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An SMT-Based Approach to Bounded Model Checking of Designs
in State Transition Matrix∗
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SUMMARY State Transition Matrix (STM) is a table-based modeling
language that has been frequently used in industry for specifying behaviors
of systems. Functional correctness of a STM design (i.e., a design devel-
oped with STM) could often be expressed as invariant properties. In this
paper, we first present a formalization of the static and dynamic aspects
of STM designs. Consequentially, based on this formalization, we inves-
tigate a symbolic encoding approach, through which a STM design could
be bounded model checked w.r.t. invariant properties by using Satisfiability
Modulo Theories (SMT) solving technique. We have built a prototype im-
plementation of the proposed encoding and the state-of-the-art SMT solver
– Yices, is used in our experiments to evaluate the effectiveness of our ap-
proach. Two attempts for accelerating SMT solving are also reported.
key words: state transition matrix, bounded model checking, invariant
properties, satisfiability modulo theories

1. Introduction

State Transition Matrix (STM) [2] is a table-based model-
ing language for specifying behaviors of systems. In a STM
table, the horizontal axis declares possible status that a sys-
tem under consideration can be in, the vertical axis declares
possible events that may occur to the system, and a row-
column intersection cell declares behaviors of the system
when the designated event is dispatched (occurs) in the des-
ignated status. A whole system can be described by defining
each of its sub-systems as a STM, and the sub-system STMs
communicate via shared variables or message passing.

STM has been frequently used in industry for develop-
ing software designs, and been adopted as the modeling lan-
guage of some commercial model-based CASE tools such
as ZIPC [3]. Functional correctness of a STM design could
often be expressed as invariant properties. However, assur-
ing correctness, i.e., having a STM design satisfy certain
desired invariant properties, is a non-trivial task. On the one
hand, designers may introduce subtle logical errors incau-
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tiously into a STM design, especially when the design in-
volves multiple communicating STMs, which makes it diffi-
cult for designers to maintain an overall image of the whole
design. On the other hand, there is a lack of mechanized
formal verification support for STM designs, e.g., ZIPC pro-
vides facilities for syntactic check only.

The subject of this paper is to provide mechanical for-
mal verification support to STM designs. To this end, we
first formalize the structure of STMs and the dynamic be-
haviors of a STM design. Consequentially, based on the
formalization, we investigate a symbolic encoding approach
for STM designs, through which a design could be bounded
model checked (BMC) w.r.t. invariant properties by using
Satisfiability Modulo Theories (SMT) solving technique [4].
More specifically, in this approach, all execution sequences
within a given bound of a STM design and the negation of a
predicate to be proved invariant of the design, are encoded
into a quantifier-free formula whose satisfiability is to be
checked w.r.t. some decidable background theories such as
the theory of integers and the theories of various data struc-
tures such as arrays. Satisfiability of the resulted formula
can be determined by state-of-the-art SMT solvers. If sat-
isfied, a model (interpretation to all the (state) variables in-
volved) of the formula is a witness of some bad behaviors of
the design.

We have built a prototype implementation of the pro-
posed encoding. In the implementation, SMT-LIB (Ver. 1.2,
URL: goedel.cs.uiowa.edu/smtlib) [5] is chosen as our tar-
get language for encoding, since formulas to be checked for
satisfiability written in this language can be solved by most
state-of-the-art SMT solvers such as Yices [6]. We have con-
ducted experiments with Yices to evaluate effectiveness of
our approach. In the experiments, although general invariant
properties could be expressed and checked with our encod-
ing approach, we focused on three specific types that are of-
ten desired by industrial practitioners for STM designs [7]:
(1) Unreachability of Invalid Cells, (2) Static Constraints,
and (3) Dynamic Constraints. Additionally in the experi-
ments, two simple ideas for accelerating SMT solving speed
have been examined, and the results show that they are ef-
fective for most of the cases.

In this paper, we focus on STM designs that use shared
variables as the means of communication. A simplified
Money-Changer (MC) system modeled with STMs is used
as our demonstration example (Fig. 1). The system con-
sists of two components modeled as two STMs. (1) A de-
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vice called CHANGER, which supplies smaller denomina-
tions when equivalent amount of money in a larger denomi-
nation is inserted. The small denominations are delivered to
another device called RETURNER. (2) Device RETURNER
receives small denominations from CHANGER and waits un-
til they are taken. The MC system is modeled in a greatly
simplified means by abstracting away details irrelevant to
the demonstration purpose. For example, x10KYenRequest
is used to denote a request to change a banknote of 10K de-
nomination (e.g., Japanese currency), but whether the (10K)
banknote is inserted or not, and where it goes if inserted, are
not modeled (i.e., supply just as requested). In addition, the
numbers 20000 and 10000 inside the table denote equiva-
lent amount of money but of small denominations (e.g., 1K
denominations). Last, we intentionally introduced misoper-
ations (design errors) to the system for demonstration pur-
pose, e.g., the system’s behaviors are unreasonably defined
when there are not enough small denominations, which is
discussed in detail in Sect. 4.

Organization. Section 2 presents a formalization of
the static and dynamic aspects of a STM design. Section 3
describes the proposed encoding of a STM design into a
quantifier free formula. Section 4 introduces the prototype
implementation and experiments. Section 5 describes two
attempts for accelerating SMT solving. Section 6 mentions
related work, and Sect. 7 concludes the paper and proposes
future work.

2. State Transition Matrix (STM)

STM is a table-based modeling language. Programming lan-
guage and table notations can be mixed for specifying a sys-
tem design. In this paper, a subset of STM notations is con-
sidered with the motivation of giving a precise description
that can be formally verified. Adopting a similar approach
used in [8], [9] for formalizing UML state machines, we for-
malize the structure of STMs and dynamic behaviors of a
STM design.

2.1 Structure of STMs

We first describe an action language L that is needed for
defining the structure of STMs. L is chosen to be a sim-
ple subset of C language and thus the syntax and semantics
follow the conventions of C. Type system of L consists of
Boolean, integers, and reals. Supported expressions of L
are (1) Boolean literals true and false, integer literals and
real literals, (2) Variable identifiers, and (3) infix expres-
sions leftexpr op rightexpr, where op can be one of +, -,
*, &&, ||, >, <, >=, <=, ==, or !=, with the semantics of
C. Supported statements of L are (1) assignments of the
form lhs = rhs, and (2) if statements of the form if con-
dition {statement1} else {statement2}. We use LB ⊂ L to
denote the set of Boolean expressions of L, and Lst ⊂ L
to denote the set of statements of L. Note that although
the operator * is allowed in infix expressions of L, we re-
strict it to the multiplication of a constant with a variable,

e.g., 3*x. This is because that the SMT solver Yices (Ver.
1.0.19) that we used in our experiments only supports linear
arithmetic, which is also generally the case for most state-
of-the-art SMT solvers, e.g., Z3 [10] and CVC3 [11]. See
Yices home page for details.

Assuming this action language L, the structure of a
STM H is a tuple 〈S , E,C〉, where

• S is a finite set of status. Each status s ∈ S is associated
with a (unique) index number denoted by index(s) ∈
Nat. During execution of H, only one status denoted
by active(H) is active. Initially, the active status is s
where index(s) = 0.
• E is a finite set of events consisting of external events

Eext and internal events Eint, where Eext ∩ Eint = ∅. An
event eE ∈ Eext is represented by a Boolean variable
of LB (whose name is prefixed with a lower-case “x”
by convention), and an event eI ∈ Eint is represented
by a Boolean expression (possibly a Boolean variable)
of LB. Each event is associated with a (unique) index
number denoted by index(e) ∈ Nat.
• C is a finite set of cells consisting of normal cells Cnor,

ignore cells Cign, and invalid cells Cinv. Each normal
cell cN ∈ Cnor is a tuple 〈s, e, u, a, s′〉 ∈ S × E × (LB ∪
{null}) × (Lst ∪ {/}) × S . We define source(cN) = s,
event(cN) = e, guards(cN) = u, actions(cN) = a, and
target(cN)= s′. Each ignore cell is a tuple 〈s, e, /〉, and
each invalid cell is a tuple 〈s, e,×〉. Functions source
and event are also defined for cI ∈ Cign ∪Cinv as for cN ,
but guards, actions and target are not.

Events of a STM and guards of a normal cell are ex-
pressed as LB expressions, and actions of a normal cell
are a list of Lst statements (or just a symbol “/”). A cell
c of a STM H, which is pinpointed by its index numbers
(index(source(c)), index(event(c))) together with its guards
if guards(c) � null †, specifies the behavior of H (under
condition of guards(c) if available) when event event(c) is
dispatched while H is in status source(c) (i.e., active(H) =
source(c)). If c ∈ Cnor, actions(c) is executed †† atomically
and after that, H moves to status target(c). If c ∈ Cign, de-
noted in a STM table by the symbol “/”, nothing changes. If
c ∈ Cinv, denoted in a STM table by the symbol “×”, an error
occurs. Informally, an ignore cell means that the dispatch of
an event in a status is ignored, and an invalid cell means that
the dispatch of an event in a status is never possible (which
however should be verified, as shown in Sect. 4).

Taking STM RETURNER in Fig. 1 as an example,
we explain the above notations. Cell (1, 1) with guard
payMoney != 0 (for simplicity, c is used to denote this
cell) is a normal cell, where source(c)=RETURN, event(c)=
xReceive, target(c) = WAIT, and actions(c) consisting of

†Literal null is used only in the formalization (not in real STM
tables) to denote that no guard is defined for a normal cell. For
example, cell (0, 0) of STM RETURNER, denoted by c, has no
guard, i.e., guards(c) = null.
††Symbol “/” is used to denote doing nothing, and in the case

actions(c) = /, execution of “/” changes nothing.
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Fig. 1 A Money-Changer (MC) system consisting of CHANGER and RETURNER.

three L statements in form of assignment. Intuitive mean-
ing of c is that if an external event for taking small denom-
inations (denoted by event xReceive) occurs when device
RETURNER is returning (non-zero) denominations (denoted
by status RETURN), the device sets the variable payMoney
as 0 to express that no small denomination is currently pro-
vided, set the variable getMoney as true to express that
the small denominations have been taken, and set the vari-
able xReceive as false to express that the event has been
consumed. After that, device RETURNER changes to status
WAIT to wait for small denominations from CHANGER for
another exchange. Cell (0, 1) – 〈WAIT, xReceive, /〉 – is
an ignore cell, meaning intuitively that receiving small de-
nominations when the device is waiting for denominations
from CHANGER changes nothing and is just ignored. Cell
(1, 0) – 〈RETURN, payment,×〉 – is an invalid cell, meaning
intuitively that the event small denominations are being of-
fered or ready (denoted by event payment) should not be
dispatched when RETURNER is returning small denomina-
tions (not be taken yet).

2.2 Dynamic Behaviors of a STM Design

A system design D specified in STM generally consists of
multiple STMs H1, . . . ,Hn that execute in an interleaving
manner. Dynamic behaviors of D are defined based on the
notion of global states, G.

We fix some notations to be used next. Var(D) is
used to denote the set of all L variables involved in D
for expressing its events, guards, and actions. Given a set
of variables X, value(X) maps each x ∈ X to its current
value in x’s domain. A global state g ∈ G is a tuple
〈active(Hi), value(Var(D))〉, 1 ≤ i ≤ n, where active(Hi) is
the currently active status of Hi.

Dynamic behaviors of D, denoted by M(D), is captured
by the tuple 〈G, ginit,Δ〉, where G is the set of global states,
ginit ∈ G is an initial global state, and Δ ⊆ G × G is a tran-
sition relation characterizing how D may evolve from one

global state to another.

• In ginit, active status of each STM Hi is s ∈ Hi.S †,
where index(s) = 0, and each variable x ∈ Var(D) has
its initial default value.
• For a normal cell c ∈ Hi.Cnor, c is said to be enabled

in a global state g if enable(c, g) = ((active(Hi) =
source(c))∧eval(event(c), g)∧eval(guards(c), g)) eval-
uates to true, where eval(expr, g) evaluates the
value of an L expression expr in the context of g.
Specifically, we define eval(null, g) = true when
guards(c) = null. An enabled normal cell c could be
executed. Executing c in g moves the design D to an-
other global state g′, and is denoted by 〈g, g′〉 ∈ Δ. The
statements of actions(c) are executed atomically as the
conventions of C programming language. At each exe-
cution step of D, more than one cell might be enabled.
In this case, one of them is selected and executed non-
deterministically.

An external event is dispatched by the environment
where system design D resides in, and an internal one is
dispatched by the execution of D. An (external or internal)
event event(c) is not implicitly consumed after normal cell c
is executed in a global state g, i.e., the Boolean value of the
LB expression denoting this event is not changed to false
automatically in g′. Its truth value is just re-evaluated in g′
based on the current values of its involved variables.

Given a system design D whose dynamic behavior is
captured by M(D) = 〈G, ginit,Δ〉, an execution sequence of
M(D) is defined as: g0, g1, . . . , gn, . . ., where (1) g0 = ginit,
and (2) ∀i ∈ Nat. 〈gi, gi+1〉 ∈ Δ. Given a finite execu-
tion sequence sq, len(sq) is used to denote the length of sq,
e.g., len(g0, . . . , gn) = n+1. Reachable global states w.r.t.
M(D) are those global states that are contained in any ex-
ecution sequence of M(D). The set of all reachable global
states w.r.t. M(D) is denoted by RM(D). An invariant prop-

†Hi.S denotes status set S of Hi. This way of reference applies
to events set E and cells set C of Hi as well.
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erty w.r.t. M(D) is a state predicate ρ : G→ Boolean such
that ρ holds in all reachable global states of M(D), i.e.,
∀g : RM(D). ρ(g). An invariant property ρ(g) could be pa-
rameterized with variables of data types of L. Any exe-
cution sequence to g ∈ RM(D) such that ¬ρ(g) is called a
counterexample for an invariant ∀g : RM(D).ρ(g).

3. A Symbolic Encoding Approach

The initial idea for converting a transition system into a
quantifier-free formula and using SAT solving [4] to bound-
edly check the formula has been proposed in [12]. A more
recent work [13] uses a similar approach to analyze model
programs (representing transition systems) but based on
SMT solving. Our encoding essentially follows the same
techniques used in these two work (especially the second
one) but is tuned to STM designs.

We demonstrate our encoding by considering a STM
design D consisting of n STMs H1, . . . ,Hn and the given
bound is bd. For each step k, 0 ≤ k ≤ bd, we use x[k],
expr[k], and stmt[k] to denote, respectively, a new variable,
a new expression, and a new statement (all of language L)
used in step k. The ways of generating expr[k] and stmt[k]
from expr and stmt, respectively, are introduced later.

Formula for initial step 0, denoted by step[0], repre-
senting the initial global state, is written as:

step[0] =

⎛⎜⎜⎜⎜⎜⎜⎝
∧

x∈Var(D)

x[0] = value(x)

⎞⎟⎟⎟⎟⎟⎟⎠ ∧
⎛⎜⎜⎜⎜⎜⎝

n∧

i=1

statusHi[0] = 0

⎞⎟⎟⎟⎟⎟⎠

The formula simply expresses that all variables in-
volved in D, given the step number 0 (i.e., substitute each
variable x ∈ Var(D) with a new variable x[0]), have their
initial default values. In addition, the active status of STM
Hi, which is denoted by an additional variable statusHi

(statusHi � Var(D) and its domain is {index(s) | s ∈ Hi.S }),
is also given step number 0 and has the value 0.

To define formulas for steps other than 0, we first de-
scribe the encoding rules for a normal cell c ∈ Hi.Cnor since
the execution of such a cell corresponds to an execution step
of D. Enable condition for c in step k, 1 ≤ k ≤ bd is defined
as:

enable(c)[k] = guards(c)[k−1] ∧ event(c)[k−1]

∧ statusHi[k−1] = source(c)

The expressions guards(c)[k−1] and event(c)[k−1] are
generated by simply giving step number k−1 to all the vari-
ables involved in them. The last equation, which checks
active status, is also generated by giving variable statusHi

the step number k−1. Effects of execution of c in step k is
defined as:

ef f ects(c)[k] = actions(c)[k]∧ statusHi[k] = target(c)

If actions(c) = /, actions(c)[k] is simply replaced by
true or just omitted. Otherwise, assume that there are m
L statements st1, . . . , stm in actions(c), we generate a step k

formula for each stl, 1 ≤ l ≤ m, by induction on the structure
of L statements as follows.

If stl is an assignment lhsl=rhsl where lhsl is a variable,
the step k formula stl[k] is defined as lhsl[k] = rhsl[k−1/k].
Meaning of rhsl[k−1/k] is that (1) if variables lhs1, . . . , lhsl−1

occurs in rhsl, then the occurrence of these variables in rhsl

is given the step number k, and (2) for all other variables,
step number k− 1 is given. Taking actions of cell (1, 1)
with guards changeMoney >= 10000 of STM CHANGER
as an example. Variable changeMoney in left-hand-side
(lhs) in the third assignment is given the step number k,
the same variable occurs in right-hand-side (rhs) is given
k−1, and the variable payMoney in the rhs is given k, i.e.,
changeMoney[k] = changeMoney[k−1] − payMoney[k], where
payMoney in the first assignment is given k.

If stl is a conditional statement if condition
{statement1} else {statement2}, the step k formula stl[k] is
defined as:
⎛⎜⎜⎜⎜⎜⎜⎝condition[k−1/k] ∧ statement1[k] ∧

∧

x∈X1

x[k]= x[k−1]

⎞⎟⎟⎟⎟⎟⎟⎠ ∨
⎛⎜⎜⎜⎜⎜⎜⎝¬ condition[k−1/k] ∧ statement2[k] ∧

∧

x∈X2

x[k]= x[k−1]

⎞⎟⎟⎟⎟⎟⎟⎠

(1)

where statement1[k] and statement2[k] are defined in the
same way as for stl. X1 (respectively, X2) is a set of vari-
ables that are assigned in statement2 (statement1) but not in
statement1 (statement2). This elegant way of defining X1

and X2 is borrowed from [13]. For condition[k−1/k], if vari-
ables lhs1, . . . , lhsl−1 occurs in condition of stl, then these
variables are given step number k, and all the other variables
are given k−1. Note that this encoding approach does not
support multiple assignments to one variable in actions(c),
since in that case neither k−1 nor k may be appropriate to
use. We extend this encoding by considering such situation
in Sect. 4.3.

Based on the above definitions of stl[k], actions(c)[k]
is defined as follows:

actions(c)[k] =

⎛⎜⎜⎜⎜⎜⎝
m∧

l=1

stl[k]

⎞⎟⎟⎟⎟⎟⎠ ∧
⎛⎜⎜⎜⎜⎜⎝
∧

x∈X
x[k] = x[k − 1]

⎞⎟⎟⎟⎟⎟⎠

where X contains all variables that are in Var(D) but are not
assigned in stl, 1 ≤ l ≤ m. Note that variables x ∈ (X1 ∪ X2)
have become assigned variables in stl (See Formula (1)) and
are not contained in X.

For simplicity of demonstration, we use AllVar(D) to
denote the set of variables Var(D) ∪ ⋃n

i=1{statusHi}. The
encoding rule for a normal cell c is defined as:

c[k] = (enable(c)[k] ∧ ef f ects(c)[k])

∨
⎛⎜⎜⎜⎜⎜⎜⎝¬ enable(c)[k] ∧

∧

x∈AllVar(D)

x[k] = x[k−1]

⎞⎟⎟⎟⎟⎟⎟⎠

Intuitively, the above formula simply says that if normal cell
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c is enabled, then effects will take place; otherwise, all vari-
ables remain unchanged.

Recall that an external event is dispatched by the envi-
ronment where system D resides in. Therefore, to simulate
the occurrence of external events, it is also needed to define
an encoding rule for each e ∈ ⋃n

i=1 Hi.Eext. In this case, e
should be just an L variable of type Boolean (denoting the
external event. See the structure of STMs in Sect. 2.1). The
rule, denoted by ext(e)[k], is defined as follows:

ext(e)[k] =

⎛⎜⎜⎜⎜⎜⎜⎝¬e[k−1] ∧ e[k] = true

∧
∧

x∈(AllVar(D)\{e})
x[k] = x[k−1]

⎞⎟⎟⎟⎟⎟⎟⎠

∨
⎛⎜⎜⎜⎜⎜⎜⎝e[k−1] ∧

∧

x∈AllVar(D)

x[k] = x[k−1]

⎞⎟⎟⎟⎟⎟⎟⎠

The above rule simply changes the Boolean value of e to
true when e is false, and all the other variables remain
unchanged. Nothing changes if e is already true.

We are ready to define the complete formula for step
number k, 1 ≤ k ≤ bd. Since D is composed of STMs
H1, . . . ,Hn that run in an interleaving manner, in each ex-
ecution step of D, only one normal cell or a simulation
of an external event is executed even if multiples are en-
abled. Assume |⋃n

i=1 Hi.Cnor | + |⋃n
i=1 Hi.Eext | = w, we intro-

duce, for each step k, a set of fresh Boolean flag vari-
ables { f l1[k], . . . , f lw[k]}. Each variable f l j[k] (1 ≤ j ≤
w) uniquely corresponds to the execution of either a c ∈
Hi.Cnor or an e ∈ Hi.Eext in step k. We use the symbol
Flag(c, k) (and respectively Flag(e, k)) to denote the vari-
able in { f l1[k], . . . , f lw[k]} that corresponds to c (and re-
spectively e), in step k. The formula step[k] is defined as
follows:

step[k] =
n∨

i=1

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
∨

c∈Hi.Cnor

(c[k] ∧ Flag(c, k))

⎞⎟⎟⎟⎟⎟⎟⎠∨
⎛⎜⎜⎜⎜⎜⎜⎝
∨

e∈Hi.Eext

(ext(e)[k] ∧ Flag(e, k))

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ (2)

Furthermore, we define a global constraint, named as
AsynConstr, on the above-introduced Boolean variables as
follows:

AsynConstr =
bd∧

k=1

⎛⎜⎜⎜⎜⎜⎜⎝
w∧

j=1

⎛⎜⎜⎜⎜⎜⎜⎝ f l j[k]⇒ ¬
⎛⎜⎜⎜⎜⎜⎜⎝

w∨

m=1,m� j

f lm[k]

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

The constraint simply says that in each execution step
k, if a flag variable f l j[k] is true then all the other flag vari-
ables in the same step should be false. This constraint works
(together with Formula (2)) for restricting only one normal
cell or a simulation of an external event is executed in each
step, since each f l j[k] is combined in conjunction with ei-
ther a c[k] or an ext(e)[k] (See Formula (2)), and therefore

f l j[k] and c[k] (or ext(e)[k]) should both be true if their com-
bination is to be satisfiable.

Finally, given a STM design D, an execution bound
bd, and a state predicate ρ to be proved invariant w.r.t. D,
the formula for checking ρ in all execution sequences of D
within bound bd is as follows:

BMC(D, ρ, bd)

=

⎛⎜⎜⎜⎜⎜⎜⎝
bd∧

k=0

step[k]

⎞⎟⎟⎟⎟⎟⎟⎠ ∧ AsynConstr ∧
⎛⎜⎜⎜⎜⎜⎜⎝
bd∨

k=0

(¬ρ[k])

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

where ρ[k] is generated by simply given all variables
involved in it with step number k. The satisfiabil-
ity of such a formula can be solved by SMT solvers.
If satisfied, a variable-value pair for all the variables
AllVar(D)[0], . . . , AllVar(D)[k] comprises a witness of D’s
execution that violates predicate ρ.

4. Implementation and Experiments

We have built a prototype implementation of the above en-
coding approach. In this section, we demonstrate our imple-
mentation with some experiments on the MC system with
Yices [6].

4.1 Implementation

Input of the prototype is a STM design (typically consisting
of multiple STMs) developed using the ZIPC tool [3] whose
structure and semantics are compliant with the STM’s defi-
nitions in Sect. 2, and output of the prototype is a quantifier-
free formula in SMT-LIB language (Version 1.2) [5] that
represents BMC(D, ρ, bd). SMT-LIB language is chosen as
the target language for implementing the encoding since for-
mulas to be checked for satisfiability written in this language
can be solved by several state-of-the-art SMT solvers †, such
as Yices [6].

We show part of the output formulas for steps 0 and 1
of the MC system in Figs. 2 and 3, respectively. Some SMT-
LIB notations are introduced for understanding our imple-
mentation. A variable x (used in step k) of type Boolean
is declared (with SMT-LIB keyword in typewriter font) as
“:extrapreds (x k)”, and a variable y (in step k) of types in-
tegers and reals are declared as “:extrafuns (y k Int)” and
“:extrafuns (y k Real)”, respectively. A (sub)formula de-
noting step[k] is declared as “:assumption (step[k])”, and
the formula denoting negation of the predicate is declared
as “:formula (or (not(ρ[0])) . . . (not(ρ[bd])))”. We use
rule j, 1≤ j≤w, to denote the encoding rule for either a nor-
mal cell or a simulation of an external event, and we give
a name (identifier), $ruleT j, to each rule j. The step formula
step[k] is represented as:

†Some other state-of-the-art SMT solvers that support the
SMT-LIB language include Z3 [10] and CVC3 [11] etc. More can
be found in the webpage for SMT-LIB.
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:extrapreds ((xChangePrepare_0) (x10KYenRequest_0) (xReceive_0) (payment_0) (getMoney_0))

:extrafuns ((payMoney_0 Int) (changeMoney_0 Int) (statusChr_0 Int) (statusRer_0 Int))

:assumption ((and (= xChangePrepare_0 false) (= x10KYenRequest_0 false) (= xReceive_0 false) (= payment_0 false)

(= getMoney_0 false) (= payMoney_0 0) (= changeMoney_0 0) (= statusChr_0 0) (= statusRer_0 0)))

Fig. 2 Formula for Step 0 in SMT-LIB language.

:extrapreds ((xChangePrepare_1) (x10KYenRequest_1) (xReceive_1) (payment_1) (getMoney_1)

(flag1_1) (flag2_1) (flag3_1) (flag4_1) (flag5_1) (flag6_1) (flag7_1) (flag8_1) (flag9_1) (flag10_1))

:extrafuns ((payMoney_1 Int) (changeMoney_1 Int) (statusChr_1 Int) (statusRer_1 Int))

:assumption (

(flet ($r1_1 (if_then_else (and (= xChangePrepare_0 true) (= statusChr_0 0))

(and (= xChangePrepare_1 false) (= x10KYenRequest_1 x10KYenRequest_0) (= xReceive_1 xReceive_0)

(= payment_1 payment_0) (= getMoney_1 getMoney_0) (= payMoney_1 payMoney_0)

(= changeMoney_1 (+ changeMoney_0 20000)) (= statusChr_1 1) (= statusRer_1 statusRer_0))

(and (= xChangePrepare_1 xChangePrepare_0) (= x10KYenRequest_1 x10KYenRequest_0) (= xReceive_1

xReceive_0) (= payment_1 payment_0) (= getMoney_1 getMoney_0) (= payMoney_1 payMoney_0)

(= changeMoney_1 changeMoney_0) (= statusChr_1 statusChr_0) (= statusRer_1 statusRer_0))))

(flet ($r2_1 (...)) ...... (flet ($r10_1 (...))

(or (and $r1_1 flag1_1) (and $r2_1 flag2_1) ... (and $r10_1 flag10_1)))))))))))))

Fig. 3 Formula for Step 1 in SMT-LIB language.

step[k]=(flet ($ruleT1 rule1)

. . .

(flet ($ruleTw rulew)

(or (and $ruleT1 f l1k)

. . .

(and $ruleTw f lwk))...w−1...)

where subscript w−1 denotes omitting brackets “)”. flet
is a SMT-LIB keyword to bind a formula with an identifier.
The formula step[k] intuitively means that $ruleT j, denot-
ing rule j, is used in the last or combined formula. For-
mula for step 0 in Fig. 2 corresponds to the initial global
state. Formulas for steps k, 1 ≤ k ≤ bd, are writ-
ten in a similar way as for step 1 in Fig. 3. Rules de-
noted by $r1_1,. . .,$r7_1 correspond to the seven nor-
mal cells (of CHANGER and RETURNER). Rules denoted
by $r8_1,. . .,$r10_1 correspond to the simulation of the
external events xChangePrepare, x10KYenRequest, and
xReceive, respectively. In Fig. 3, we detailed the contents
of $r1_1, while omitting the others. Readers are referred to
[1] for more details of the implementation.

4.2 Experiments

Although general invariant properties could be expressed
and checked by using our encoding approach, we focus on
three specific ones in our experiments.

Unreachability of Invalid Cells (UIC). An invalid cell in-
dicates that a specific event should never be dispatched in
a specific status. When considered by the designer as in-
valid, the cell is marked as × in a STM table. However, it
should be verified whether the cell is really unreachable or
not. We extend active(H) as active(H, g) to denote the active
status of STM H in a reachable global state g. A UIC prop-

erty corresponding to STM Hi is expressed as ∀c ∈ Hi.Cinv.
∀g ∈ RM(D). ¬((active(Hi, g) = source(c)) ∧ eval(event(c), g)).

For the MC system, cell (1, 2) of CHANGER and cell
(1, 0) of RETURNER are invalid cells. The first invalid
cell means intuitively that event small denominations have
been received (denoted by event getMoney) should not be
dispatched when CHANGER is waiting for a request (de-
noted by WAIT REQUEST). The second has been explained
in Sect. 2.1. We express the cells as two properties (step
numbers are to be given later):

UIC1 = not((statusChr = 1) and (getMoney = true))

UIC2 = not((statusRer = 1) and (payment = true))

Static Constraints (STC). Static constraints demand cer-
tain correlation between status of different STMs. Such
a correlation can be in the form of ∀g ∈ RM(D).
active(HA, g) = sa ⇒ active(HB, g) = sb. Two sample
static constraint properties of the MC system are declared
as follows:

STC1 = ((statusRer = 1) implies (statusChr = 2))

STC2 = ((statusChr = 1) implies (statusRer = 0))

Dynamic Constraints (DYN). Dynamic constraints de-
mand certain correlation between status-change in one STM
with a specific status of another STM. Such a correlation
can be in the form of, e.g., when the status of STM A
has just changed from sa to sa′ (sa′ � sa), the status of
STM B should be sb′, i.e., ∀g ∈ RM(D). active(HA, g) =
sa ∧ active(HA, g′) = sa′ ⇒ active(HB, g′) = sb′. A sample
dynamic constraint property is as follows:

DYN = (statusChr = 1 and statusChr’ = 2)

implies (statusRer’ = 0)

where a primed (with “’”) variable denotes a successor state
variable. Method for removing it is explained later when
giving step numbers to the property.
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For demonstration purpose, we define two more (irra-
tional) static constraint properties as follows:

FSTC1 = (statusChr = 2) implies (statusRer = 0)

FSTC2 = (statusChr = 2) implies (statusRer = 1)

Assume a bound value, say 3, for bd, we show the
SMT-LIB formulas representing STC1 and DYN with step
numbers. Other properties mentioned above could be rep-
resented in a similar way.

:formula
(or
(not (implies (= statusRer_0 1) (statusChr_0 2)))
(not (implies (= statusRer_1 1) (statusChr_1 2)))
(not (implies (= statusRer_2 1) (statusChr_2 2)))
(not (implies (= statusRer_3 1) (statusChr_3 2))))

:formula
(or
(not (implies

(and (= statusChr_0 1) (= statusChr_1 2))
(= statusRer_1 0)))

(not (implies
(and (= statusChr_1 1) (= statusChr_2 2))
(= statusRer_2 0)))

(not (implies
(and (= statusChr_2 1) (= statusChr_3 2))

(= statusRer_3 0))))

Note that the two formulas should be written in different
SMT-LIB files and checked separately. Operator not is
added since we expect to falsify (i.e., find counterexamples
of) the predicates.

Yices 1.0.19 is used (on Windows XP, 2.66 GHz,
3.25 GB RAM) in our experiments to check these proper-
ties. Results are shown in the left-hand side (lhs) of Fig. 4.
Time in this figure (and in all the other figures hereafter) is
an average of 5 times executions of Yices. Counterexam-
ples are found for all the properties when certain bounds are
set (we did not check FSTC1 and FSTC2 for the original MC
system). A counterexample is indicated by the output sat
of Yices, and the details of the counterexample – a set of
variable-value pairs for all variables, which shows how the
input formula is satisfied – can be output if appropriate pa-
rameters are set to Yices. Note that understanding the coun-
terexamples by observing value-changes of all the variables
is extremely cumbersome. However, the structure (execu-

Prop. bd Verdict Time

UIC1 20 unsat 0.51
UIC1 21 sat 0.48
UIC2 20 unsat 0.45
UIC2 21 sat 0.56
STC1 16 unsat 0.46
STC1 17 sat 0.43
STC2 18 unsat 0.57
STC2 19 sat 0.45
DYN 19 unsat 0.53
DYN 20 sat 0.55

Prop. bd Verdict Time

UIC1 150 unsat 53.77
UIC2 150 unsat 42.78
STC1 150 unsat 45.89
STC2 150 unsat 55.40
FSTC1 4 unsat 0.14
FSTC1 5 sat 0.15
FSTC2 3 unsat 0.15
FSTC2 4 sat 0.14
DYN 150 unsat 54.17

Fig. 4 Results of checking original (lhs) and revised (rhs) MC system
using Yices. Time is counted in Seconds.

tion sequence) of a counterexample could be easily under-
stood by observing the introduced Boolean flag variables †,
since in each step k only one of the flag variables has the
value true, which indicates the normal cell or simulation
of external event executed in k.

Taking UIC1 as an example, we explain reasons for
the occurrence of the counterexamples. When a money-
change request comes (i.e., event x10KYenRequest is dis-
patched), if CHANGER does not have enough money (this
is the case after two money-change requests have been
correctly processed), CHANGER executes its cell (1, 1)
with guard changeMoney < 10000 by: dispatches event
payment, and switches to status STOP, etc. From now on,
CHANGER may be initialized again when external event
xChangePrepare is dispatched and then CHANGER can
switch to status WAIT REQUEST. On the other hand, RE-
TURNER will be able to execute its cell (0, 0) since event
payment has been dispatched, and consequentially execute
(1, 1) with guard payMoney = 0, and finally getMoneywill
become true. The system falls into a situation that violates
UIC1.

Based on the above analysis, we remove the first
two assignments in cell (1, 1) with guard changeMoney <
10000 of CHANGER, and check these properties again. The
results are shown in the right-hand side (rhs) of Fig. 4. No
counterexample is found this time for all the five properties
when bound is set to 150. Two counterexamples for (irra-
tional) properties FSTC1 and FSTC2 are found when bound
is set to 5 and 4, respectively, whose details are omitted here.

It should be pointed out that the encoded SMT-LIB for-
mula representing BMC(D, ρ, bd) problem of the MC sys-
tem could be solved by Yices using different background
theories, such as linear integer arithmetic, linear real arith-
metic, or possibly bit-vector arithmetic. Yices analyzes the
input formula and decides the theory (or theories) to use by
itself if no theory (to be used) are specified explicitly in the
formula. However, we have found that specifying a theory
explicitly could greatly enhance solving efficiency. For ex-
ample, if no theory is specified, solving STC1 and STC2 cost
144.46s and 267.63s, respectively, when bd was set to 50.
In our experiments on the MC system, we specified and let
Yices use (quantifier free) linear real arithmetic for our prob-
lem, which could be declared in SMT-LIB format as :logic
QF LRA. Note that specifying this also permits the mixed us-
age of both integers and reals by Yices.

4.3 Encoding Multiple Assignments to Variables

As mentioned, our approach for encoding actions(c)[k] of
a normal cell does not support multiple assignments to the
same variable in st1, . . . , stm, as, e.g., shown in Fig. 5, since
neither k−1 nor k might be an appropriate step number to
give to the variable.

Inspired by the work in [14] for SMT-based encoding

†Note that $ruleT1, . . . , $ruleTw are local variables used in the
binding structure, and thus are not output by Yices.
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changeMoney = changeMoney + 20000;
xChangePrepare = false;
changeMoney = changeMoney - 10000;

Fig. 5 Hypothetical multiple assignments to changeMoney.

of sequential C source codes, we extend our previous ap-
proach by maintaining a number α(x, k) for each variable
x ∈ AllVar(D), which indicates the number of indexes (i.e.,
step number, as we called in previous sections) given to x
prior to step k. rulei(x) is used to denote the number of as-
signments to x existing in rulei, 1≤ i≤w, in step[k], and the
biggest number among rulei(x) is denoted by max(x). Then,
numbers from α(x, k) to max(x) will be used as indexes for
encoding action(c)[k], rather than only k−1 and k. In addi-
tion, α(x, k+1) = α(x, k) + max(x).

Assume that the hypothetical situation for variable
changeMoney in Fig. 5 is the actions of cell (0, 0) of
STM CHANGER of the MC system shown in Fig. 1,
and also assume that α(changeMoney, 1) = 0 and
max(changeMoney) = 4, the rule $r1 1 shown in Fig. 3
could be changed into:

$r1_1 (if_then_else

(and (= xChangePrepare_0 true) (= statusChr_0 0))

(and (= changeMoney_1 (+ changeMoney_0 20000))

(= xChangePrepare_1 false)

(= changeMoney_2 (- changeMoney_1 10000))

(= changeMoney_3 changeMoney_2)

(= changeMoney_4 changeMoney_3)

(= statusChr_1 1)...)

(and (= changeMoney_1 changeMoney_0)

(= changeMoney_2 changeMoney_1)

(= changeMoney_3 changeMoney_2)

(= changeMoney_4 changeMoney_3)

(= xChangePrepare_1 xChangePrepare_0)...))

Note that, by assuming max(changeMoney) = 4, we as-
sume that changeMoney is assigned four times in a some
other normal cell of the MC system. And then numbers
starting from α(changeMoney, 2) = α(changeMoney, 1) +
max(changeMoney) = 4 are to be used as indexes for
changeMoney in step 2. Therefore, although changeMoney
is only assigned twice in cell (0, 0), it is necessary to define
changeMoney 3 and changeMoney 4 as well in $r1 1 to
fill up the gap.

5. Attempts for Accelerating SMT Solving

It could be observed from Fig. 4 that SMT solving speed
slows down greatly as with the increase of step numbers
(i.e., as with the increase of the size of the formula under
concern). We describe two attempts made in our experi-
ments for accelerating SMT solving.

SMT solving is typically extension of SAT solv-
ing [4] with specialized solvers for first-order theories, e.g.,
Yices integrates a SAT solver that relies on the techniques
of the well-known SAT solver – Chaff [15]. Most of-
ten solving algorithms implemented in SAT solvers are
based on the Davis-Putnam-Logemann-Loveland (DPLL)

algorithm [16], in which Boolean Constraints Propagation
(BCP) (i.e., identify consequential variable assignments that
are required by the current variable state to satisfy the target
formula) is known to cost 80-90 percent of the total solv-
ing time [15]. Introducing additional (but possibly redun-
dant) knowledge, which is usually employed in the (conflict-
analysis) learning process [4] of SAT solving algorithms,
is an effective method for pruning search space and hence
reducing solving cost. Our attempts for accelerating SMT
solving are inspired by this idea of making use of additional
knowledge. However, rather than being inside the solving
algorithms, our attempts work outside the algorithms by in-
troducing additional knowledge into the formula that en-
codes the bounded model checking problem for a STM de-
sign. This makes our attempts applicable for end-users of
SMT solvers as well.

5.1 Structure Knowledge of a STM Design

Our first attempt is to introduce structure knowledge of a
STM design. The knowledge simply characterizes the fact
that any normal cell c of a STM Hi, 1 ≤ i ≤ n, where
source(c)�active(Hi, g), could not be executed in the global
state g. The kind of knowledge might possibly be helpful for
restricting the choices of the next transitions to be executed.

By using the Boolean flag variables that we introduced,
the above mentioned knowledge could easily be expressed.
Taking STM RETURNER as an example. Assume step num-
ber k, and assume that the flag variables associated with
normal cells (0, 0) and (1, 1) with two different guards are
f lagT1, f lagT2, and f lagT3, respectively. The knowledge
for STM RETURNER in step k is as follows: (statusRerk−1 =

0 ⇒ ¬( f lagT2k ∨ f lagT3k)) ∧ (statusRerk−1 = 1 ⇒
¬ f lagT1k). We use knowi[k], 1 ≤ i ≤ n, to denote the struc-
ture knowledge for STM Hi in step k. Formula (3) could
now be changed into:

BMC(D, ρ, bd) =

⎛⎜⎜⎜⎜⎜⎜⎝
bd∧

k=0

⎛⎜⎜⎜⎜⎜⎝step[k] ∧
n∧

i=1

knowi[k]

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

∧ AsynConstr ∧
⎛⎜⎜⎜⎜⎜⎜⎝
bd∨

k=0

(¬ρ[k])

⎞⎟⎟⎟⎟⎟⎟⎠

The method of giving step number k to knowi (i.e., knowi[k])
is same as the one for predicate ρ[k] introduced in Sect. 3.
Specifically, in the case that k=0, we define know0 as true,
which could simply be omitted. We add the knowledge for
STMs CHANGER and RETURNER, and check the original
and revised MC system using Yices again. From the results
shown in Fig. 6, we observed that (1) the usage of structure
knowledge does not change the satisfiability of the original
properties (column Verdict); and (2) this usage speeds up
the solving time for most of the cases.

5.2 Boundedly Proved Invariants

Our second attempt is to make use of those predicates that
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Prop. bd Verdict
Time

Without Know With Know

UIC1 20 unsat 0.51 0.62
UIC1 21 sat 0.48 0.64
UIC2 20 unsat 0.45 0.53
UIC2 21 sat 0.56 0.48
STC1 16 unsat 0.46 0.55
STC1 17 sat 0.43 0.39
STC2 18 unsat 0.57 0.59
STC2 19 sat 0.45 0.50
DYN 19 unsat 0.53 0.68
DYN 20 sat 0.55 0.57

Prop. bd Verdict
Time

Without Know With Know

UIC1 150 unsat 53.77 33.11
UIC2 150 unsat 42.78 41.60
STC1 150 unsat 45.89 35.75
STC2 150 unsat 55.40 38.81
FSTC1 4 unsat 0.14 0.11
FSTC1 5 sat 0.15 0.13
FSTC2 3 unsat 0.15 0.15
FSTC2 4 sat 0.14 0.17
DYN 150 unsat 54.17 41.07

Fig. 6 Results of checking original (upper) and revised (lower) MC sys-
tem without and with Know (denoting Knowledge).

have already been proved to be invariants (within a cer-
tain bound) of a STM design. We name such invariants as
Bounded Invariants or B-Invariants for short. A B-Invariant
essentially characterizes certain constraints (knowledge) on
the state variables of the STM design within a certain exe-
cution bound. Therefore, these constraints might be helpful
for pruning search space and thus reducing the solving costs.

Assume that there are h B-Invariants inv1 . . . invh, i.e.,
we have already checked them by using the SMT-based
BMC method introduced before, and no counterexamples
are reported within a given bound. For demonstration sim-
plicity, we assume the bound for all these B-invariants to be
bd. Then, to check the predicate ρ, Formula (3) could now
be changed into:

BMC(D, ρ, bd) =

⎛⎜⎜⎜⎜⎜⎜⎝
bd∧

k=0

⎛⎜⎜⎜⎜⎜⎜⎝step[k] ∧
h∧

t=1

invt[k]

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

∧ AsynConstr ∧
⎛⎜⎜⎜⎜⎜⎜⎝
bd∨

k=0

(¬ρ[k])

⎞⎟⎟⎟⎟⎟⎟⎠

As shown in Sect. 4.2, UIC1, UIC2, STC1, STC2, and
DYN are B-Invariants w.r.t. bound 150 for the revised MC
system. For demonstration simplicity, we name them as 1©–
5©, respectively. To examine the effectiveness, we conducted
a series of experiments and only part of the results are listed
in Fig. 7 due to space limitation. In the experiments, each
of the B-Invariants is checked by assuming the existence of
the remaining ones (or their combinations). For the irra-
tional predicates FSTC1 and FSTC2, the satisfiability is not
changed when check them by assuming and using the B-
Invariants STC1, STC2, and their combination. For UIC1,
we checked it by assuming and using all the remaining B-

No. Prop. B-Inv bd Verdict Time

1© UIC1

Without B-Inv 150 unsat 53.77
2© 150 unsat 43.96
3© 150 unsat 17.78
4© 150 unsat 22.25
5© 150 unsat 50.22
2©+ 3© 150 unsat 19.62
2©+ 4© 150 unsat 33.37
2©+ 3©+ 4© 150 unsat 23.48
2©+ 3©+ 4©+ 5© 150 unsat 12.55
2©+ 3©+ 4©+ 5©+Know 150 unsat 19.08

2© UIC2

Without B-Inv 150 unsat 42.78
3© 150 unsat 24.61
4© 150 unsat 32.72
3©+ 4© 150 unsat 15.30
1©+ 3©+ 4©+ 5©+Know 150 unsat 20.28

3© STC1
Without B-Inv 150 unsat 45.89
4© 150 unsat 37.88
1©+ 2©+ 4©+ 5©+Know 150 unsat 35.61

4© STC2
Without B-Inv 150 unsat 55.40
3© 150 unsat 24.25
1©+ 2©+ 3©+ 5©+Know 150 unsat 24.13

5© DYN

Without B-Inv 150 unsat 54.17
3© 150 unsat 21.27
4© 150 unsat 17.29
3©+ 4© 150 unsat 17.28
1©+ 2©+ 3©+ 4©+Know 150 unsat 16.14

FSTC1

Without B-Inv 5 sat 0.15
3© 5 sat 0.15
4© 5 sat 0.13
3©+ 4© 5 sat 0.14

FSTC2

Without B-Inv 4 sat 0.14
3© 4 sat 0.14
4© 4 sat 0.09
3©+ 4© 4 sat 0.14

Fig. 7 Results of checking revised MC system by using B-Invariants
(and Know). B-Inv is short for B-Invariants.

Invariants and some of their combination. In addition to
only using B-Invariants, we have also experimented using
the combination of B-Invariants with structure knowledge
(know in Fig. 7) mentioned in Sect. 5.2. The satisfiability re-
mains unchanged and the solving time is greatly decreased
for most of the cases.

A trivial and direct way of making use of B-Invariants
is to add all checked B-Invariants into the formula to be
checked next. However, it is worth pointing out that it is not
always better to use more B-Invariants w.r.t. reducing solv-
ing time. Taking the case of checking UIC1 as an example,
using 2©+ 3©+ 4© costs more time (23.48s) than only using 3©
(17.78s). Moreover, the result of using 5© (50.22s) shows
that sometimes using B-Invariants may not help much for
reducing solving time. Reason behind this is that the for-
mula to be solved becomes larger when additional formu-
las (B-Invariants or structure knowledge of STM) are added,
and hence the workload of the SMT solving algorithm is in-
creased as well, especially when the added knowledge does
not provide much help. Therefore, there is a balance be-
tween the number of B-Invariants added and the benefit ob-
tained from them. A kind of heuristics might be necessary
for using B-Invariants, which is considered as one of our fu-
ture work. In addition, how to come up with B-Invariants
that are helpful for checking other predicates is also worth
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further investigating. For this point, heuristics and expe-
rience often used in interactive theorem proving technique
(see e.g., [17]) for generating lemmas (to be used for prov-
ing a target invariant) might be useful.

6. Related Work

In addition to the SMT-based approach described, we have
been developing an explicit-state model checker Garakabu2,
which implements search algorithms and techniques similar
to SPIN [18], but has a friendly user interface, and facili-
ties for graphically tracking execution of counterexamples.
However, explicit algorithms sometimes suffer the state ex-
plosion problems for a STM design due to the tremendous
number of possible interleavings of execution of constituent
STMs. SMT-based BMC could attack this problem to some
extent by expressing all possible behaviors within a bound
as a formula and searching a possible failure. We plan to
integrate the prototype of our encoding into Garakabu2 as a
complementary to the explicit approaches.

Our formalization of static and dynamic aspects of
STM designs has been much influenced by the work on for-
malization and verification of hierarchical UML state ma-
chines [8], [9], [19], although hierarchical structure is not
considered in our work so far. Regarding verification, the
primary focus of our work, the work in [9] proposed to
translate UML models into the model checker SPIN, and
the work in [19] proposed a symbolic encoding approach of
UML models into the input of NuSMV [20], through which
BDD-based [21] and SAT-based [4] model checking could
be conducted. In our work, instead of translating STM de-
signs into the input of any particular symbolic model check-
ers, we encode them into formulas in SMT-LIB language
and thus different state-of-the-art SMT solvers could be used
in the back-end.

Our encoding approach is partly inspired by the work in
[13], in which model programs representing transition sys-
tems are encoded into the input of Z3 [10] for conducting
SMT-based bounded reachability analysis. The work in [13]
proposed the encoding for abstract data types such as sets
and maps that are typically used in model programs, and
these types, however, are not considered in our work. In
addition, an action existing in parts of multiple model pro-
grams could execute at one time step, and STMs in a STM
design are asynchronously composited and thus only one is
allowed to make a progress at one time step. Boolean flag
variables are used to control concurrent execution of this
same action in model programs, but we use these flag vari-
ables for making the counterexample structure clearer and
restricting the asynchronous execution.

One primary difference between our work with the
above mentioned ones is that our encoding takes particular
care over the issue of multiple assignments to the same vari-
able in a normal cell. Numbers starting from α(x, k), instead
of merely k and k−1 as the case in those work, are used as in-
dexes (step numbers) to variables. We believe that this sup-
port is worthwhile for practical purpose. Actually, borrow-

ing the SMT approach for encoding sequential C programs
described in [14], the action language L used in our work
could be extended greatly as well to cover more elements,
e.g., for and while structures. This idea of SMT-based en-
coding of systems composed of both sequential programs
and non-sequential transition structures is one of our main
contributions in the paper.

Another primary difference is the proposed idea of in-
troducing additional knowledge into the target formula to
be solved, which has been shown via experiments to be very
effective for most of the situations. This idea provides a
practical way for end-users of SMT solvers, who have little
chance or expertise in improving efficiency of SMT solvers
from inside. Although further investigation of this idea, e.g.,
how to come up with useful B-Invariants, is still necessary,
we believe that this is another primary contribution of this
paper.

7. Conclusions and Future Work

According to a 2008 survey of JASA (Japan Embedded Sys-
tems Technology Association, www.jasa.or.jp), 13 percent
of the industrial informants use STM as the modeling lan-
guage for their (embedded) software development (however
without supports for formal analysis). We hope that our
work could be helpful for them to develop their own formal
verification tools. In addition, we hope that the SMT-based
encoding approach, especially the way of making coun-
terexamples clearer, the idea of encoding combination of
sequential programs and non-sequential transition structure,
and the way of accelerating SMT solving, could be useful to
some extent for general usage of SMT techniques.

Much work needs to be done in the future, which in-
cludes, e.g., (1) Formalize and encode hierarchical STMs,
i.e., (the behaviors of) a STM is called in the normal cells of
other STMs. An efficient way should be proposed since triv-
ially flat the hierarchical structure often blowups the state
space; (2) Encoding STM designs that employ message
passing as the meaning of communication, where encoding
message queue is a key issue; and (3) Encoding properties
in temporal logics like LTL, for which the SMT-based en-
coding approach [22] implemented in NuSMV [20] for LTL
properties might be helpful. Currently, we have been work-
ing on aspects (2) and (3), and will report our preliminary
results in another opportunity.
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