES, pp.15–28, 2004.

Heung Seok Chae received the BS degree
in nuclear engineering from Seoul National Uni-
versity in 1994 and the MS and PhD degrees
in computer science from Korea Advanced In-
stitute of Science and Technology (KAIST) in
1996 and 2000, respectively. He worked as a
senior consultant for the TongYang Systems be-
tween 2000 and 2002. During the year of 2003,
he was as a visiting professor in the Depart-
ment of Computer Science at KAIST. Since
2004, he has been on the faculty of the Depart-

ment of Computer Engineering, Pusan National University, Busan, Korea.
His current research interests include object-oriented analysis and design,
component-based software development, component testing, software met-
rics, middleware architecture for availability, and scalability. He is a mem-
ber of the Korea Information Science Society.

90
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Joon-Sang Lee received the B.S. degree
in computer engineering from Dongguk Univer-
sity, Seoul, Korea, and the M.S. and Ph.D. de-
grees in computer science from KAIST, Dae-
jeon, Korea. He was a senior researcher for
LG Electronics, Seoul from 2003 to 2007. He
was a research professor of Korea University,
Seoul from 2007 to 2008. He is currently a gen-
eral manager of the Group of Quality Engineer-
ing, Monitor Laboratory, LG Electronics. His
research interests include software architecture

and software verification.

Jung Ho Bae received the BS and MS
degrees in computer science and engineering
from Pusan National University, Pusan, Korea
in 2007. He is currently a PhD student in the
Object Oriented System Laboratory at the Pu-
san national University. His research interests
include MDT, Testing, design patterns and An-
droid framework.

