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Geometry Coding for Triangular Mesh Model with Structuring
Surrounding Vertices and Connectivity-Oriented Multiresolution
Decomposition

Shuji WATANABE†a), Student Member and Akira KAWANAKA†b), Member

SUMMARY In this paper, we propose a novel coding scheme for the
geometry of the triangular mesh model. The geometry coding schemes can
be classified into two groups: schemes with perfect reconstruction prop-
erty that maintains their connectivity, and schemes without it in which the
remeshing procedure is performed to change the mesh to semi-regular or
regular mesh. The former schemes have good coding performance at higher
coding rate, while the latter give excellent coding performance at lower
coding rate. We propose a geometry coding scheme that maintains the con-
nectivity and has a perfect reconstruction property. We apply a method that
successively structures on 2-D plane the surrounding vertices obtained by
expanding vertex sequences neighboring the previous layer. Non-separable
component decomposition is applied, in which 2-D structured data are de-
composed into four components depending on whether their location was
even or odd on the horizontal and vertical axes in the 2-D plane. And a
prediction and update are performed for the decomposed components. In
the prediction process the predicted value is obtained from the vertices,
which were not processed, neighboring the target vertex in the 3-D space.
And the zero-tree coding is introduced in order to remove the redundancies
between the coefficients at similar positions in different resolution levels.
SFQ (Space-Frequency Quantization) is applied, which gives the optimal
combination of coefficient pruning for the descendant coefficients of each
tree element and a uniform quantization for each coefficient. Experiments
applying the proposed method to several polygon meshes of different res-
olutions show that the proposed method gives a better coding performance
at lower bit rate when compared to the conventional schemes.
key words: polygonal mesh, multiresolution decomposition, 2-D structur-
ing, geometry data coding, space-frequency quantization

1. Introduction

3-D image models are being used increasingly in various
fields, such as industrial product design, movies, video
games, and the digital museum [1]. The polygonal mesh is
a well known general-purpose shape model used as a repre-
sentation model for representing 3-D images. The polygonal
mesh is composed of two basic types of data: (a) geome-
try data - the coordinate values of vertices constructing the
mesh, and (b) connectivity data - the set of vertex indices
that represents each polygon of the mesh. The geometry
data share a larger amount of the total than the connectiv-
ity data. The geometry data coding is important for efficient
polygon mesh representation.

In many studies on geometry coding, polygons which
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were not triangles were divided into several triangles, and
the triangle mesh obtained was used for the coding [2],
[3]. The geometry coding schemes can be roughly clas-
sified into two categories, i.e., those with a perfect recon-
struction property that performs the geometry coding main-
taining the mesh connectivity [4]–[15], and those without a
perfect reconstruction property that change the connectiv-
ity and geometry from the original using remeshing proce-
dures [16]–[22]. Touma et al. [7] proposed a representative
technique of the former scheme. In this scheme, the ge-
ometry data are encoded by predictive coding based on a
parallelogram rule. A representative scheme of the latter
category is the one using the semi-regular wavelet trans-
form (WT) [23] proposed by Khodakovsky et al. [18]. This
scheme applied the wavelet transform to the geometry data
of a semi-regular mesh which has been changed from origi-
nal mesh by MAPS algorithm [24]. Although this scheme is
not capable of reconstructing the original mesh perfectly, it
gives an excellent coding performance at lower coding rate
compared to that of schemes with a perfect reconstruction
property. On the other hand, the coding schemes with a per-
fect reconstruction property gave good coding performances
at a higher coding rate.

In this paper we propose a new geometry coding
scheme with a perfect reconstruction property to improve
the coding performance at lower bit rates. To apply the mul-
tiresolution decomposition to the geometry data of a mesh
we developed the surrounding vertex structuring which ar-
ranges the vertices of the mesh neighboring those of the pro-
cessed area starting from a vertex on a 2-D plane. The sur-
rounding vertex structuring derives the geometry data struc-
tured on the 2-D plane [15]. The 2-D structured geome-
try data are decomposed into four components in a non-
separable manner at one decomposition level. The decom-
posed components are obtained by the prediction and up-
date procedures in the same way as in the lifting wavelet
transform. The prediction and update procedures are per-
formed considering the connectivity of the mesh. The oc-
tave decomposed coefficients are derived by applying one-
level decomposition to the updated component recursively.
To remove the redundancy of the decomposed coefficients
at similar position between the different resolution levels,
zerotree coding [27]–[29] with space-frequency quantiza-
tion (SFQ) [29] is introduced. In SFQ the parent-children
relationships between the decomposed coefficients located

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



WATANABE and KAWANAKA: GEOMETRY CODING FOR TRIANGULAR MESH MODEL
887

at similar positions between different resolution levels are
formed, and the optimal decision whether all descendant
coefficients of each tree element are pruned (quantized to
zero) or the children coefficients are quantized uniformly
on the basis of the cost function treating the coordinate
values of geometry as a vector is determined. To evalu-
ate the proposed scheme some experiments using several
3D meshes with different connectivity complexity were per-
formed. The coding performances of the proposed scheme
are compared to the scheme adopted in MPEG-4, a TG
coder which has been used as a benchmark of perfect recon-
struction schemes, and the scheme by Gumhold et al. [10]
which used a higher-order prediction.

2. 2-D Structuring Process of Surrounding Vertices

In cases where a triangle mesh has some holes, an imaginary
vertex for a hole is supposed, and it is thought to be linked
to the vertices forming the boundary of the hole. And the
structuring procedure is applied to the triangle mesh without
holes. The vertices of the mesh are structured on a 2-D plane
by extracting the vertices an edge distance away from a layer
subsequently starting from a vertex. Here the edge distance
between two vertices is defined as the minimum number of
edges on routes which are connecting the vertices. Also a
valence of vertex is used as a criterion for selecting a vertex
in the structuring processing. In Fig. 1 the valence of each
vertex is shown as a number in the circle indicating a vertex.
A vertex whose valence is a maximum among the process-
ing candidates is chosen as the next processing object. If
several vertices have the same maximum valence number, a
vertex which appears ahead in the scanning of the connectiv-
ity data is selected. We call this a maximum valence vertex.
The flow of the surrounding vertex structuring is described
below.
Step 1:
First the maximum valence vertex in the vertices construct-
ing the triangle mesh is selected as an initial vertex. The
index of the initial vertex is substituted for an element of the
vertex index table v(0, 0) as shown in Fig. 1 (a).
Step 2:
The vertices which are one edge distance away from the ini-
tial vertex are extracted while maintaining their neighboring
relation. The vertex sequence is formed by taking the max-
imum valence vertex in the extracted vertices as the head of
the sequence, and in addition taking the maximum valence
vertex of two vertices linking the head vertex as the vertex
following the head in the sequence as shown in Fig. 1 (b).
When the length of the sequence is denoted by n1, the ver-
tex indices of the sequence are substituted for the elements
of the vertex index table v(1, k), k = 0 · · · n1−1. The vertices
of this sequence are marked “processed”, and construct the
1st layer of structured vertices.
Step 3:
The vertex sequence at s-th layer is extracted as vertices one
edge distance away from vertices in (s − 1)th layer. The
vertex order of the sequence is determined in the same way

Fig. 1 An example of the surrounding acquisition process; (a) 0th layer:
select the maximum valence vertex as the start vertex of the process, (b) 1st
layer: select the start vertex of the 1st layer and determine the direction of
the structuring of all sequences, (c) 2nd layer: select the start vertex of the
2nd layer, and the direction of the sequence is determined as same as that
of the 1st layer.

as in step (2). When the length of sequence is denoted by
ns, the extracted vertices are substituted for the elements of
the vertex index table v(s, k), k = 0 · · · ns − 1. An example
of substantial vertex layer extraction is shown in Fig. 1 (c).
Step 4:
Step (3) is repeated increasing the layer number s to s + 1
until all vertices are marked “processed”. The supposed ver-
tices which were introduced to treat the triangle mesh with-
out holes are removed from the vertex index table. Then,
holes arisen in the vertex index table are closed by shifting
the indices on the table in the direction toward the origin
along the k axis.

Touma et al. [7] also trace the vertex surrounding the
pre-processed region in one dimensional manner. The trac-
ing order for the vertices is used for predicting the vertex
geometry. In the proposed scheme the vertices surround-
ing the pre-processed region are treated as the elements of
a layer which construct a line in the 2-D plane. And the
surrounding vertex structuring will be used for the multires-
olution decomposition of the vertex geometry of 3-D mesh.

An example of the structured vertex table is shown
in Fig. 2. Geometry data of the triangular mesh are struc-
tured on a 2-D plane according to the structured vertex ta-
ble v(s, k). At the position (s, k) of the structured plane,
the vertex index v is determined from the structured ver-
tex table v(s, k) and the structured geometry data are ob-
tained by assigning coordinate values (xv, yv, zv) of the ver-
tex to that position. Figure 3 shows structured geometry
data r(s, k) = (x(s, k), y(s, k), z(s, k)) of the triangular mesh
shown in Fig. 2.
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Fig. 2 A example of the triangular mesh and structured vertex index ta-
ble; (a) a triangular mesh in which the number in the circles shows index
of each vertex, (b) vertex index table.

Fig. 3 Structured geometry data of the triangular mesh shown in
Fig. 2 (a).

3. Connectivity-Oriented Multiresolution Decomposi-
tion (CO-MRD)

In order to reduce the correlation of geometry data of ver-
tices, a novel multiresolution decomposition is derived.
Since the geometry data were structured on a 2-D plane, we
can decompose the geometry data into multiresolution com-
ponents by means of the wavelet transform [25], [26]. In a
2-D wavelet transform for an image, the decomposition is
into four frequency bands by applying one-dimensional de-
composition to it along the horizontal and vertical axes sep-
arately. The multiresolution decomposed coefficients can
be obtained by repeating the one-level decomposition to the
low frequency band. The separable processing is used on the
assumption that the correlation of image pixel value can be
represented as a product of two functions along horizontal
and vertical axes respectively. Also in the lifting wavelet ap-
proach, the high frequency component is usually obtained as
a prediction error of a pixel at an odd position using the pixel
values on both sides of it, and the low frequency component
is obtained as an updated value of a pixel at an even position
with the prediction errors of the pixels on both sides of it
in the one-dimensional decomposition. Since the valence of
vertex which is the number of its neighbors in 3-D space is
an arbitrary integer larger than 3 for a triangle mesh without
holes, it is not reasonable to assume that the correlation of
structured geometry data is separable in regard to the hor-
izontal and vertical axes. So we propose a non-separable
multiresolution decomposition scheme in which the geom-

etry data are decomposed into four components depending
on the positions of data in the s-k plane. And the high fre-
quency components are obtained as a prediction error from
the geometry data of vertices neighboring it in 3-D space
and having not been processed. And the low frequency com-
ponent is obtained as an updated value calculated with the
prediction errors of the neighboring vertices.

We proposed a connectivity-oriented multiresolution
decomposition (CO-MRD) method. CO-MRD decomposes
coefficients with the prediction and the update process along
the horizontal and vertical axes of the 2-D plane. This CO-
MRD is separable component decomposition. The struc-
tured geometry f (s, k) on the 2-D plane (s, k) are decom-
posed into four set of elements S (l)

EE , S (l)
EO, S (l)

OE , and S (l)
OO by

whether s and k of each element are even or odd. An exam-
ple of the decomposition is shown in Fig. 4. Each elements
in S (l)

OO, S (l)
EO, and S (l)

OE is transformed to the prediction er-
ror, and each element in S (l)

EE is updated with the prediction
errors. The decomposition and transformation are repeated
recursively. The set S (l)

EE at the resolution level l is decom-
posed into S (l+1)

EE , S (l+1)
OE , S (l+1)

EO , and S (l+1)
OO . The transformed

coefficients at each resolution level obtained as follows.
At first the prediction error of S (l)

OO, which is denoted
by g(l)

OO(s, k), is obtained with the prediction value calcu-
lated from the elements of S (l)

EE , S (l)
OE , and S (l)

EO as shown
in Fig. 5 (a).

g(l)
OO(s, k)

K
= f (l−1)(2s + 1, 2k + 1)

− 1

| R(l)
OO(2s + 1, 2k + 1) |

∑

(m,n)∈
R(l)

OO(2s+1,2k+1)

f (l−1)(m, n) (1)

where R(l)
OO=S (l)

EE ∪ S (l)
OE ∪ S (l)

EO, f (0)(s, k) = f (s, k). R(l)
i (s, k)

indicates the elements which are depart l in the edge distance
from the element at (s, k) in R(l)

i and K is a transform param-
eter. Next, the prediction error of S (l)

EO denoted by g(l)
EO(s, k)

is obtained from the elements in S (l)
EE and S (l)

OE , and the pre-
diction error of S (l)

OE by g(l)
OE(s, k) is obtained from S (l)

EE as
shown in Figs. 5 (b) and (c).

g(l)
EO(s, k)

K
= f (l−1)(2s, 2k + 1)

− 1

| R(l)
EO(2s, 2k + 1) |

∑

(m,n)∈
R(l)

EO(2s,2k+1)

f (l−1)(m, n) (2)

g(l)
OE(s, k)

K
= f (l−1)(2s + 1, 2k)

− 1

| R(l)
OE(2s + 1, 2k) |

∑

(m,n)∈
R(l)

OE (2s+1,2k)

f (l−1)(m, n) (3)

where R(l)
EO = S (l)

EE ∪ S (l)
OE and R(l)

OE = S (l)
EE . Then the updated

values of S (l)
EE denoted by f (l)(s, k) is obtained with the pre-

diction errors which were obtained previously.
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Fig. 4 The decomposition into four components: Even-Even (light
gray), Odd-Even (slightly dark gray), Even-Odd (dark gray), and Odd-Odd
(gray) components.

Fig. 5 An example of the prediction process; (a) prediction of the OO
component: predicted by other component (EE, OE and EO), (b) pre-
diction of the EO component: predicted by EE and OE components, (c)
prediction of the OE component: predicted only by EE component.

f (l)(s, k)

K̃
= f (l−1)(2s, 2k)

+
1

| R(l)
EE(2s, 2k) |

∑

w∈W

∑

(m,n)∈
R(l)

EE (2s,2k)

g(l)
w (m, n)

K
(4)

where R(l)
EE = S (l)

OE ∪ S (l)
EO ∪ S (l)

OO, W = {OE, EO,OO}, and K̃
is a transform parameter.

In the synthesis process the updated value f (l−1)(s, k)
and the prediction errors g(l−1)

w (s, k), w = OE, EO,OO
at the resolution level (l-1) are derived from the updated
value f (l)(s, k) and the prediction errors g(l)

w (s, k), w =

OE, EO,OO at the resolution level l. The structured geom-
etry f (s, k) is able to be obtained as f (0)(s, k) by repeating
the synthesis process. In the decomposition and synthesis
processes the extraction of the elements which are depart l
in the edge distance from the element at (s, k) is performed
with the connectivity of polygonal mesh.

4. Vector Space-Frequency Quantization

When structured data on a 2-D plane such as an image were
wavelet transformed, there was usually redundancy in the

Fig. 6 The relationship between parents and children of decomposed co-
efficients for the space-frequency quantization.

wavelet coefficients at similar position in different resolu-
tion levels, and the zerotree coding is known to be effec-
tive in reducing this redundancy. In the zerotree coding
the parent-children relationships between the coefficients at
similar position in different resolution levels are constructed
and the information on whether all coefficient amplitudes
of the descendant of each element are smaller than a quan-
tization level or not are encoded. Especially the space-
frequency quantization which determines the optimal com-
bination with spatial zerotree quantization and standard uni-
form quantization of its children node leads to a better cod-
ing performance. We introduce a zerotree coding based
on SFQ [29] to reduce the redundancies in the mutiresolu-
tion decomposed coefficients at similar positions in differ-
ent resolution levels. A vector SFQ which calculates the
rate-distortion characteristics associated with the coordinate
values of vertex as a vector is introduced.

The tree structures are defined among the transformed
coefficients at similar position in different resolution levels.
Each element in the lowest resolution level L is associated
with three elements, and each element except for the ele-
ments in the lowest resolution level is associated with four
elements at similar position as shown in Fig. 6. The asso-
ciated elements of an element i are called children of the
element Ci, and the set of its descendant in which its chil-
dren are removed is denoted by Ui. The decision whether
the descendant of an element are pruned (are quantized to
zero) or not is made by an iterative processing. Q(m) denotes
a subtree which is obtained in the iteration count m and its
initial tree is set to the full tree T . The full tree T is prepared
as a tree rooting the elements located in the lowest resolu-
tion S (L)

EE as shown in Fig. 6 and Q(m) is the optimal subtree
in which the descendants of some elements were pruned as
shown in Fig. 7. The optimal subtree Q(m) is obtained by the
following algorithm:
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Fig. 7 An example of combination between the coefficient pruning and
the uniform quantization: solid line denotes uniform quantized coefficients
and dashed line denotes pruned coefficients.

ALGORITHM
Step 1:
J∗(Ui) denotes the optimal Lagrange cost associated with
the tree at node i. d denotes the depth of the tree. And
d(m)

max denotes the maximum depth of Q(m). Each parameter
is initialized.

Q(0) ← T

m← 0

J∗(U(i))← 0 ∀i ∈ leaf nodes of T.

d ← d(m)
max − 1

Step 2:
Calculate a probability of occurrence p(m)(ĝi) of the quan-
tized coefficients vector of an element i in Q(m). Here the
original coefficients vector is denoted by gi which is com-
posed of three transformed coefficients for the coordinate
values (xi, yi, zi) at the element i, and ĝi denotes the quan-
tized vector of gi.
Step 3:
The pruning map n(m)

i which indicates whether the descen-
dant of each element are pruned or not is obtained.

if ∑

i∈Ui

g2
i ≤
∑

j∈Ci

[J(m)
j + J∗(U j)]

then

n(m)
i = 0, J∗(Ui) =

∑

i∈Ui

g2
i

else

n(m)
i = 1, J∗(Ui) =

∑

j∈Ci

[J(m)
j + J∗(U j)]

where

J(m)
i = D(m)

i + λR
(m)
i

D(m)
i =| gi − ĝ(m)

i |2

R(m)
i = − log2

(
p(m)(ĝi)

)

Here, J(m)
i denotes the Lagrange cost at element i in repeat

count m. D(m)
i and R(m)

i denote a distortion and a rate, respec-
tively. n(m)

i denotes a binary pruning map at element i. When
n(m)

i is 0, this means that the pruning process is performed.
Otherwise, the uniform quantization process is performed.
λ is the Lagrange multiplier.
Step 4:
If all nodes at every tree depth are processed, go to step 5.
Else go to step 3.

d ← d − 1

go to step3 if d ≥ 0.

Step 5:
If there are no new elements that are pruned, finish the algo-
rithm. Otherwise, increase the repeat count m and go to step
3.

if Q(m) � Q(m+1)

then

m← m + 1

d ← d(m)
max − 1

go to step3

else

end the algorithm.

The pruning map and the quantized coefficients of the
elements which were not pruned are encoded with the arith-
metic coding.

5. Experiments

In order to evaluate the coding performance of the proposed
scheme, we carried out some experiments using the triangu-
lar meshes “Venus”, “Feline”, “Horse”, and “Dino” shown
in Fig. 8. We used a metric peak signal to noise ratio (PSNR)
for the shape distortion of the reconstructed model as fol-
lows:

PSNR = 20 log10
peak
Drms

[dB] (5)

The peak is the diagonal length of the bounding box and
Drms is the root mean square error between the reconstructed
model and the original calculated by the Metro [30] which
is a well known tool for evaluating the distortion of recon-
structed models. Figure 9 shows structured geometry data of
the model “Venus” by transforming each coordinate value to
image intensity. The image size is 682x296. The coordinate
values in the horizontal direction tend to vary more contin-
uously than in the vertical direction, because the coordinate
values of the vertices which were located in the same layer
in 3-D space were arranged in the horizontal direction.

In order to determine the optimal resolution level for
the proposed scheme, we show the rate-distortion curves of
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Fig. 8 Triangular meshes for experiments; (a) “Venus” (134,345 ver-
tices, 268,686 polygons), (b) “Feline” (49,864 vertices, 99,732 polygons:
non-zero genus model), (c) “Horse” (19,851 vertices, 39,698 polygons), (d)
“Dino” (14,070 vertices, 28,136 polygons).

Fig. 9 Structured geometry data of the triangular mesh “Venus”; (a) x
coordinate, (b) y coordinate, (c) z coordinate.

Fig. 10 Rate-distortion curves of geometry data of “Venus” when the
decomposed level was changed.

Fig. 11 Rate-distortion curves of geometry data of “Venus” in cases of
treating three coordinated values as scalars and one as a vector in SFQ.

geometry data for the model “Venus” at several resolution
levels in Fig. 10. Here the parameters of multiresolution
decomposition K and K̃ are set to 1.3 and 2.0 empirically.
Considering the rate-distortion curves shown in Fig. 10 and
the calculation complexity, we set the optimal resolution
level as two in the following experiments. Although CO-
MRD requires to search the adjacent vertices for a target
vertex, its computation time can be reduced by making the
adjacent vertex list for each vertex before the multiresolu-
tion decomposition processing. CO-MRD for the 3-D mod-
els used in the experiments is time consumed 1.4 to 4.5 times
comparing to ordinary shape-adaptive wavelet transform in
case of including the processing of the adjacent vertex list
formation. Next, the coding performances in case of treat-
ing the coordinate values as three scalars and a vector were
compared. Figure 11 shows the coding performances in two
cases. The case of treating them as a vector gives higher
PSNR. Because three pruning maps are needed to be en-
coded in case of treating them as three scalars, it seems to
become overhead compared to the vector case.

Figure 12 shows the coding performance of the pro-
posed scheme compared to those of conventional schemes.
The solid line shows the coding performance of the pro-
posed scheme, the dotted line shows that of the scheme with
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Fig. 12 Rate-distortion curves of geometry data applying the proposed
scheme, the MPEG-4 and the TG coder; (a) “Venus”, (b) “Feline”.

Table 1 Coding performances of the proposed scheme, TG coder and
GA coder of Gumhold et al. [10] at a higher coding rate.

Model Coding rate (bpv) PSNR (dB)

(No. of vert.) TG
GA &

proposed TG & GA proposed

Feline
(49,864) 14.17 13.74 89.00 89.67

Horse
(19,851) 15.16 14.26 88.49 88.86

Dino
(14,070) 17.40 17.01 88.41 89.67

the linear prediction adopted in MPEG-4 [5], [6], and the
dotted line of longer length shows the TG coder [7] which
is often used as a representative scheme with perfect recon-
struction property. The proposed scheme improves coding
performance significantly at lower coding rate among the
schemes with perfect reconstruction property. Also, in order
to evaluate the coding performance of the proposed scheme
at a higher coding rate, it was compared with the scheme of
Gumhold et al. [10] (we call it GA coder) which improved
the prediction of TG coder. Table 1 shows PSNR of the pro-
posed scheme and GA coder at the same coding rate with the
coding performance of TG coder for 3-D meshes “Feline”,
“Horse”, and “Dino”. The proposed scheme gives better

Fig. 13 Rendering images of reconstructed model of “Venus”; (a) en-
coded by the proposed scheme (4.13 bpv, 78.62 dB), (b) encoded by the
TG coder (4.21 bpv, 65.30 dB).

Fig. 14 Rendering images of reconstructed model of “Feline”; (a) en-
coded by the proposed scheme (5.11 bpv, 72.01 dB), (b) encoded by the
TG coder (5.13 bpv, 64.78 dB).

PSNR values at a higher coding rate. The rendered images
of reconstructed 3D meshes for the proposed scheme and
TG coder at approximately the same coding rate are shown
in Figs. 13 and 14. The proposed scheme can be faithfully
reconstructed to the original 3-D mesh.

6. Conclusions

In this paper, we proposed a novel coding scheme for the
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triangular mesh geometry. In order to apply the 2-D cod-
ing scheme, we structured the geometry data of the tri-
angular mesh on the 2-D plane by the process of struc-
turing surrounding vertices. As a coding method, we ap-
plied the connectivity-oriented multiresolution decomposi-
tion and the vector SFQ. By using the connectivity of the
triangular mesh during the multiresolution decomposition,
we could sufficiently consider correlations among vertices.
The vector SFQ could reduce redundancies of decomposed
coefficients at similar position in the different components
of each level. Experimental results have shown that the pro-
posed scheme gives better coding performances than con-
ventional schemes. In the proposed scheme, the structuring
of surrounding vertices must be performed at the decoder
stage too, which leads to increasing the calculation over-
head. Therefore, we should introduce the coding scheme
for the connectivity data of the triangular mesh based on
the structuring of surrounding vertices. Also we intend to
consider influences to the reconstructed 3-D geometry, es-
pecially small features and sharp edges, from changing the
coding rate of the proposed scheme.
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