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Non-iterative Symmetric Two-Dimensional Linear Discriminant
Analysis

Kohei INOUE†a), Kenji HARA†, and Kiichi URAHAMA†, Members

SUMMARY Linear discriminant analysis (LDA) is one of the well-
known schemes for feature extraction and dimensionality reduction of la-
beled data. Recently, two-dimensional LDA (2DLDA) for matrices such as
images has been reformulated into symmetric 2DLDA (S2DLDA), which
is solved by an iterative algorithm. In this paper, we propose a non-iterative
S2DLDA and experimentally show that the proposed method achieves
comparable classification accuracy with the conventional S2DLDA, while
the proposed method is computationally more efficient than the conven-
tional S2DLDA.
key words: symmetric two-dimensional linear discriminant analysis, face
recognition, dimensionality reduction

1. Introduction

Linear discriminant analysis (LDA) is one of the well-
known schemes for feature extraction and dimensionality
reduction of labeled data. Recently, LDA, which was orig-
inally formulated for discriminating labeled vectors [1], has
been extended to two-dimensional LDA (2DLDA) for dis-
criminating labeled matrices such as images. Yang et al. [2]
proposed a 2DLDA which performs the uncorrelated image
matrix-based LDA (IMLDA) proposed by Yang et al. [3]
twice: the first and the second times are in horizontal and
vertical directions, respectively. Ye et al. [4] also proposed
another 2DLDA which attempts to optimize two transfor-
mation matrices L and R for reducing dimensions of rows
and columns, respectively. In Ye’s 2DLDA [4], L and R are
optimized with different objective functions by an alternat-
ing algorithm. However, the optimization with L may not
be optimal for the objective function for R, and vice versa.
Ye et al. [4] demonstrated that the accuracy curves for face
recognition are stable with respect to the number of itera-
tions, which led them to adopt a single-iteration renewal
procedure. We proposed a non-iterative 2DLDA [5] which is
a combination of Yang’s 2DLDA [2] and Ye’s one [4]. Luo
et al. [6] pointed out the ambiguity problem on the objec-
tive function for 2DLDA, i.e., there are several choices for
the objective function for 2DLDA, and derived a reasonable
objective function for 2DLDA called symmetric 2DLDA
(S2DLDA). However, S2DLDA is no longer reduced to any
generalized eigenvalue problems. Therefore, they used a
gradient ascent approach. However, their algorithm does not
necessarily increase the objective function value monoton-
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ically as demonstrated in their paper [6], and therefore it is
difficult to determine the number of iterations of the renewal
procedure.

This work is motivated by the above observation of the
state-of-the-art 2DLDA techniques. That is, Luo’s solution
to the ambiguity problem in 2DLDA, i.e., S2DLDA, caused
other problems that S2DLDA is no longer reduced to any
generalized eigenvalue problems and therefore Luo et al. [6]
adopted a gradient ascent approach which has the difficulty
in determining the optimal number of iterations. If we can
reformulate S2DLDA in a way that the reformulation is re-
duced to a generalized eigenvalue problem, then we will
overcome the above problems.

In this paper, we propose a non-iterative S2DLDA
which can be reduced to a generalized eigenvalue problem
and therefore has an analytical solution. Experimental re-
sults show that the proposed method achieves comparable
classification accuracy with S2DLDA [6] and is computa-
tionally efficient in the training stage.

The rest of this paper is organized as follows: Sec-
tion 2 summarizes S2DLDA [4]. Section 3 proposes a non-
iterative S2DLDA. Section 4 shows experimental results.
Finally, Sect. 5 concludes this paper.

2. Symmetric 2DLDA

Let Ai ∈ Rr×c for i = 1, . . . ,m be m images categorized into
n classes Π1, . . . ,Πn. Let Mj =

1
n j

∑
Ai∈Π j

Ai be the mean of
the jth class for j = 1, . . . , n where n j = |Π j| is the num-
ber of elements in Π j, and let M = 1

m

∑n
j=1
∑

Ai∈Π j
Ai be the

global mean. In 2DLDA, the dimensions of Ai are reduced
by

Bi = LT AiR ∈ Rr̃×c̃,

where L ∈ Rr×r̃ for r̃ ≤ r and R ∈ Rc×c̃ for c̃ ≤ c. In sym-
metric 2DLDA (S2DLDA), L and R are obtained by solving
the following maximization problem:

max
L, R

tr
[(

RT S L
wR
)−1

RT S L
b R
]
+ tr
[(

LT S R
wL
)−1

LT S R
b L
]
,

(1)

where tr denotes the matrix trace, S R
w and S L

w are the within-
class scatter matrices defined by

S R
w =

n∑
j=1

∑
Ai∈Π j

(Ai − Mj)RRT (Ai − Mj)
T ,
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S L
w =

n∑
j=1

∑
Ai∈Π j

(Ai − Mj)
T LLT (Ai − Mj),

respectively, and S R
b and S L

b are the between-class scatter
matrices defined by

S R
b =

n∑
j=1

n j(Mj − M)RRT (Mj − M)T ,

S L
b =

n∑
j=1

n j(Mj − M)T LLT (Mj − M),

respectively. Let J be the objective function in (1). Then J
can be rewritten as follows:

J = tr

⎡⎢⎢⎢⎢⎢⎢⎣
(
RT S L

wR
)−1

RT S L
b R 0

0
(
LT S R

wL
)−1

LT S R
b L

⎤⎥⎥⎥⎥⎥⎥⎦

= tr

⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎣
(
RT S L

wR
)−1

0

0
(
LT S R

wL
)−1

⎤⎥⎥⎥⎥⎥⎥⎦
[
RT S L

b R 0
0 LT S R

b L

]⎞⎟⎟⎟⎟⎟⎟⎠

= tr

⎛⎜⎜⎜⎜⎜⎝
[
RT S L

wR 0
0 LT S R

wL

]−1 [
RT S L

b R 0
0 LT S R

b L

]⎞⎟⎟⎟⎟⎟⎠

= tr

⎡⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
[
0 L
R 0

]T [
S R
w 0

0 S L
w

] [
0 L
R 0

]⎞⎟⎟⎟⎟⎠
−1

[
0 L
R 0

]T [
S R

b 0
0 S L

b

] [
0 L
R 0

]⎤⎥⎥⎥⎥⎦
= tr
[(

UT S wU
)−1

UT S bU
]
,

where

U =

[
0 L
R 0

]
, S w =

[
S R
w 0

0 S L
w

]
, S b =

[
S R

b 0
0 S L

b

]
.

Since both S w and S b contain L and R, (1) has no analyt-
ical solution. Therefore, Luo et al. [6] used a gradient as-
cent approach. However, their algorithm does not necessar-
ily increase the objective function value monotonically, and
therefore it is difficult to determine the number of iterations
in their approach.

3. Non-iterative Symmetric 2DLDA

We define the row-row within-class and between-class scat-
ter matrices [5] as

S r
w =

n∑
j=1

∑
Ai∈Π j

(Ai − Mj)(Ai − Mj)
T ,

S r
b =

n∑
j=1

n j(Mj − M)(Mj − M)T ,

respectively. We also define the column-column within-
class and between-class scatter matrices [5] as

S c
w =

n∑
j=1

∑
Ai∈Π j

(Ai − Mj)
T (Ai − Mj),

Table 1 The proposed algorithm.

Algorithm: Non-iterative symmetric 2DLDA
1. Compute S r

w, S r
b, S c

w and S c
b.

2. Compute S̃ w and S̃ b.
3. Compute the first K principal eigenvalues λ1 ≥ · · · ≥ λK of

S̃ −1
w S̃ b and the corresponding eigenvectors ũ1, . . . , ũK .

4. Initialize L̃ = [] and R̃ = [].
5. For k = 1, . . . , K̃, do the following:
5-1. Let x = [ũk,1, . . . , ũk,r̃]T and y = [ũk,r̃+1, . . . , ũk,K ]T , where ũk,l is

the lth element of ũk.
5-2. If ‖x‖ ≥ ‖y‖, then renew L̃← [L̃, x], or else R̃← [R̃, y].
6. Reduce the dimension of Ai by B̃i = L̃T AiR̃.

S c
b =

n∑
j=1

n j(Mj − M)T (Mj − M),

respectively. Then we form a combined within-class scatter
matrix

S̃ w =

[
S r
w 0

0 S c
w

]

and a combined between-class scatter matrix

S̃ b =

[
S r

b 0
0 S c

b

]
.

Now we formulate a non-iterative S2DLDA as follows:

max
Ũ

tr
[(

ŨT S̃ wŨ
)−1

ŨT S̃ bŨ
]
. (2)

Since S r
w, S r

b, S c
w and S c

b do not contain L and R and there-
fore S̃ w and S̃ b do not contain L and R either, the solution
to (2) is given by the principal eigenvectors of S̃ −1

w S̃ b as in
the conventional LDA [1]. Therefore, we can avoid using a
gradient ascent approach which has the difficulty in deter-
mining the number of iterations.

The procedure of the non-iterative S2DLDA is sum-
marized in Table 1. Since the projection matrices L and
R are intermingled in Ũ, we separate them in steps 5-1
and 5-2 in Table 1 and express them as L̃ and R̃. Since
S̃ w and S̃ b are block diagonal, S̃ −1

w S̃ b is also block diag-
onal. Therefore, the kth eigenvector ũk of S̃ −1

w S̃ b has the
form ũk = [ũk,1, . . . , ũk,r̃, 0, . . . , 0]T = [xT , 0, . . . , 0]T or
ũk = [0, . . . , 0, ũk,r̃+1, . . . , ũk,K]T = [0, . . . , 0, yT ]T . In step
5-2, we select a nonzero subvector x or y by comparing their
Euclidean norm.

4. Experimental Results

In this section, we evaluate the performance of the proposed
non-iterative S2DLDA compared with the conventional
S2DLDA [6]. We use the ORL face image database [7] in
our experiments. Figure 1 shows some face images in this
database, which contains the face images of 40 persons.
There are 10 different images per person. We use 3 images
per person for training, and the remaining 7 images for test-
ing. The size of each image is 112 × 92 pixels, i.e., r = 112
and c = 92. We set r̃ = 10 and c̃ = 6 by leave-one-out
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Fig. 1 ORL face images.

Fig. 2 Objective function value for symmetric 2DLDA.

Fig. 3 CPU time for symmetric 2DLDA.

cross-validation in non-iterative S2DLDA. Figure 2 shows
the variation in the objective function value J for S2DLDA,
where the horizontal axis denotes the number of iterations
and the vertical axis denotes the value of J. As demon-
strated in [6], the value of J fluctuates with the increase in
the number of iterations. That is, the gradient ascent ap-
proach by Luo et al. [6] does not guarantee that J increases
monotonically. One of the reasons that J fluctuates in their
approach is that L and R are normalized once every c = 3
iterations where c is a parameter used in their paper [6]. Fig-
ure 3 shows the CPU time for training in S2DLDA. The
CPU time linearly increases with the number of iterations.
We performed our experiments using MATLAB on a Pen-
tium 4 CPU 3.40 GHz machine with 2.00 GB RAM. Fig-
ure 4 shows the recognition rate for S2DLDA, where we
classified the test set with the nearest-neighbor rule [8]. The
highest recognition rate 0.85 is obtained at the 7 iterations.

Next, we show the results for non-iterative S2DLDA.
Figure 5 shows the maximum objective function value in
(2), where the horizontal axis denotes the dimension of
B̃i = L̃T AiR̃ or the number of the elements in B̃i. The CPU

Fig. 4 Recognition rate for symmetric 2DLDA.

Fig. 5 Objective function value for the proposed method.

Fig. 6 Recognition rate for the proposed method.

time for training in non-iterative S2DLDA is 0.218 seconds,
which is shorter than that (0.469 seconds) for one iteration
in S2DLDA. Figure 6 shows the recognition rate for non-
iterative S2DLDA. The highest recognition rate 0.889 is ob-
tained when the number of dimensions is 54 = r̃ × c̃ where
r̃ = 9 and c̃ = 6. Thus, the proposed non-iterative S2DLDA
achieves comparable recognition rate with the conventional
S2DLDA, and the CPU time for training in non-iterative
S2DLDA is shorter than that in S2DLDA.

Figure 7 shows a confusion matrix for the proposed
method. The highest rate in the off-diagonal elements is 0.8
which is the (17, 36) element, i.e., the 17th person is likely
to be confused with the 36th person. Figures 8 and 9 show
the face images of the 36th person for training and that of
the 17th person for testing, respectively.

We compared the performance of the proposed method
with that of the conventional methods: no dimension re-
duction (baseline), PCA+LDA, 2DLDA [4], S2DLDA [6]
and image shrinkage by a photo-retouch software (Adobe
Photoshop CS). We excluded the conventional LDA from
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Table 2 Classification accuracy.

baseline PCA+LDA 2DLDA S2DLDA photo-retouch proposed
ORL 0.857 0.768 0.829 0.811 0.864 0.889
IFD 0.778 0.750 0.534 0.773 0.824 0.818

UMIST 0.556 0.569 0.272 0.484 0.600 0.663
CHFD 0.654 0.520 0.109 0.640 0.548 0.815

Fig. 7 Confusion matrix.

Fig. 8 The 36th person’s images for training.

Fig. 9 The 17th person’s images for testing.

the above methods because LDA encountered the singu-
larity problem in our preliminary experiments. We deter-
mined all parameters in each method by using leave-one-out
cross-validation. We used the ORL face database [7], the In-
dian face database [9] (IFD), the UMIST face database [10]
and Caltech Human face (Front) dataset [11] (CHFD). Ta-
ble 2 summarizes classification accuracy for each method on
each dataset. The photo-retouch software achieved the high-
est accuracy on the IFD dataset and the proposed method
achieved the highest accuracy on the other datasets.

5. Conclusion

In this paper, we proposed a non-iterative symmetric
2DLDA for supervised dimensionality reduction of matrices

such as two-dimensional images. Experimental results show
that the proposed method achieves comparable recognition
rate with the conventional symmetric 2DLDA and is com-
putationally efficient in the training stage of face recogni-
tion. We also compared the performance of the proposed
method with that of no dimension reduction method (base-
line), PCA+LDA, 2DLDA [4] and image shrinkage by a
photo-retouch software on four benchmark datasets.
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