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Non-rigid Object Tracking as Salient Region Segmentation and
Association

Xiaolin ZHAO†a), Student Member, Xin YU†b), Liguo SUN†c), Kangqiao HU†d), Nonmembers,
Guijin WANG†e), Member, and Li ZHANG†f), Nonmember

SUMMARY Tracking a non-rigid object in a video in the presence of
background clutter and partial occlusion is challenging. We propose a
non-rigid object-tracking paradigm by repeatedly detecting and associating
saliency regions. Saliency region segmentation is operated in each frame.
The segmentation results provide rich spatial support for tracking and make
the reliable tracking of non-rigid object without drifting possible. The pre-
cise object region is obtained simultaneously by associating the saliency
region using two independent observers. Our formulation is quite general
and other salient-region segmentation algorithms also can be used. Ex-
perimental results have shown that such a paradigm can effectively handle
tracking problems of objects with rapid movement, rotation and partial oc-
clusion.
key words: non-rigid object tracking, saliency region segmentation

1. Introduction

Non-rigid object tracking is still a challenging problem in
computer vision. It is also an important issue in anima-
tion, behavior analysis, visual surveillance and so on. The
challenges of non-rigid object tracking generally arise from
tracking drift, which is usually caused by object shape vari-
ation and partial occlusion.

To handle the challenges, a variety of algorithms have
been proposed. Mean-shift [1] is a powerful, non-parametric
statistical method for non-rigid object tracking. The shape
of a tracked object is often approximated by an ellipse or
rectangle. Although being successful in some applications,
it suffers from the inability to properly adapt the ellipse/
rectangle when the shape and size of the tracked object
change [2]. An inaccurate ellipse/rectangle often contains
background area which can lead to tracking drift.

In order to make the tracker more robust to drift, high-
level knowledge was utilized to model the object [3]–[5].
In [3], [4], discriminative local shape features selected by
a boosting algorithm are used to detect object. To some de-
gree, the above approaches have achieved promising per-
formance in tracking. But these algorithms still simply ap-
proximate the object with rectangle or ellipse. Such a sim-
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ple approximation has trouble tracking non-rigid objects in
cluttered scenes.

In recent studies [6]–[8], researchers confirmed that
using visual saliency can substantially improve segmenta-
tion and tracking performance. Saliency based detection/
segmentation framework achieves promising results, espe-
cially for objects that can’t be well approximated by an el-
lipse or rectangle. In Donoser’s approach [6], local MSER
(Maximally Stable Extremal Region) detector is combined
with data association to track objects. Fukuchi [7] intro-
duced MAP-based framewise segmentation based on the
maximum posterior estimation of the Markov random field
and visual saliency. Although the results of above ap-
proaches are promising, they may have trouble when the
background is clutter and occlusion happens.

In order to track non-rigid object in clutter background,
we proposed a novel strategy for non-rigid object tracking as
shown in Figs. 1 and 2. Segmentation is operated in each
frame by detecting saliency regions utilizing basic image
cues (gray value). The precise object tracking result is ob-
tained by finding the best corresponding regions between
the current and previous frame while using two independent
observers.

The rest of this paper is organized as follows: Sect. 2
introduces our method. Experimental results are shown in
Sect. 3 and conclusions are drawn in Sect. 4.

2. Tracking as Salient Region Segmentation and Asso-
ciation

Tracking can be considered as an inference problem to lo-
cate a specific object in each frame. Typical tracking ap-
proaches aim at finding the location of the object center. We
endeavor to obtain not only the location of an object’s center
but also the accurate object mask. Salient region segmenta-
tion is operated independently in each frame using low-level
image features. The high-level knowledge of object is ob-
tained from object data set trained by a Gentle Adaboost.
Once salient region segmentation results are obtained, the
low-level and high-level cues are combined together to find
the best candidates as object region.

2.1 Salient Region Segmentation

In general, any of the region-of-interest (saliency or ROI)
segmentation or detection methods can be used. We adopt
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Fig. 1 Overview diagram of our approach.

Fig. 2 (a) boundary box initialization (b) saliency region segmentation
results (Only the results in boundary box area are shown). Different salient
regions are filled with different color.

MSERs detection method proposed by Matas et al. [9].
MSERs has two important properties: it is invariant to affine
intensity changes and can be detected at different scales.
Given an image I(x) (x is the pixel position), we denote the
set of all extremal regions in image I as R(I). As in [9],
the maximum pixel value in every extremal region R can be
defined as:

I(R) = max
x∈R I(x) (1)

Define � > 0, R−� is the biggest extremal region is
contained in R with intensity lower than R by at least �.

R−� = max
U∈R(I),U⊂R,I(U)≤I(R)−�

|U | (2)

Similarly, define R+� as following:

R+� = min
U∈R(I),U⊃R,I(U)≥I(R)+�

|U | (3)

R+� is the smallest extremal region containing R and has
intensity which exceeds at least � of R. |.| is the size of the
region. Denote the area variation as:

ν(R,�) =
|R+�| − |R−�|
|R| (4)

The region R is a MSER when Eq. (4) takes a mini-
mum.

2.2 Boosting Discriminative Boundary Fragments

Discriminative boundary fragments which can capture the

Fig. 3 The top 12 edgelet features selected by Gentle Adaboost. (The
edgelets are corresponding to fish head and torso)

local shape of an object are selected by Gentle Adaboost.
A discriminative boundary fragment (also named edgelet in
[3]) is a short segment of line or curve. Define the positions
and normal vectors of the elements in an edgelet as {ui}li=1

and {nE
i }li=1, where l is the length of the edgelet. The affinity

between the edgelet and the image I at position w can be
calculated by

S (w) = (1/l)
l∑

i=1

MI(ui + w)| < nI(ui + w), nE
i > | (5)

The edge intensity MI(p) and normal vector nI(p) of I are
calculated by 3 × 3 Sobel kernel convolution. The selection
results are shown in Fig. 3.

2.3 Combining Low-Level and High-Level Cues

We adopt a generative gray histogram observer model and
a boosted observer model to describe the object. Both ob-
servers work on gray scale data. The proposed approach
embeds the low-level and high-level knowledge of the ob-
ject into the observation models.

2.3.1 A Histogram Observer (Low-Level Cue)

Rt−1
o denotes the object region in previous frame and q de-

notes the corresponding object histogram. With p denoting
the histogram of an extremal region Rt in frame It, the Bhat-
tacharyya distance between the two regions can be defined
as

d(Rt−1
o ,R

t) =
√

(1 − ρ[p, q]) (6)



936
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

Fig. 4 Tracking results with our approach. The first and third rows are the original video frames, the
other rows are the corresponding tracking object regions.

where we chose ρ[p, q] =
∑B

b=1

√
(pbqb). B is the number of

histogram bins, and b is the histogram bin. The observation
likelihood can be modeled by a Gaussian distribution:

p(Rt |Rt−1
o ) =

1√
2πσ2

exp

(−d(Rt−1
o ,R

t)2

2σ2

)
(7)

where σ2 is the variance of Gaussian distribution.

2.3.2 A Boosted Observer (High-Level Cue)

This observer is boosted from a pool of Linear Discriminant
Analysis (LDA) classifiers. The observation likelihood is
modeled by a Sigmoid function of the boosted output:

p(R|Medgelets) ∝ 1

1 + exp
(
−

∑
k αk sign(wT

k fk(Medgelets)−ηk)∑
k αk

)
(8)

where (αk, wk, fk, ηk) is the k − th weak classifier. fk and αk

are the features and the corresponding boosted weight, wk

and ηk are the LDA projection vector and threshold. Medgelets

are the top 12 edgelet features selected by Adaboost.

2.4 Associating by Maximum A Posteriori (MAP) Esti-
mating

The most likely object region R̂t is obtained by MAP estima-
tion with an assumption that the observers are independent:

R̂t
ML = argmax

Rt∈R(It)
p(Rt |Rt−1

o )p(Rt |Medgelets) (9)

3. Experimental Results

Basically, fish tracking epitomizes the most problems in
non-rigid object tracking, such as shape change, less tex-
tures, rotation and occlusion. So we chose fish tracking to
evaluate our tracking algorithm.

3.1 Implementation Details

The salient regions extracted in Hue channel are normalized
before observing using method proposed in [10]. The grey
histogram model is updated online. Its likelihood is evalu-
ated by a Gaussian model. Histogram bin number B = 16
and the variance σ = 1. The length of one edgelet is from
4 pixels to 16 pixels. Because fish shape is symmetry so
we focus on the 1/8 circles, 1/4 circles and their symmetric
pairs. The windows size is 64 × 144 pixels and the overall
number of edgelets is 1,396,480.

In this experiment, we do not use any scene structure or
background subtraction to facilitate segmentation. The im-
age size of the test sequence is 640×512 pixels. Our experi-
mental machine is a dual-core dual-processor Intel Pentium
2.4 GHz CPU. The presented results were implemented in
C++, enabling a tracking speed of about 35 frames per sec-
ond for the test sequence. The initial region is detected by
MSER detection algorithm in a rectangle area which is se-
lected by hand in first frame. In all experiments the MSER
detection parameters �were fixed to 1 and the bounding box
size of segmentation area is double of the object size.
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Fig. 5 Tracking results with MSER Tracker [6]. It drifted to background in the 12th frame.

3.2 Results

Our goal is to make our algorithm work well on non-rigid
object tracking. Among 46 fish in 18 video sequences
(over 16,000) frames, after assigning the initial positions,
our tracking algorithm successfully tracks 39 fish, achiev-
ing a correction rate (r = Nright/Ntotal, Nright is the number
of correct tracked frames and Ntotal is the number of total
frames) of 84.7%. The correction rate for MSER tracker [6]
is 78.8%.

Figure 4 is an example of the tracked fish results. There
are some small stones and weeds in the background. A fish
moved in the scenario. Frequently partial occlusion further
increased the difficulty of tracking. The partial occlusion
makes the salient segmentation can not provide an integral
shape for the observers. Although the two observers can
only observe parts of the object in the 7-th, 8-th, 43-th,
61-th frames, our tracker still found the reasonable salient
regions as the tracking results. Utilizing low-level image
information ability enables the tracker re-obtain the whole
object region when the partial occlusion disappears. From
71-th frame we can find that the object integral shape was
re-segmented out after occlusion disappeared. In addition,
we compare our results with the [6] proposed tracker. Al-
though it succussed in some applications, it encounters with
drift problem when background has similar regions for the
usage of only the low-level features of object which can be
seen in Fig. 5.

4. Conclusion

In this paper, we proposed a novel non-rigid object track-
ing paradigm, which combines salient region segmentation
with discriminative observers. Experimental results on fish
sequence have validated its robustness to objects with shape
variation, partial occlusion and background clutter. Al-
though our experiments are only about fish tracking, this

paradigm can also be extended to other non-rigid object
tracking.
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