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PAPER

Efficient Human Body Tracking by Quick Shift Belief Propagation

Kittiya KHONGKRAPHAN†, Nonmember and Pakorn KAEWTRAKULPONG†a), Member

SUMMARY We propose a novel and efficient approach for tracking 2D
articulated human body parts. In our approach, the human body is modeled
by a graphical model where each part is represented by a node and the re-
lationship between a pair of adjacent parts is indicated by an edge in the
graph. Various approaches have been proposed to solve such problems,
but efficiency is still a vital problem. We present a new Quick Shift Be-
lief Propagation (QSBP) based approach which benefits from Quick Shift,
a simple and efficient mode seeking method, in a part based belief propa-
gation model. The unique aspect of this model is its ability to efficiently
discover modes of the underlying marginal probability distribution while
preserving the accuracy. This gives QSBP a significant advantage over ap-
proaches like Belief Propagation (BP) and Mean Shift Belief Propagation
(MSBP). Moreover, we demonstrate the use of QSBP with an action based
model; this provides additional advantages of handling self-occlusion and
further reducing the search space. We present qualitative and quantitative
analysis of the proposed approach with encouraging results.
key words: human body tracking, belief propagation, quick shift

1. Introduction

Tracking human body parts or body pose has recently
attracted increased attention from computer vision re-
searchers. These approaches typically focus on the body
parts in more detail than tracking human location as a whole.
This is an important problem to solve because it can serve as
a front end for higher-level processes to understand human
activities in several applications, such as human-computer
interaction, virtual reality, and character animation. A num-
ber of algorithms have been proposed to address human
body pose tracking. One of the initial approaches was based
on the use of markers; however, this method requires a great
deal of user intervention. The system using markers is un-
comfortable in many applications due to the use of special
equipment which must be installed on the body. On the other
hand, the marker-less system can run without special equip-
ment.

Among the marker-less methods, several researchers
turn to image-based approaches. In the image-based tech-
niques, features from image (s) are served as its input to es-
timate human pose. There are two main approaches: dis-
criminative and generative approaches. In the discrimina-
tive approach (or bottom up approach), candidate body parts
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are first extracted from the image and then used to generate
possible configurations of human body. The performance of
this approach is based on results of feature extraction since
it is used to represent body parts.

In the generative approach (or top down approach), hu-
man is normally modeled as a skeleton model and the main
concept is an effort to fit a predefined human model into im-
age data. A large number of projected samples are generated
and their similarity with respect to the input image is mea-
sured and compared. Such approaches are generally com-
putationally intensive because of the complex search over
the high dimension state space. The computational cost of
these approaches is O(Nm), where N is the number of sam-
ples for each body part and m is the number of body parts.
Several approaches have been proposed to reduce the com-
putation load. Constraints are normally introduced to limit
the search space for some specific applications, e.g. walking
parallel to a plane [1] or golf swing movements [2]. Motion
models and prior knowledge are also employed to predict
the state space trajectory or to reduce the search space [1].
Lee et al. [3] detected some body parts separately and used
them to update subsets of the state space. Alternative ap-
proaches attempted to reduce the number of samples using
support vector machines [4], annealed particle filtering [5],
hybrid Monte Carlo filtering [6] and kernel particle filter-
ing [7].

Several researchers turned to part-based approach that
employs Bayesian inference concept to estimate human
pose. It has been popular due to reduction in computational
cost from O(Nm) to O(mN2) [8]–[14]. In this approach, the
human body is represented by a graphical model where each
part is represented by a node and the relationship between
the adjacent parts is indicated by an edge of the graph. Each
body part is considered separately and then is combined into
the global solution later. However, the computational time
is still quite substantial, which limits its application from
real-time human body tracking. Various approaches [15],
[16] have been proposed to alleviate this problem, but effi-
ciency is still a vital problem. The high-dimensional space
is generally associated with exponential increase of compu-
tation time, and that is the motivation of our paper.

The main contribution of our paper is the introduction
of a novel method for fast tracking of articulated body while
maintaining high precision. The proposed QSBP model is
based on the key idea of efficiently refining the estimate
of the mode of marginal probability in each iteration of
belief propagation. This leads to the reduction in compu-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



906
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

tation time since it requires fewer iterations than MSBP
(Mean Shift Belief Propagation) [16] and require fewer sam-
ples than NBP (Non-parameter belief propagation) [17]–
[19], [26]–[29]. The samples only in the close proximity
of the current estimate of mode are used. We utilize Quick
Shift [20] for mode seeking method in each iteration to set
initial samples. In addition, we also demonstrate the use of
a model video, when possible; to further reduce the search
space for QSBP (Quick Shift Belief Propagation). Using
similar action based models have been shown to be use-
ful for addressing self-occlusion problem [21] as a motion
model.

The paper is organized as follows. After the general
introduction, related work is presented in this section. Our
proposed method is described in Sects. 2 and 3. In Sect. 4,
we present some experimental results. Finally, the conclu-
sion is discussed in Sect. 5.

1.1 Related Work

The part-based is an approach that is more powerful than
others since it can reduce computational cost from O(Nm) to
O(mN2). This approach represents parts of the human body
with a graphical model. The main idea is to pass messages
iteratively between adjacent nodes of the graph. Two popu-
lar techniques used to calculate the messages are the belief
propagation and mean field Monte Carlo methods [8]. Their
difference lies in the pattern of messages. Shen at el. [9]
compared and reported that belief propagation offered bet-
ter performance than that of mean field Monte Carlo.

The tracking is performed by generating a number of
candidate samples for each node and then calculating their
beliefs. The beliefs are computed from observation func-
tions and messages. Ramanan et al. [10], [11] proposed
2D human tracking by considering candidate parts first and
then combining those to find the optimal solution by Be-
lief Propagation (BP). Gao and Shi [12] detected human
faces and hands by color cues to guide the sample gener-
ation for face and hand parts in order to achieve better effi-
ciency in tracking. In some papers, both messages and be-
liefs (or marginal distributions) are represented by weighted
samples [13], [14], whereas several other researchers repre-
sented messages with a more complex continuous distribu-
tion such as mixtures of Gaussians [17]–[19] or NBP. The
samples in NBP are drawn by the Gibbs sampler for all itera-
tions, which leads to a huge increase in computational time.
To alleviate this problem of NBP, Han et al. [15] proposed
to approximate the mixture of Gaussians by mode propaga-
tion and kernel filtering. They report that their method is
80 times faster than BP for tracking a 2D articulated body
model; however, it is still far from adequate for real-time
tracking requirements. Park et al. [16] proposed MSBP.
They further reduce time complexity by computing only
samples that moves toward the best solution. It is 30-50
times faster in 2D state vector tracking, and 300 times faster
in 3D state vector tracking than BP.

To handle self-occlusion problem, some approaches

utilize multiple cameras [5], [27]. The occlusion constraint
is proposed in likelihood computation [28]. Wang and Mori
proposed occlusion and spatial constraints by representa-
tion of human with multiple tree models [30]. Some ap-
proaches make use of the prior 2D and/or 3D information
about the structure or kinematics of human body. Some
shape based [22], motion-based [4], [23], and a combination
of both approaches [24], [25] have been proposed in the lit-
erature. Their availability of large databases of shapes and
motion patterns increases robustness to viewpoint change.

However, tracking 2D articulated human body parts is
still a difficult problem with high computational cost. In this
paper, we focus on this problem. We introduce a novel and
efficient approach for tracking 2D articulated human body
parts. It extends the belief propagation by applying mode
seeking. As we will show in Sect. 2.3, the computational
complexity of our proposed approach is approximately 36
and 99 times faster than those of MSBP and BP in case of
4-state (2D position plus body part length and angle) track-
ing. We also incorporate model video to limit our search
space and to enhance tracking accuracy especially in case of
occlusions.

1.2 Quick Shift

Quick Shift, proposed by Vedaldi and Soatto [20], is a sim-
ple and extremely efficient mode seeking method. Like
Mean Shift, Quick Shift is a local optimization algorithm.
Mean Shift can be regarded as a gradient ascent method [31]
while the Quick Shift does not require gradient information.
Quick Shift is a quick Euclidean version of medoid shift that
is guaranteed to converge for all starting locations [32].

In mode seeking techniques, it is started by defining the
multivariate kernel density estimate. Like these techniques,
Quick Shift also starts by computing the kernel density esti-
mate

f (a) =
1
M

M∑
i=1

ϕ(a − ai), (1)

where ai is the ith data point and ai ∈ X = Rd, ϕ(a) is a
kernel function [32] (e.g. Gaussian) and M is the number of
data points. The main concept of Quick Shift is the iterative
movement of each mode estimate from its current position
to a new position which is the nearest neighbor with higher
probability until a mode is reached. The updated position of
data point ai at iteration k + 1 is computed by

yk+1
i = arg min D(yk

i , a j)
a j∈{a1,a2,...,aM }:P(a j)>P(yk

i )

,

P(b) =
1
M

M∑
j=1

ϕ(D(b, a j)), (2)

where D(yi, a j) is the distance between current positions of
yk

i and data point a j, P(ai) is probability value of data point
ai. The mode seeking is repeated on {yk

i } until no further
change in labelling occurs and then the modes are obtained
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Fig. 1 Probability surface and motion of data points toward mode value
of Quick Shift. Motion directions and data points are plotted by arrows and
dots, respectively.

as the set of unique locations

mode = {yt
i}, (3)

where yt
i is the final position of yi.

All data points (initial values of mode estimates) move
toward a single mode as shown in Fig. 1. To balance under-
and over-fragmentation of the modes, a threshold parameter,
κ, is introduced into Eq. (2)

yk+1
i = arg min D(yk

i , a j).
a j∈{a1,a2,...,aM }:Pj(a j)>Pi(yk

i ),D(yk
i ,a j)<κ

(4)

2. Proposed Method

At each frame, a silhouette of the human body is obtained by
a background subtraction. The silhouette as well as its orig-
inal image are served as the input in our tracking method.
The main concept of our approach is applying mode seeking
to reduce computational time. A model video concept [21]
is used for initializing the motion model in our proposed
method. The initial state is served as an initial configura-
tion for our QSBP. For the next step, samples are generated
around the initial state and their probabilities are measured
by belief propagation. Only the best solution of each node
is selected to be a part of the optimal pose solution. We ap-
plied Quick Shift with belief propagation for mode seeking
in each body part so that all samples (initial values of the
mode estimates) are not necessary moved to a single point.
In this sense, it reduces risks of getting into spurious so-
lutions which have highest probability. From our approach,
the modes are selected as initial samples in the next iteration
of belief propagation.

2.1 Human Model

We model a 2D view of a human body as a graphical model
with N hidden nodes and pair-wise potentials as shown in
Fig. 2 (a). The hidden nodes are represented by X = {xi|i ∈
[1,N]}, where xi is the ith body part consisting of 4 states,
i.e., position coordinate, orientation and length. A corre-
sponding observation set is denoted by Z = {zi|i ∈ [1,N]},
where zi is the image observation node for the ith body part.
The relationship between xi and zi is represented by an ob-
servation function φi(xi, zi). In addition, every pair of ad-
jacent body parts xi and x j (as defined by the structure), is

(a) (b)

Fig. 2 The skeleton human model in our approach: (a) hidden nodes and
pair-wise relationship and (b) joints and segments.

connected and encoded by a potential function, ψ ji(xi, x j).
Human body parts represented in the model are shown in
Fig. 2 (b).

2.2 Model Video

A model video [21] is utilized for initializing the motion
model in our approach. The main concept of the model
video is to estimate the joint locations in the test video au-
tomatically using two geometric constraints. Given the lo-
cations of joints in the model video and the first frame of
test video, the affine constraint is used to estimate initial po-
sitions based on invariance ratio between model video and
test video. Moreover, the epipolar constraint is used to re-
duce estimation error of different actors and view points in
the model and test videos.

One advantage of this work is the avoidance of error
propagation from frame to frame in the estimation process,
because each joint estimate is computed based on corre-
spondence between the first frame of the model and the test
videos. Another advantage is robustness to variations in an-
thropometry, execution rate, viewpoint and execution style.
Moreover, it is not computationally expensive and does not
require extensive training. We have found from empirical
studies that a good tracking performance can be obtained if
the model video gives an initial state within 1.5 times of the
grid size. Figure 3 (a) shows the input frame. The candidate
joints from the model video [21] are generated and overlaid
on the input image as displayed in Fig. 3 (b). The best match
with the silhouette is selected to be the initial samples as can
be seen in Fig. 3 (c).

2.3 Quick Shift Belief Propagation

The belief propagation algorithm is an iterative method to
infer the hidden state until it converges to the optimal solu-
tion. The marginal probability of xi at iteration n, pn(xi|Z)
can be computed by taking the product of incoming mes-
sages and local observations, as shown in Eq. (5). The in-
coming messages also contain prior knowledge of the node
obtained from the neighboring nodes, as shown in Eq. (6).

pn(xi|Z)← αφi(xi, zi)
∏
j∈Γ(i)

mn
ji(xi). (5)
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(a) (b) (c) (d)

(e)

Fig. 3 QSBP tracking (a) input image, (b) predicted points from model
video, (c) initial configuration, (d) final tracking result, (e) error distance in
each iteration.

where xi and zi are the ith hidden and corresponding observa-
tion nodes, respectively. φi(xi, zi) is the observation function
of node i. α is a normalizing factor. For graphical models
with continuous hidden state, mn

ji(xi) is a message sent from
node j to i at iteration n and can be calculated by

mn
ji(xi)←

∫
x j

(ψ ji(xi, x j)φ j(x j, z j)

∏
k∈Γ( j)\i

mn−1
k j (x j))dx j. (6)

where ψ ji(xi, x j) is the potential function between nodes i
and j, φ j(x j, z j) is the observation function of node j and
Γ( j)\i represents all the neighboring nodes of j except node
i.

In our approach, we define parts of human body by
nodes of graph that the optimal hidden node is computed by
maximizing the marginal probability of each node given the
current observation. Instead of considering all the possible
states of our nodes, we work on a grid around initial sam-
ples (modes found in the previous iteration). A new discrete
grid is generated around the mode. The grid is 5x5x3x3
of 4 states (x, y positions, length and angle of body part).
The marginal probability of xi, p(xi|Z) can be computed by
taking the product of incoming messages and local observa-
tions, as shown in Eq. (5). The incoming messages also con-
tain prior knowledge of the node obtained from the neigh-
boring nodes. The message sent from node j to node i at
iteration n, mn

ji(xi), can be calculated by

mn
ji(xi)←

∑
x j

⎛⎜⎜⎜⎜⎜⎜⎝ψ ji(xi, x j)φ j(x j, z j)

∏
k∈Γ( j)\i

mn−1
k j (x j)

⎞⎟⎟⎟⎟⎟⎟⎠ . (7)

The message at the first iteration, m0
ji(xi), is defined to be

1. From the iterative concept of belief propagation, the best
solution is obtained in the final iteration by

x = arg max
si∈{s1,s2,...,sN }

pn(si|Z), (8)

where N is the number of samples in the grid. Figure 3 (d)
shows the best solution in the final iteration of tracking and
Fig. 3 (e) illustrates error distance in each iteration of track-
ing using our approach. It can be seen that the error distance
is reduced until reaching the best solution.

2.4 Mode Seeking in Belief Propagation

In mode seeking, we use marginal probability of belief prop-
agation in movement of mode estimates. Only samples
around the modes are computed, not the entire surface of
belief propagation. This makes the convergence to an opti-
mal solution very fast and computation time is reduced. The
updated position of sample si at iteration k + 1 of the mode
seeking is computed by

yk+1
i = arg min D(yk

i , s j)
s j∈{s1,s2,...,sN }:P(s j |Z)>P(yk

i |Z),D(yk
i ,s j)<κ

, (9)

where D(yk
i , x j) is the distance between current positions of

yk
i and sample x j which is less than a distance threshold κ

and P(xi|Z) is the marginal probability value of sample i.
From Quick Shift mode seeking concept, the position of yi
is updated until no further change in labelling occurs and
then modes of samples are obtained as a unique set

mode = {yt
i}, (10)

where yt
i is the final position of yi.

We find the mode of marginal probability by our ap-
proach which is faster than by MSBP [16]. Because moving
toward a mode of Quick Shift is based on the locally max-
imum probability value, while the Mean Shift is based on
weighted mean value. In this sense, the number of iterations
in moving of Quick Shift approach is less than that of Mean
Shift which makes its converge to the optimal solution much
faster than Mean Shift. Figures 4 (a) and (b) show conver-
gence to the optimal solution by QSBP and MSBP, respec-
tively. From these figures, each initial sample is plotted by
a solid square marker. The only grid members (plotted by
markers inside of a grid window) around the initial sample
are considered in moving toward a mode of the sample. The
new position of the mode estimate in each iteration until they
reach a mode are shown by a circle marker.

Main steps of proposed approach

1. Generate initial joint predictions from model video [21]
as shown in Fig. 3 (b).

2. Select the best match to be initial samples as shown in
Fig. 3 (c).

3. Iterate steps 4-7 until convergence.
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(a)

(b)

Fig. 4 A comparison of moving toward a mode value by (a) Quick Shift,
and (b) Mean Shift.

4. Generate a local grid of samples around each initial
sample.

5. Compute message by Eq. (7).

mn
ji(xi)←

∑
x j

⎛⎜⎜⎜⎜⎜⎜⎝ψ ji(xi, x j)φ j(x j, z j)

∏
k∈Γ( j)\i

mn−1
k j (x j)

⎞⎟⎟⎟⎟⎟⎟⎠ .
6. Compute marginal probability using in Eq. (5).

pn(xi|Z)← αφi(xi, zi)
∏
j∈Γ(i)

mn
ji(xi).

7. Seek mode using Quick Shift, set each mode as initial
sample for the next iteration.

8. Select the best solution as

x = arg max
xi∈{x1,x2,...,xN }

pn(xi|Z),

2.5 Observation Function and Potential Function

The observation function φi(xi, zi) is used to measure the
joint likelihood of zi and xi. In order to measure the like-
lihood, each body part xi is modelled by a planar patch
and projected onto the input image, and then its likelihood
(or similarity) is computed. In this work, region overlap-
ping [3], [5] and RGB color are the features used for similar-
ity measurement. The region overlapping feature of node xi

is computed by

wi =
1
2

(
ni,o

ni,p
+

ni,o

nm

)
, nm = arg max

i

ni,o (11)

where ni,o is the number of pixels in overlapping region be-
tween projected region of ith sample and the silhouette. ni,p

is the number of pixels in the ith projected region. This
measure is very simple and efficient; however, its reliability
reduces greatly in case of occlusion. This is because over-
lapped parts form a larger foreground region which provides
high values of this feature in several false locations.

In case of occlusion, we therefore switch to using a
more detailed color feature (Sect. 3 explains how to detect
the beginning and the end of occlusion). For the color fea-
ture, each human body part is formed by a color histogram
based on RGB components. From the color models of the
node c(xi) and the template, t, the similarity measure is de-
fined by the histogram intersection between the color shape
matching model of the sample and the template as

wi =

n∑
j=1

c j,i ∩ t j, (12)

where c j,i is the normalized number of pixels in the jth bin
of the ith node and t j is the normalized number of pixels in
the jth bin of template in RGB color histogram and n is the
number of bins in each histogram. The observation function
φi(xi, zi) of node xi is computed by

φi(xi, zi) =
1√

2πν2
e−

(1−wi)2

2ν2 , (13)

where wi is the similarity of node xi obtained by Eq. (11) or
Eq. (12) and ν is its standard deviation. For a low value of ν,
a more weight is given to the appearance similarity.

The ψ ji(xi, x j) potential function is used to show the
relationship between body parts i and j. We model the po-
tential function by a Gaussian to represent the distribution of
the Euclidean distance between the two adjacent body parts.

ψ ji(xi, x j) =
1√

2πσ2
e−

D(xi ,x j )2

2σ2 , (14)

where xi is the ith body part, ψ ji(xi, x j) is a potential func-
tion of body parts i and j, D(xi, x j) is the Euclidean distance
between the connected points of body parts i and j, and σ
is its standard deviation. In the same way as ν, σ specifies
insensitivity to displacement of adjacent body parts.

3. Occlusion Handling

A common problem in human body tracking is self-
occlusion problem. To reduce the computational com-
plexity and handle self-occlusion problem of tracking in
our method, we used prediction information from a model
video [21] as the motion model. It is used for sample genera-
tion in the first iteration. We use two measures for detecting
start and end of self-occlusion as in [21]. The first mea-
surement is αt

j, which represents the area of the foreground

silhouette, corresponding to the jth segment in the tth frame.
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The second measure is βt
j, which represents the proportion

of the detected segment j that is occluded by the other seg-
ments of the cardboard model. The condition for occlusion
is based on the normalized change over time τ,

∑t−1
i=t−τ αi+1

j − αi
j

ταt−τ
j

< T ,

∑t−1
i=t−τ βi+1

j − βi
j

τβt−τ
j

> T. (15)

where T is the percentage threshold and τ is the number of
previous frames that are used to consider occlusion. Positive
T value signifies occlusion entering, while the negative T
value indicates occlusion termination.

4. Experiments

To evaluate the performance of our proposed method, we
tested it on several videos and compared it with the BP and
MSBP methods in both simple and occlusion cases. We
tested our method on 6 sequences of UCF dataset, contain-
ing 400, 162, 400, 560, 500 and 500 frames. These videos
included aerobics style activities that were also used in [21].
Moreover, we experimented on 2 sequences of CMU dataset
(also used in [16]), containing 199 and 190 frames including
walking action in both front and side views. These videos
include both simple and self-occlusion cases. To present
qualitative and quantitative results, we compared our ap-
proach with [16]. Note that the joint locations were man-
ually initialized in the first frame, and then an RGB tem-
plate of each human part is automatically generated from
the initialized joint locations. The sample prediction was
then performed automatically for the remaining frames like
the method presented in [21].

In our experiments, we generated samples with a size
of 8,000 samples for BP, and a 5×5×3×3 grid for both
MSBP and QSBP, respectively. Those methods were run
until convergence (joint position movement is less than 2
pixels or 50 iterations are reached.) The threshold param-
eter in mode seeking of Quick Shift and the kernel size of
MSBP were chosen as half of the grid size. For occlusion
handling, we used 70 percentage in our experiments and the
number of pervious frames was chosen as 15 to consider oc-
clusion. The bin size of RGB histogram was 16×16×16. In
observation function, the standard derivation of observation
function and potential function were chosen as 0.4 and 3,
respectively.

We applied model video to the sample prediction in the
first iteration of belief propagation. The samples of model
video on UCF and CMU datasets are shown in Figs. 5 (a)

(a) (b)

Fig. 5 The samples of model video (a) UCF dataset (b) CMU dataset.

and (b), respectively. Samples of tracking results are dis-
played in Fig. 6. The figure shows samples of human model
fitting on 4 sequences. The fitting results of QSBP, BP and
MSBP approaches are shown in Figs. 6 (a), (b) and (c), re-

(a)

(b)

(c)

Fig. 6 Some results of human body tracking by using model video in
sample prediction. Similar results from (a) Quick Shift belief propagation,
(b) Belief propagation and (c) Mean Shift propagation.
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(a)

(b)

Fig. 7 A performance comparison between the proposed method and BP
and MSBP are shown by white, gray and black bars, respectively (a) Accu-
racy (b) Efficiency.

spectively. Since similar results among all methods were
obtained, only two results were included for BP and MSBP
in Figs. 6 (b) and (c). It can be seen that the model fits well
to the images for each approach. The results show that the
accuracy of QSBP is comparable to those of BP and MSBP
as illustrated in Fig. 7 (a). However, the computational time
of QSBP is significantly less than those of BP or MSBP
(Fig. 7 (b)). In particular, for our case of 4-state (2D posi-
tion plus body part length and angle) tracking, our proposed
technique is respectively 36 and 99 times faster than those
of MSBP and BP. On average, the numbers of iterations to
get the best solution are 9, 30 and 42 for QSBP, MSBP and
BP, respectively. The 2D tracking results are compared with
ground truth which is manually obtained. The average dis-
tance errors from the corresponding ground truth are shown
in Fig. 7 (a). It can be seen that all methods provide accu-
racy; however, our approach is far more efficiency than the
others as shown in Fig. 7 (b).

5. Conclusion

We propose a part-based tracking algorithm by integrating
Quick Shift, a simple and efficient mode seeking method,
into the belief propagation framework. The main idea is to
find the mode of marginal probability of belief propagation
to be used to predict points in the next iteration, and that
way only samples around modes are computed in each itera-
tion of belief propagation. Therefore, our proposed method
needs fewer samples than NBP or MSBP. In addition, it
converges to the best solution faster than the other meth-
ods. This approach can reduce the computational complex-
ity dramatically due to the reduction of search space while
preserving accuracy. In addition, we apply model video in
the first iteration of belief propagation for predicting and re-
solving occlusion problems. The method was experimented
on several videos and the results showed very good perfor-

mance and robustness in both accuracy and efficiency.
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