
930
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

LETTER

DSP-Based Parallel Implementation of Speeded-Up Robust
Features

Chao LIAO†a), Student Member, Guijin WANG†b), Member, Quan MIAO†, Student Member,
Zhiguo WANG†, Nonmember, Chenbo SHI†, Student Member, and Xinggang LIN†c), Nonmember

SUMMARY Robust local image features have become crucial compo-
nents of many state-of-the-art computer vision algorithms. Due to limited
hardware resources, computing local features on embedded system is not an
easy task. In this paper, we propose an efficient parallel computing frame-
work for speeded-up robust features with an orientation towards multi-DSP
based embedded system. We optimize modules in SURF to better utilize
the capability of DSP chips. We also design a compact data layout to adapt
to the limited memory resource and to increase data access bandwidth. A
data-driven barrier and workload balance schemes are presented to syn-
chronize parallel working chips and reduce overall cost. The experiment
shows our implementation achieves competitive time efficiency compared
with related works.
key words: digital signal processing, speeded-up robust features, SURF,
parallel computing, image matching

1. Introduction

Robust local image features are widely used in many state-
of-the-art computer vision algorithms such as calibration,
object recognition and motion tracking. As a sound repre-
sentative, scale invariant feature transform (SIFT) is known
for its distinctiveness against image scaling, rotation and
view point change [1]. However, its excellent matching re-
sult is acquired at the cost of a heavy computation burden.
This disadvantage is also common for other local features
like maximally stable extremal region (MSER) [2], and lim-
its their application to PC systems only. To relieve this
burden, speeded-up robust features (SURF) is proposed as
a light weighted alternate while maintaining a similar per-
formance [3]. Meanwhile, modern DSP chips now acquire
more strength with less energy consumption as the hardware
techniques develop. There emerges a possibility to extract
local features on embedded systems within reasonable time.

Sinha [4] and Cornelis [5] ported SIFT and SURF to
graphics processing unit (GPU). GPU plus CPU obtain im-
pressive processing speed, but they still require a PC sys-
tem and more power supply. Special purpose hardwares on
FPGA can provide a good balance between speed and en-
ergy, these works are reported in Ehsan’s survey [6]. Ko [7]
implemented SIFT on a BlackFin DSP inside a wireless
camera network. Their solution is not very fast due to the

Manuscript received September 27, 2010.
Manuscript revised November 30, 2010.
†The authors are with the Department of Electronic Engineer-

ing, Tsinghua University, Beijing 100084, China
a) E-mail: liaoc02@mails.tsinghua.edu.cn
b) E-mail: wangguijin@tsinghua.edu.cn
c) E-mail: xglin@tsinghua.edu.cn

DOI: 10.1587/transinf.E94.D.930

complexity of SIFT and the low speed of DSP chip. Arth [8]
implemented MSER on a single fixed-point DSP for an ob-
ject recognition system, which is most similar to our work.
However, we place more emphasis on improving the effi-
ciency by computing in parallel with multiple DSP chips.
Zhang [9] decomposed SURF modules into parts and com-
puted with several threads on quad-core CPU. This work is
also parallel and achieves real-time performance. But it is
not very suitable for DSP systems due to platform discrep-
ancies in memory usage and synchronization.

In this paper, we propose an efficient parallel comput-
ing framework for speeded-up robust features oriented to-
wards multi-DSP based embedded system. With a major
concern on latency, we optimize a few modules with high
call-frequency to improve the efficiency. Due to limited
internal memory, we also design a compact data layout to
increase data access bandwidth. A data-driven barrier and
workload balance schemes are presented to synchronize par-
allel working chips and reduce overall cost.

2. Parallel Framework

An efficient parallel design on embedded system considers
both the possibility of parallelism in algorithm and the char-
acteristic of hardware platform. As we mainly concern on
the latency rather than throughput, we also improve the effi-
ciency of selected sub-routines with high call frequency.

2.1 Algorithm Overview

SURF algorithm consists of five phases to obtain interest
points, see Fig. 1 (b). It uses determinant of Hessian (DoH)
detector (Eq. (1)) to locate blob-like structures in image. To
achieve scale invariance, several scale space pyramids, re-
ferred to as octaves, are created by applying the detector
on images filtered at different scales. An octave typically
consists of 4 Hessian planes with their scale size specified
in an increasing manner. SURF combines integrate image
along with boxlet filters to approximate second order Gaus-
sian derivatives. The approximation can be evaluated at a
very low cost independent of filter size, hence speed up the
generation of octaves.

H(x, y, σ) =

⎡
⎢⎢⎢⎢⎢⎣

∂2G
∂x2

∂2G
∂x∂y

∂2G
∂y∂x

∂2G
∂y2

⎤
⎥⎥⎥⎥⎥⎦ ,Gx,y,σ =

e−(x2+y2)/2σ2

2πσ2
(1)

A non-maximum suppression is then performed in the

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



LETTER
931

Fig. 1 Parallel computing of the octaves.

3×3×3 neighborhood inside an octave. The location where
the DoH value is extreme has the potential to be an interest
point. However, some further examinations like edge and
contrast should be performed to reduce false alarm.

To synthesize descriptor, SURF first assigns a repro-
ducible orientation. About 100 sample points are selected
within the interest point neighborhood and applied with
Haar wavelet filter along x, y directions. The dominant ori-
entation is estimated from the distribution of their responses.
After that, SURF constructs a square region centered at the
interest point and aligned along the dominant orientation.
Haar wavelet responses extracted within the square region
are concatenated to produce a 64-dimensional descriptor.

2.2 Octave-Level Parallelism

We analyze the critical path of SURF to find out which
parts can be computed in parallel. Critical path refers to
the longest chain of dependent calculations. Every program
fragment in the critical path depends on the result of prior
fragment. Hence they must be executed in order and no pro-
gram can run faster than its critical path. Bernstein’s Condi-
tions can help us to decide whether two fragments are inde-
pendent. For two program fragments Pi, Pj, let Ii, I j be their
input, and Oi,Oj be their output. Pi is independent of Pj if
they satisfy the conditions in Eq. (2).

I j ∩ Oi = φ,Oj ∩ Ii = φ,Oi ∩ Oj = φ (2)

Bernstein’s Conditions clarifies that previously intro-
duced 5 steps in computing an octave are all on critical path,
see Fig. 1 (b). However, the octaves themselves are also
proved to be independent to each other and hence can be
computed in parallel. This conclusion also stands for other
interest point detection algorithms such as SIFT and MSER.

With the knowledge from critical path, we propose
the parallel SURF detection and matching framework in
Fig. 1 (a). Octaves are computed on multiple DSP chips
and their results are then merged together in synchroniza-
tion before used to query against reference data for corre-
spondence.

Computing octaves in parallel not only reduces the

Fig. 2 Compute integrate image in parallel.

overall calculation time, but also saves the memory space.
If all octaves require an allocation, the DSP memory would
fail to meet their need. But since octaves are independent,
we can only allocate one memory section for the largest oc-
tave, and other octaves can re-use its space.

2.3 Integrate Image

SURF applies boxlet filter on integrate image to produce
a fast approximation of Gaussian filter response. Here we
propose a method to compute integrate image in parallel at
instruction level. Image integration is usually carried out
from top-left to bottom-right. The integration value is the
sum of top and left pixels. In Fig. 2 (a), the execution order
would be point A-B-C-D. But with Berstein’s Conditions
in Eq. (2), we notice that point B and C are independent,
as their input are point A and self-pixel. Hence the critical
path is point A-(BC)-D. Point B and C can be computed
in parallel. The optimized procedure is performed line by
line, with two rows calculated in one horizontal sweep, see
Fig. 2 (b). The numbers indicate the execution order. Points
with same numbers are computed in parallel with long in-
structions. This improvement saves more than 25% time
compared with the regular method. But the overall gain
on speed is not quite obvious since integration only takes
a small portion in SURF.

2.4 Parallel Search

For image matching problems, the purpose of extracting in-
terest points is to establish correspondences between two
pictures. The correspondences, or say the matching points,
are found by comparing the Euclidean distance of descrip-
tors between one newly detected SURF point and the points
stored in the reference database. As this search procedure is
again independent for each query point, we can also carry
it out in parallel. Each core can query its subset of detected
points against the reference data. Their results are then com-
bined to a formal correspondence set. This way not only
brings better search speed, but also reduces the amount of
data need to be transferred, since sometimes it is the corre-
spondences rather than SURF points that are wanted.

3. DSP Implementation

The implementation of algorithm must always adapt to spe-
cific hardware. In our application, we use floating-point
DSP chips TigerSHARC201 to evaluate our method.



932
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

Fig. 3 Data layout in memory.

3.1 Data Layout

The TigerSHARC201 memory consists of 6 full banks
which can be further divided into half-banks. Each half-
bank is equipped with a read/write cache. With such a spec-
ification, neither the maximal consecutive data segment nor
the heap size can exceed a full bank. Figure 3 illustrates our
raw data-layout inside memory. Hessian A-D represent the
Hessian matrices under 4 scales in one octave. They are split
up due to the maximal volume constraint. While allocat-
ing them, we mainly consider reducing read/write conflicts
with other contents in the same bank. e.g. The search ex-
treme step triggers concurrent data access for Hessian ABC
or BCD. By storing them in different half-banks, the bus
can utilize 3 caches hence increase the access bandwidth. A
D can stay in one bank as they are not conflicting. Basic
SURF point information such as position, scale and orien-
tation are stored in structure arrays Feat1 and Feat2, while
their corresponding descriptors are stored in separated pools
from other banks. Feat1 and Feat2 together form ping-pong
buffers, which enable the algorithm to work in place with
image sequences. The storage pool for communication data
locates in an isolate half-bank, which reduces the conflict
between DSP core and communication device.

3.2 Workload Balance

While assigning tasks to different cores, it is better that they
can get finished in almost the same time. Otherwise one core
would have to wait for the others to finish before entering
next phase. The boxlet method in SURF simplifies Gaus-
sian filtering into fixed number of summations, so the work-
load for each octave can be roughly estimated by its hessian
matrix size. Since the matrix width and height halves as the
octave index increase, the workload for 4 octaves are 1, 1/4,
1/16 and 1/64. Octave0 is most expensive and costs even
more than the sum of the rest. For dual-core platform, it
is reasonable to assign octave0 to one core, and the rest to
the other. This scheme cannot cover the gap completely, but
is easy to implement. Another possible scheme would be
to divide octave0 into halves and assign them to different
cores. This scheme requires additional data merging step
and is more suitable for platforms with more than 3 cores.

Fig. 4 Data exchange and synchronization with DMA.

3.3 Synchronization

Synchronization is the check point where parallel working
units exchange data and coordinate their progress. Syn-
chronization guarantees correct execution order and data in-
tegrity, although it also brings complicated organism and no-
ticeable communication overhead. For shared-memory sys-
tem, it is usually implemented in a centralized manner. Each
processor updates a state variable stored in shared memory
to indicate its arrival to certain check point. Then they poll
these state variables to determine others’ arrival. Once all
true, they are permitted to continue. Otherwise, they are all
stalled as if these state variables formed a barrier.

However, high speed shared memory is rarely provided
on multi-DSP platform and centralized state indicators are
not available. To overcome this difficulty, we present a data-
driven barrier to replace the centralized one. While a cen-
tralized barrier is visible to all processors, a data-driven bar-
rier is only visible to local processor and to ensure local pro-
gram halted till its input data arrive. The key observation is
that all what a program fragment need to operate is proper
input data. In Fig. 4 (a), each core has a data-driven barri-
ers set at the bottom of receive window. Local barriers may
take place with slight time difference, but they together also
keep the time order that data exchange completes before the
program goes to next phase.

Another characteristic is that shared data are main-
tained by communication. Each DSP has different memory
space and keeps its own copy of shared data. This is differ-
ent from shared memory system where only one copy would
be sufficient for all threads. e.g., as all cores need to share
detected points, master and slave cores will duplicate their
detection result and transfer to each other through physical
channels to complete a data exchange/sharing.

Time order is the most concerned problem in commu-
nication. Data transfer is implemented with direct mem-
ory access (DMA) technique which requires receive time
windows open earlier and close later than send windows,
see Fig. 4 (a). This requirement is very challenging if many
transfers are involved. Unfortunately, there are as many as
5 DMA transfers in one process cycle, see Fig. 4 (b). T1a
and T1b load image and reference data from external stor-
age into internal memory. T2a sends integrate image from



LETTER
933

Fig. 5 Detected SURF points in Boat images.

master to slave core. After that both cores start detection in
parallel. Suppose master would finish first, it waits for T2b
to send back matching points from slave core. In the end,
both cores exchange their interest points by T2c. The time
windows for these DMA must be carefully designed. How-
ever, by using more DMA channels this problem can be al-
leviated as the interlacing among these DMA are weakened.

4. Experiment

We test the proposed method on an evaluation board of 2
TigerSHARC DSP chips. Each chip has 600 MHz main fre-
quency, and 3 MB internal memory. Due to the resolution
restriction from external camera, the input image size is con-
strained to 320 × 256. The performance is compared with
the CPU implementation of Bay [3] on the benchmark data
set provided by Mikolajczyk [10]. Both produce identical
matching results while the detected point numbers have a
little difference, which is caused by different threshold set-
ting in extreme search. Figure 5 shows our results on Boat
images.

We compare the time efficiency with other works in Ta-
ble 1. The original SURF by Bay [3] takes about 100 ms on
PC with Pentium IV 3.0 GHz CPU. Our method achieves
a similar detection time of 120 ms, but with much slower
chips (600 MHz×2) and limited memory resources. Com-
pared with other interest point detection algorithms based
on DSP, our result is also time efficient. Ko [7] implemented
SIFT on a Black Fin chip with a processing time longer than
3 second. Part of the reason for the long time is that SIFT is
much more complicated than SURF. Arth [8] implemented
MSER on one single fixed-point chip with a processing time
of 257 ms. As fixed-point chip is usually faster than floating-
point chip, our method is also considered competitive. From
parallel computing perspective, our special advantage is that
we allow for even more DSP cores. Extra time efficiency can
be achieved by further dividing octaves into smaller pieces
and calculate them with additional cores.

To better investigate the effect of our parallel frame-
work, we compare its time cost with serial settings. Figure 6
illustrates the time change for same image contexts. The
serial one takes more than 180 ms, while by calculating in
parallel, the time cost is reduced to 120 ms. A gain of about
60 ms (33%) is achieved. The speed is not doubled mainly
due to the waiting cost in synchronization caused by unbal-
anced workloads. The overhead from memory communi-
cation is relatively small. As core-to-core link port DMA

Table 1 Performance comparison. The first row is with CPU.

Author Time Size Algorithm Platform
Bay [3] 100 ms 320×256 SURF PentiumIV 3.0 GHz
This 120 ms 320×256 SURF TigerSHARC201×2
Arth [8] 257 ms 352×288 MSER TMS320C6414
Ko [7] >3 s 320×256 SIFT BlackFin

Fig. 6 Time cost proportion for serial&parallel settings (dual core).

speed is about 0.5 MB/ms, transmitting the largest data sec-
tion (integrate image, 320 kB) costs less than 0.64 ms.

5. Conclusion

In this paper, we present a fast parallel implementation
of SURF on DSP-based embedded systems. We investi-
gate octave-level parallelism and study the key problems
of memory layout, workload balance and synchronization.
We achieve competitive time efficiency with 2 TigerSHARC
chips compared with related works. In the future, we will
further explore the possibility to incorporate more chips and
reduce the overhead in multi-core synchronization.

References

[1] D.G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol.60, no.2, pp.91–110, 2004.

[2] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline
stereo from maximally stable extremal regions,” Image Vis. Com-
put., vol.22, no.10, pp.761–767, 2004.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” CVIU, vol.110, no.3, pp.346–359, 2008.

[4] S.N. Sinha, J.M. Frahm, M. Pollefeys, and Y. Genc, “Feature track-
ing and matching in video using programmable graphics hardware,”
Machine Vision and Applications, pp.1–11, 2007.

[5] N. Cornelis and L. Van Gool, “Fast scale invariant feature detection
and matching on programmable graphics hardware,” CVPR Work-
shops, pp.1–8, 2008.

[6] S. Ehsan, A.F. Clark, et al., “Hardware based scale and rotation in-
variant feature extraction: A retrospective analysis and future direc-
tions,” Proc. ICCEE, pp.620–624, 2009.

[7] T. Ko, Z.M. Charbiwala, et al., “Exploring tradeoffs in accuracy,
energy and latency of scale invariant feature transform in wireless
camera networks,” ICDSC, pp.313–320, 2007.

[8] C. Arth, et al., “Using robust local features on DSP-based embedded
systems,” Embedded Computer Vision, pp.79–100, 2009.

[9] N. Zhang, “Computing optimized parallel speeded-up robust fea-
tures (P-SURF) on multi-core processors,” Int. J. Parallel Pro-
gramm., vol.38, no.2, pp.138–158, 2010

[10] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors.” IEEE Trans. Pattern Anal. Mach. Intell., vol.27, no.10,
pp.1615–1630, 2005.


