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PAPER

A Novel Low-Cost High-Throughput CAVLC Decoder for
H.264/AVC

Kyu-Yeul WANG†a), Byung-Soo KIM†, Sang-Seol LEE†, Nonmembers, Dong-Sun KIM††, Member,
and Duck-Jin CHUNG†, Nonmember

SUMMARY This paper presents a novel low-cost high-performance
CAVLC decoder for H.264/AVC. The proposed CAVLC decoder generates
the length of coeff token and total zeros symbols with simple arithmetic
operation. So, it can be implemented with reduced look-up table. And we
propose multi-symbol run before decoder which has enhanced throughput.
It can decode more than 2.5 symbols in a cycle if there are run before sym-
bols to be decoded. The hardware cost is about 12 K gates when synthe-
sized at 125 MHz.
key words: CAVLC decoder, multi-symbol decoder, VLSI, H.264/AVC

1. Introduction

There are some needs for a low-cost and high-performance
multimedia codec because high-quality multimedia data
is used in various mobile devices. To meet the needs,
H.264/AVC is developed by Video Coding Expert Group of
ITU-T and Moving Picture Expert Group of ISO/IEC. Sev-
eral new features like Quarter-pixel precision motion esti-
mation, various intra prediction modes, integer transforma-
tion, adaptive in-loop filter, and enhanced entropy coding
are adopted for higher coding efficiency. Because of these,
H.264/AVC has an enhanced compression rate. But the
complexity increment of H.264/AVC codec incurs a cost-
effectiveness problem of the development of H.264/AVC
codec [13]. So, hardware implementation of H.264/AVC
codec is inevitable.

Context-based Adaptive Variable Length Coding
(CAVLC), which is an entropy coding method of
H.264/AVC, is used to encode and decode zig-zag scanned
4 × 4 or 2 × 2 residual data. Next decoding step can’t be
started until current decoding procedure is finished because
CALVC consists of variable length symbols. Therefore,
each decoding step is processed sequentially. So, CAVLC
decoder has to be implemented carefully for the real-time
high-quality mobile application system.

This paper presents a low-cost high-throughput
CAVLC decoder architecture which exploits CALVC fea-
tures. The proposed CAVLC decoder has features like ef-
ficient decoding methods for Variable Length Code Tables
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(VLCTs), High throughput multi-symbol run before decod-
ing, and a novel flush unit to renew the bit-stream registers
without delay.

The rest of the paper is organized as follows. CAVLC
decoding flow and previous works are described minutely in
Sect. 2. The proposed CAVLC decoder architecture is pre-
sented in Sect. 3. In Sect. 4, verification method and imple-
mentation results are depicted. Finally, conclusion is made
in Sect. 5.

2. CAVLC Decoding Flow and Previous Works

Zig-zag scanned coding, run-length coding, and CAVLC are
adopted to improve coding efficiency of residual data com-
pression in H.264/AVC. CAVLC decoding is built on five
sub-decoding steps which are shown in Fig. 1.

coeff token decoding as first step of CAVLC decoding
is processed to decode the number of non-zero coefficients
(Tc) and the number of trailing ones (T1s) in the recon-
structed residual block as depicted in Fig. 1. The values
are used to decide the number of times that the following
sub-decoding steps should be processed. In the next step,
the signs of trailing ones (T1s sign) decoding is performed
to decode each sign of trailing ones. The trailing ones are
last coefficients which has absolute value ‘1’ in the zig-zag
scanned block data. Each sign value is decoded with fol-
lowing one bit in the reverse order. That is, the T1s sign de-
coding is processed T1s times. The reverse order means the
decoding process is done from the last coefficient or value
in the zig-zag scanned block data.

And then Level decoding is carried out to decode non-
zero coefficients except trailing ones in the zig-zag scanned
residual data. Level symbols are decoded in the reverse or-
der and the times to be processing are Tc-T1s. That is, when
Tc is equal to 0 or T1s, the decoding process is eliminated.
In the example of Fig. 1, the first decoded level’s absolute
value is incremented by 1. It is conditional exception for
reduction of bit-stream length. That is explained in follow-
ing sub-clause 3.2. The following step is total zeros decod-
ing to decode the number of zeros before the last non-zero
coefficients in zig-zag scanned residual data. To decode to-
tal zeros, there are two different tables for 4 × 4 blocks and
2 × 2 chroma DC blocks. total zeros decoding is not car-
ried out and the value of total zeros is set to zero when Tc
is equal to maxNumCoeff and total zeros decoding is ig-
nored when Tc is zero. The maxNumCoeff is set to sixteen,
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Fig. 1 Conventional CAVLC decoding flow and example.

fifteen, or four depending on the type of residual blocks.
In run before decoding step, the number of zeros between
adjacent coefficients is decoded in the reverse order. For
run before decoding, run before decoder use VLCTs which
are partitioned by zeroLeft. The zeroLeft is initialized with
total zeros and renewed with zeroLeft which is decreased by
run before. The run before symbol decoding is processed
until the zeroLeft is zero or there are no more run before
symbol that means run before decoding is processed Tc-1
times. Finally, the decoded coefficients in the level decoding
and run before symbols are merged to reconstruct residual
data.

CAVLC symbols except trailing ones’ sign (T1s sign)
are encoded by using Exp-Golomb code which consists of
leading zeros, ‘1’, and suffix (info). So, it is important to
find the number of leading zeros (leading zeros) rapidly,
in CAVLC decoding. In the ref. [1], Di proposed an effi-
cient leading zeros detector which is adopted in vast litera-
tures. Look-up table (LUT) and memory architectures con-
sidering the number of leading zeros are proposed for co-
eff token, total zeros, run before decoding in ref. [3]–[10].
In the early work [6], sequential symbol matching process
is used from shorter symbol to longer symbol. This scheme
is not suitable for high-performance real-time applications

because the long matching process time is needed for de-
coding a long symbol. In the ref. [3]–[5], Moon and Yu
proposed some VLCT memory access scheme which can
decode a symbol within limited cycles. The proposed archi-
tectures have some defects when VLCTs are implemented
with a memory. It has unequal processing time depending
on the length of the symbol and the memory has the length
information of each symbol. Consequently, additional stor-
age area is required. When memory architecture is used for
VLCTs, the decoding results are generated in next cycle.
So, next decoding step is not determined by skip condition
within current decoding process.

To improve CAVLC decoder used memory for VLCT,
various VLCT architectures using LUTs are proposed in
ref. [2], [6], [8]. CAVLC decoding methods using LUTs re-
quire a couple of look-up table access, sequentially. So, they
have long critical path and each element in LUT has symbol
length information.

total zeros decoder could be designed with a cog-
nate method employed in coeff token decoding. Because
total zeros symbol has similar syntax compared with co-
eff token symbol. In ref. [9], Moon proposed total zeros
decoding method with simple address generation for mem-
ory access and some tables are removed with arithmetic de-
coding for reduced hardware (H/W). Toal zeros decoder in
Moon’s work generates symbol length with simple arith-
metic operations. Therefore, it has more reduced memory
size than others.

Run before decoder has small VLCTs compared with
coeff token and total zeros VLCTs. Table removal scheme
by using arithmetic operations has been proposed and moon
proposed full arithmetic decoding method for run before de-
coder in ref. [11]. And Yu and Lee proposed multi-symbol
run before decoder to decode a couple of run before symbol
in ref. [8], [15]. Yu proposed multi-symbol run before by
using large memory that contains 86 elements and each ele-
ment consists of contiguous two symbols. Proposed multi-
symbol run before decoder has increased throughput but oc-
cupied larger area. Lee adopted Moon’s run before decoder
and proposed symbol length prediction scheme based on
the probability for multi-symbol run before decoder. So,
proposed multi-symbol run before decoder achieved 2-fold
increase in throughput. Multi-symbol run before decoder
generates a couple of level indexes with run before values
to update output array.

To improve previous work, we propose a low-cost LUT
which is not contain symbol length information. The pro-
posed LUT is accessed by generated address by using the
number of leading zeros and bit-stream. We also propose
a high throughput multi-symbol run before decoder and a
novel flush unit.

3. Proposed CAVLC Decoder

The block diagram of the proposed CAVLC decoder is
shown in Fig. 2. The proposed CAVLC decoder shares
a leading zeros detector which was existent in level,



WANG et al.: A NOVEL LOW-COST HIGH-THROUGHPUT CAVLC DECODER FOR H.264/AVC
897

Fig. 2 Block diagram of proposed CAVLC decoder.

run before, and coeff token sub-decoder, separately, in the
previous works [6]–[8]. The proposed CAVLC decoder re-
duces H/W cost and allows other sub-decoders to use the
values of leading zeros in each decoding process. And info
generator produces the suffix bit-stream by shifting current
bit-stream as leading zeros + 1. With shared leading zeros
detector and info generator, proposed CAVLC decoder has
suitable architecture for detecting Exp-Golomb code that
consists of leading zeros, ‘1’, and suffix(info).

We also proposed a novel flush unit to renew bit-stream
registers without additional cycles. The proposed flush
unit calculates so far consumed bit-stream length within
existing decoding process. In the previous works [1], [3],
the flush unit consists of accumulator, shifter, and 32 bits
two registers. It can’t generate bit-stream request signal
(bit stream req) within current symbol decoding process.
So, if the length of bit-stream for residual block is over thirty
two, an additional cycle is required for bit-stream register re-
newal. On the other hand, proposed flush unit has additional
adder to generate bit-stream request signal with current sym-
bol length (symbol len) and consumed bit-stream length un-
til last symbol decoding. If the consumed bit-stream length
is over thirty two, bit-stream request signal is generated in
current decoding process. So, in the following step, the de-
coding process is accomplished with refreshed bit-stream.

coeff token & T1s sign and total zeros decoders are
designed with combinational logic, but level and run before
decoder should store current state values because they are
self-dependent decoding process. In Fig. 2, the shade blocks
mean modified blocks that are explained in the following
sub-clauses.

Fig. 3 Block diagram of proposed coeff token & T1s sign decoder.

3.1 Proposed coeff token & T1s sign Decoder

The proposed coeff token & T1s sign decoder depicted in
Fig. 3 has four decoding steps to decode total coefficient,
trailing ones and the sign of trailing ones. The first step (suf-
fix len decoding) and second step (addr gen) are used for
address generation for VLCTs access. In the third step, the
symbol length is decoded with leading zeros, suffix length,
and decoded elements of LUTs. Finally, the signs of trailing
ones are decoded in the fourth step.

In the first step, suffix length of coeff token symbol is
decoded with logical operation. The operations to calculate
suffix length (suffix len) dedicate in Eq. (1)∼(3).

suffix len

=

{
3 if (&{a, b, c′, d′} | & {a, b′, c} | & {a, b′, c, d′})
2 otherwise

}

for VLCT0 (1)

suffix len

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3

if (&{a, b′, c′} | & {a′, b, c, d} |
&{a′, b′, c, d′} | & {a, b′, c, d′}

2 otherwise

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for VLCT1 (2)

suffix len

=

{
3 if (&{a′, b′} | & {a′, b, c′} | & {a′, b, d′})
2 otherwise

}

for VLCT2 (3)

In Eq. (1)∼(3), & and | indicate bit-wise AND and OR
operation, respectively. And brace is used as in Verilog HDL
syntax; signals in the brace are concatenated. The small
letters, a, b, c, and d, means MSB to LSB of 4-bits width
leading zeros signal. Complement of small letters that are
small letters with single quotation mark is inversed signal
with NOT function. The suffix len has two when nC is equal
to −1 that is the fixed length code (FLC) decoding.

In second step, address for LUT access is decoded by
using the number of leading zeros, suffix bit-stream (info)
and suffix length which is acquired in previous step. The
address decoding operations for VLCT0, VLCT1, VLCT2,
and chroma DC are depicted in Eq. (4)∼(7), respectively.
After address decoding, the decoded address is adjusted de-
pending on suffix length decoded in step 1. If suffix len is
three, MSB bit of suffix bit-stream (info[0]) is inversed and
then added with address value to make final address. If not,
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address value acquired in Eq. (4)∼(7) is enforced to final ad-
dress.

addr tmp0 =

{
18 if (&{a, b, c, d′})
leading zeros otherwise

addr tmp

=

{
9+(leading zeros−9)�1 if ((&{a, b′,c})|(&{a, b, c′}))
addr tmp0 otherwise

(4)

addr tmp0

=

{
leading zeros if ((&{a′, b′, c′})|(&{a′, b′, d′}))
leading zeros+1 otherwise

(5)
addr tmp1

=

{
17 if (&{a, b, c′, d′})
8+((leading zeros − 7)�1) otherwise

addr tmp =

{
addr tmp1 if (a)
addr tmp0 otherwise

addr tmp =

{
leading zeros + 7 if (a)
leading zeros � 1 otherwise

(6)

addr tmp =

{
7 if (a)
leading zeros otherwise

(7)

Where ‘�’ means left shifting operation. The pro-
posed address decoder which is used for coeff token VLCT
decoding is showed in Fig. 4.

In this paper, we store the four VLCTs in four look-up
table. Four elements constituted with Tc and T1s are in-
serted in a row. Among the elements decoded with address,
coeff token (Tc and T1s) are made a final decision with the

Fig. 4 Proposed address generator for coeff token LUT decoding.

suffix bit-stream (info). The suffix bit-stream is used for sub-
address to select one element among four elements in a row.
A sub addr is selected among suffix bit-stream depending
on the value of suffix len. If suffix len is three, second and
third bits (info[1 : 2]) in suffix bit-stream generated in info
generator are chosen as sub addr and if not, the first and
second bits (info[0 : 1]) are selected as sub addr. If valid
suffix bit-stream length is shorter than two, the adjacent el-
ement is copied to decode a correct element regardless of
invalid suffix bit-stream. If suffix length is three, eight ele-
ments are stored in two consecutive rows of a look-up table.
Because of regularity, intuitive coeff token decoding can be
done. Because of duplicated elements, there are some ineffi-
cient uses of proposed LUTs shown in Table 1∼4 but we can
reduce look-up table size about 30 % because symbol length
information of each element is not contained compared with
ref. [8]. First number of each element in the table is total co-
efficient and the second one is the number of trailing ones.

In the third step, the symbol length decoding is pro-
cessed. When we access proposed LUTs, we get four el-
ements which are used to select the number of total coef-
ficient and the number of trailing ones with addr. To find
the length of valid suffix, we compare the four pairs like
followings. There are two comparisons. First one is com-
parison of two elements which sub addr value is ‘10’ and
‘01’. And second one is comparison of upper two elements
which sub addr is ‘11’ and ‘10’ if the first bit of sub addr
(sub addr[0]) is ‘1’. Otherwise, lower two elements are
used for second comparison. The comparison results have
‘1’ if the chosen two values are same. The results have ‘0’
when the selected two pairs are different. The two compared
results are defined as compare0 and compare1 in Eq. (8).

Table 1 Proposed VLCT0 look-up table for coeff token decoding.
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Table 2 Proposed VLCT1 look-up table for coeff token decoding.

Table 3 Proposed VLCT2 look-up table for coeff token decoding.

symbol len =
leading zeros + 1 + suffix len
−compare0 − compare1 + T1s

(8)

With proposed coeff token decoding flow, Tc, T1s and
symbol length could be obtained, however, there is a irreg-
ular symbol (nC = −1. bit-stream = 000 0000 . . .) which is
remarked with shade elements in the Table 4. To get cor-
rect results, the exception is treated by additional logics that
modify leading zeros to be used for symbol len calculation.

Finally, T1s sign decoding to transfer the sign of trail-
ing ones to level register file is carried out. The symbol

Table 4 Proposed chroma DC look-up table for coeff token decoding.

position of the sign of the trailing ones (T1s sign) is started
at suffix len - compare0 - compare1 in the suffix bit-stream
(info). The following bits as T1s are used for trailing ones
sign decoding and parsed to be stored in level register file.

Fixed Length Code (FLC) decoding can be defined
with arithmetic function in contrast with other VLC decod-
ing. The symbols of FLCT (for 8 ≤ nC) have six bit fixed
length. FLC decoding is defined as Eq. (9).{

Tc = 0
T1s = 0

if (leading zeros == 4 & bs[0] == 1)

{
Tc = bs[0 : 3] + 1
T1s = bs[4 : 5]

otherwise (9)

Where bs means current valid bit-stream generated
form the 64 bits shifter and the numbers in a square bracket
are the bit’s position in the bit-stream used for Tc and T1s
calculation. In the following equations, the bs indicates
valid bit-stream parsed from flush unit, continuously.

3.2 Level Decoder

Level symbols are decoded with not VLCTs but arithmetic
decoding procedure. To decoding level symbol, maximum
length of level symbol should be analyzed, precisely. The
length of level symbol is defined depending on supported
profile. If the profile is baseline, main, or extended profile,
prefix of level symbol is below fifteen. And the length of
suffix is prefix − 3 or less. Therefore, the maximum length
of level symbol is twenty eight bits. In the other profiles, the
length of prefix is 11+bit depth and below. The bit depth is
eight more and fourteen less. Level decoder is designed to
decode the symbol that its length is less than twenty eight
because proposed CAVLC decoder supports up to main pro-
file. Level decoding flow is described in Table 5. In the
Table 5, the ‘∼’ means bit-wise not gate operation.

There is a conditional exception in the level decoding
procedure that is depicted in Sect. 2. It is applied for en-
hanced compression rate in H.264/AVC encoding. In the
CAVLC encoding, the first non-trailing ones level has re-
duced absolute value by one when the number of trailing
ones is less than three. If T1s is less than three, then the
first non-trailing ones level is incremented by one if neg-
ative, then decremented by one if positive so that the first
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Table 5 level symbol decoding flow.

non-trailing ones level closed to zero. By contrast, this ex-
ception is expressed by conditional sentence which checks
level cnt and T1s in the level decoding process. If level cnt
is zero and T1s is less than three, levelCode is incremented
by 2. As a result, the last non-trailing ones level has incre-
mented absolute value.

In the level decoding flow, the suffixLength decided in
previous level decoding process is used in current level de-
coding. So, level decoding is self-dependent decoding pro-
cess and it is implemented by sequential logic.

3.3 Proposed total zeros Decoder

Proposed total zeros decoder has similar LUTs designed
same ways which is used for LUTs in coeff token decoder.
Suffix length of total zeros symbol is less than two. So, ad-
dress adjustment used in second step of coeff token decod-
ing is not required. An identical symbol length decoding
method is used in coeff token decoding. But total zeros de-
coding requires additional decoding process because there
are a number of zero sequence symbols which can’t be de-
coded by proposed symbol length decoding method. So, we

calculate maximum length of zero sequence before address
decoding with Eq. (10) proposed in ref. [9].

max zero len =

{
5 + j − k + 4i for m = 1

6 for m = 1
(10)

In Eq. (10), i is Tc/8. k is Tc-6 when i is equal to one and
otherwise, k is Tc. m is k/4 and j = (k − 2)/4. / indicate the
integer division with truncation of the result toward zero.
If obtained leading zeros is larger than maximum length of
zero sequence, leading zeros is replaced with max zero len.
In ref. [9], Moon proposed hybrid decoding method. The
total zeros decoder used simple arithmetic operation to de-
code total zeros symbol when Tc is 1, 14, or 15. We extend
the arithmetic operation. Proposed arithmetic operation is
interpreted in Eq. (11) which is applicable when Tc is equal
to 2. We can reduce about 11 % look-up table compare with
ref. [9].

temp = bs[0 : 2] + 1{
total zeros =∼ bs[0 : 2]
symbol len = 3

if (temp ≤ 4)

{
total zeros = 10 − bs[0 : 3]
symbol len = 4

elseif (temp ≤ 2)

{
total zeros=bs[3]?13−bs[0:4]:14−bs[0:5]
symbol len = bs[3]?5 : 6

otherwise

(11)

We also replace look-up table for 2×2 chroma residual
data to arithmetic decoding operation like Eq. (12).{

total zeros=4 − Tc if (leading zeros≥4−Tc)
total zeros= leading zeros otherwise{
symbol len= total zeros if (total zeros ≥ 4 − Tc)
symbol len= total zeros + 1 otherwise

(12)

3.4 Proposed run before Decoder

The length of almost run before symbols is shorter than
three and run before decoder has small H/W size than other
sub-decoders. Multi-symbol run before decoder is studied
in various literatures based on the feature of run before sym-
bol [8], [15]. But there are huge increases of H/W size in
contrast with its enhanced throughput. Yu proposed sep-
arated run before tables for multi-symbol run before de-
coder in ref. [15]. The multi-symbol run before decoder de-
codes two run before symbols when zeroLeft is less than
six. The table has possible combination of two continu-
ous run before symbols. It has enhanced throughput but
the table size increased exponentially. In ref. [11], Moon
proposed full arithmetic decoding based run before de-
coder and then Lee improved the Moon’s work for effi-
cient H/W implementation. Lee also proposed multi-symbol
run before decoder based on statistical analysis between the
length of run before symbol and zeroLeft in ref. [8]. The
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multi-symbol run before decoder predicts the length of cur-
rent and next run before symbol with current zeroLeft. It can
decode three run before symbols in a cycle when the length
of decoded symbols is equal to prediction results. But, the
multi-symbol run before decoder doesn’t have high predic-
tion success ratio.

The proposed run before decoder has reduced H/W
size by increasing regularity of run before decoding oper-
ation. We remove three adders, three 2-input MUX with
additional 5 gates. run before decoding is divided four case
that are zeroLeft = (1 and 2), zeroLeft = (3, 4, and 5),
zeroLeft = 6, and zeroLeft > 6 listed in Eq. (13), (14),
(15), and (16). Final run before is selected by zeroLeft. In
Eq. (15), ‘∧’ means exclusive OR gate operation.

run tmp0 =∼ bs[0]

run tmp1 = bs[0] ? run tmp0 : zeroLeft − bs[0 : 1]

run before = zeroLeftLSB? ∼ bs[0] : run tmp1 (13)

run before = zeroLeft+ ∼ bs[0 : 1] ≤ 6?

∼ bs[0 : 1] : zeroLeft − bs[0 : 2] (14)

run tmp0 = bs[2] ? bs[0 : 2] : bs[0 : 2] + 2

run tmp1 = bs[0 : 1] == 3 ? 0 : bs[0 : 2] + 1

run before = ∧bs[0 : 1] ? run tmp0 : run tmp1 (15)

run before= |bs[0 : 2]? ∼ bs[0 : 2] : leading zeros+4

(16)

The proposed multi-symbol run before decoder shown
in Fig. 6 uses the proposed run before decode which is de-
picted in Fig. 5. The proposed CAVLC decoder offers multi-
symbol run before decoder the number of leading zeros.

Fig. 5 Proposed run before decoder.

The number of leading zeros and zeroLeft are used to de-
code the length of the 1st run before symbol before the 1st

run before results are generated. As a result, we can decode
correct two run before symbols when there are remained
run before symbols to be decoded. Each run before decoder
in multi-symbol run before decoder is executed when previ-
ous zeroLeft is larger than zero and the number of run before
execution is less than Tc-1. The 3rd run before decoder
has correct result if the symbol length generated in the 2nd

run before decoder is identical to prediction results in the
Table 6.

The conditions described in the previous paragraph are
checked in a run before controller. The controller gener-
ates 3 bit-width run en signal to enable to write the level
coefficients stored in level register file with level index gen-
erated with run before decoders and level index register.
The level index register stores prior wrote level index in the
last run before decoding to make level indexes of following
level coefficients. The level indexs are used as addresses to
store level coefficients in output registers.

The controller, also, generates selection signal for 4
MUXs positioned on right side of run before d blocks. If
the results generated in a run before d block are not equal

Fig. 6 Proposed multi-symbol run before decoder.

Table 6 First run before symbol length pre-decoding and second
run before symbol length prediction.
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to prediction results or there are no more symbol to be de-
coded, the run before and symbol len of run before d block
are ignored and demmy value ‘0’ are selected to get a correct
level index for level indexes and total symbol length that is
calculated by summation of each symbol len generated in
run before decoder blocks.

Finally, multi-symbol run before decoder generates to-
tal length of decoded run before symbols (t symbol len)
and selects valid zeroLeft by using the number of decoded
run before symbols. We also proposed a simple symbol
length decoding operation for the 2nd and the 3rd run before
decoders in Eq. (17).

len tmp = zeroLeft + run before

symbol len=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for len tmp ≤ 2
2 for len tmp ≤ 6
3 for zeroLeft >6 & (|code[0 :2]=1)
leading zeros + 1 for otherwise

(17)

4. Experimental Results

Test sequences used for experimental results are offered by
ITU [16]. Input and output data of CAVLC decoder are
generated by using JM 16.0 for the functional verifications.
We eliminate misjudgments according to subtle difference
of test sequence by using public test sequence.

4.1 Performance Evaluation of Proposed Multi-Symbol
run before Decoder

Run before symbol length pre-decoding is categorized to
twelve cases. It is used for first run before symbol length
pre-decoding with zeroLeft and leading zeros. Second
run before symbol length is examined with eight gen-
eral purpose test sequences offered by ITU when second
run before symbol decoding is performed and there are
remained run before symbols to be decoded in the third

Fig. 7 Occurrence rates of the second run before symbol length.

run before decoder. The eight test sequence which has vari-
ous quantization parameter (Qp), and level are used to avoid
local prediction results. In the Table 6, AND(bs[0], bs [1])
means AND gate operation of the first and second bit in cur-
rent bit-stream. The researched symbol length results are
depicted in Fig. 7.

In Fig. 7, the numbers on the left and right of the un-
derscore in the x label signify the case in the Table 6 and
second run before symbol length, respectively. The maxi-
mum value of occurrence rate is eight because the executed
number of third run before symbol decoding is normalized
to one in each test sequence. Second run before symbol
length prediction has more than 50 % success ratio in the
other cases except case 12. Especially, in case 1, 3, and 5,
the prediction success ratio has 100 %.

We verified the performance of the proposed multi-
symbol run before decoder with Oh and Lee’s work. We de-
coded eight test sequences and compare the total consumed
cycles which are used in run before decoding. The results
are shown in Table 7. The run before symbol has a low
proportion of total CAVLC decoding in low-quality test se-
quences like BA3 SVA C and BA2 SVA F. In these case,
the double-symbol run before decoder using the run before
symbol length pre-decoding is comparable with Lee’s multi-
symbol run before decoder which has three run before de-
coding path. When there are more level decoding and
run before decoding than low-quality test sequence, Lee’s
multi-symbol run before decoder consumes lower decoding

Table 7 Processing cycle comparison of various run before decoders.
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cycles than the double symbol run before decoder. Because
Lee’s work utilizes 3 path run before decoding and statistics
of run before symbol length for multi-symbol run before
decoding. But, proposed multi-symbol run before decoder
has about 7∼11 % reduced processing cycles compared with
Lee’s work based on run before symbol length pre-decoding
and high accuracy run before symbol length prediction.

4.2 Performance Evaluation of Proposed CAVLC Decoder

Proposed CAVLC decoder requires much lower cycles for
CAVLC decoding due to coeff token & T1s sign decoding,
high-throughput multi-symbol run before decoder, a novel
flush unit, and look-up table based symbol decoding com-
pared with chang and alle’s work. In additionally, we can
increase the throughput about 4∼9 % compared with Lee’s
work by using run before symbol length pre-decoding and
high accuracy run before symbol length prediction. For the
throughput comparison, we calculate the average cycles per
macroblock that is conventionally used in CAVLC through-
put comparison. The throughput comparison is shown in
Table 8 and ‘-’ used to denote the missing data.

4.3 Implementation Results

We designed proposed algorithm with Matlab and the in-
put and output data used in software simulations are gener-
ated with JM reference software ver. 16.0. After software

Table 8 Throughput comparison of various CAVLC decoder (Average
cycles per macroblock).

Table 9 Implementation results of various CAVLC decoders.

simulation, the proposed algorithms are designed in Verilog
HDL and than synthesized with Megnachip 0.18 technology
library.

Novel look-up tables of proposed CAVLC decoder
don’t have symbol length information of each symbol. So,
it archived 30 % look-up table size reduction compare with
Lee’s double look-up table architecture which consists of
group table and symbol table in ref. [8] as described in Ta-
ble 9. And we designed hybrid total zeros decoder with
extended arithmetic decoding and proposed look-up table.
Because of extended simple arithmetic decoding, we can re-
duce 10 % look-up table area compared with ref. [9]. We
also optimize the run before decoder. Therefore, proposed
CAVLC decoder can be implemented with 23 % reduced
H/W size compared with ref. [8].

5. Conclusion

CAVLC decoding in H.264/AVC has an important role to get
high coding efficiency. But the decoding flow should be im-
plemented sequentially because of variable length character-
istics of CAVLC symbol. It is not acceptable for high quality
and real-time video sequence decoding. To overcome these
defects of CALVC decoding, we proposed a low-cost and
high-throughput CAVLC decoder.

For the H/W reduction, we proposed simple symbol
length generation method for coeff token, total zeros, and
run before decoder. In the total zeros decoder, we also ex-
tend the arithmetic decoding for the high efficient hybrid de-
coding and smaller LUT size. In the previous works, there is
individual leading zeros detector to detect leading zeros of
Exp-Golomb code in each sub-decoder. On the other hand,
we designed CAVLC decoder with a shared leading zeros
detector to reduce H/W size and provide sub-decoders with
additional information.

In addition, the proposed CAVLC decoder has in-
creased throughput because of proposed multi-symbol
run before decoder and a novel flush unit which does not
require additional cycles for bit-stream buffer renewal. As a
result, the proposed CAVLC decoder can process high qual-
ity video sequence effectively because of its high through-
put. It is also applicable for portable media applications be-
cause of its cost-efficient design.
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