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Translation of State Machines from Equational Theories into
Rewrite Theories with Tool Support∗

Min ZHANG†a), Nonmember, Kazuhiro OGATA†, and Masaki NAKAMURA††, Members

SUMMARY This paper presents a strategy together with tool support
for the translation of state machines from equational theories into rewrite
theories, aiming at automatically generating rewrite theory specifications.
Duplicate effort can be saved on specifying state machines both in equa-
tional theories and rewrite theories, when we incorporate the theorem prov-
ing facilities of CafeOBJ with the model checking facilities of Maude. Ex-
perimental results show that efficiencies of the generated specifications by
the proposed strategy are significantly improved, compared with those that
are generated by three other existing translation strategies.
key words: specification translation, CafeOBJ, Maude, equational theory
specification, rewrite theory specification

1. Introduction

CafeOBJ [2] and Maude [3] are two up-to-date verification
systems based on algebraic approaches. The former is
equipped with theorem proving facilities, while the latter
with model checking facilities. CafeOBJ can be used as
an interactive proof assistant for verifying invariant prop-
erties of systems. Systems are first specified as equational
theories, and then invariant properties to be verified are
represented as inductive theorems, which need to be ver-
ified by some proof techniques like structural induction
and case splitting [4], [5]. Maude can be used as a model
checker to verify desirable properties of finite-state systems.
Like traditional theorem proving and model checking tech-
niques, both CafeOBJ and Maude have their own advantages
and disadvantages in system verifications. For instance,
CafeOBJ can deal with infinite-state systems, but needs hu-
mans’ intervention during verifications, while Maude as a
model checker is fully automatic, but is only able to deal
with finite-state systems. Due to the complementarity of the
two verification systems, it is desirable to incorporate them
with each other to fully utilize their advantages and avoid
disadvantages.

A way called induction-guided falsification (IGF) is
proposed to collaborate CafeOBJ with Maude in [6]. The
basic idea of IGF is to use Maude to search a bounded reach-
able state space of a transition system for counterexamples
of an invariant property. If no counterexamples are found,
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it uses CafeOBJ to find all necessary lemmas that are used
for the verification of the property. Maude is again used to
find counterexamples of these lemmas. The iteration is re-
peated until counterexamples are found for some of these
lemmas, or the property together with all necessary lemmas
is proved. Because CafeOBJ and Maude take their own
specifications in different formalisms (specifications used
by CafeOBJ for theorem proving are based on equational
logic, while those by Maude for model checking are based
on rewriting logic), we have to prepare two specifications for
a same system, in order to collaborate CafeOBJ with Maude
by IGF. However, it is not only effort-consuming to man-
ually specify a system separately in CafeOBJ and Maude,
but at high risk of causing inconsistencies in specifications.
Automatic translation is an effective way to solve these
problems. However, although some strategies have been
proposed for the translation from CafeOBJ to Maude [7],
[8], they are sometimes hardly used for model checking,
because the generated specifications cannot be efficiently
model checked in Maude.

To improve efficiencies of the generated rewriting the-
ory specifications, we propose a new style of rewriting the-
ory specifications in Maude denoted by RWT Specs, and
investigate a strategy for the translation from equational the-
ory specifications (abbreviated by EQT Specs) in CafeOBJ
into RWT Specs. We also implement a translator called Yast
to automate the translation. Experimental results show that
efficiencies of the generated specifications by the proposed
strategy are indeed significantly improved, compared with
those which are generated by three other existing strate-
gies. The strategy can only translate a subclass of EQT
Specs called EADS Specs (EADS is abbreviated for ex-
tended asynchronous distributed systems), based on the fact
that not all EQT Specs have corresponding RWT Specs
(the proof is given in Sect. 3). Nevertheless, the proposed
strategy is still useful, because most of systems verified in
CafeOBJ can be specified as EADS Specs. This article sys-
tematically describes above work by extending [1] with the
provision of the translator and analysis on more experimen-
tal results.

Contributions of this work are manifold. From a foun-
dational point of view, we show the inequality in the expres-
siveness of EQT Specs and RWT Specs, and the undecid-
ability of checking whether an EQT Spec can be translated
into an RWT Spec or not. Based on this foundational result,
we investigate a specific class of EQT Specs called EADS
Specs as a workaround without loss of practicability. By the
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automatic translation, we save duplicate effort on manually
specifying a state machine in both equational theories and
rewrite theories, when we use the IGF approach to incorpo-
rate CafeOBJ and Maude for system verifications.

The rest of this paper is organized as follow. Sec-
tion 2 introduces some preliminaries i.e., state machines,
EQT Specs and RWT Specs. Section 3 investigates EADS
Specs, and Sect. 4 describes the translation strategy. The
translator Yast is introduced in Sect. 5, followed by a case
study in Sect. 6. Experimental results is shown in Sect. 7.
Section 8 mentions some related work and Sect. 9 concludes
the paper.

2. Preliminaries

2.1 State Machines

State machines can be used to describe dynamic systems. A
state machine consists of (1) a set U of states, (2) a set I
of initial states such that I ⊆ U, and (3) a set T of tran-
sitions. Each u ∈ U is a record consisting of a (possibly
infinite) number of data fields. A record is in the form of
{l1 = d1, l2 = d2, . . .} of type {l1 : D1, l2 : D2, . . .}, where
D with a subscript e.g. Di denotes a data type. For conve-
nience, we let li(u) denote li’s corresponding value di in state
u. Each transition t ∈ T is a binary relation over states, and
(u1, u2) ∈ t denotes a transition t from state u1 to u2.

Let us consider a mutual exclusion protocol as an ex-
ample to show how to model dynamic systems as state ma-
chines. The pseudo code of the protocol is:

Loop remainder section
rs: repeat while fetch&store(locked, true);

critical section
cs: locked := false;

where, fetch&store is an atomic operation. It takes a variable
x and a value d, and does the following two things atomi-
cally: setting x to d and returning the previous value of x.
Whenever a process leaves the critical section, it sets locked
false.

A state machineMME can be constructed as follow to
model the protocol.

• UME � {u|u : {locked : Bool, pc1 : Label, pc2 :
Label, . . .}};

• IME � {u0 ∈ UME|locked(u0) = f alse, pci(u0) =
rs for each process pi};
• TME � {enter1, enter2, . . .} ∪ {exit1, exit2, . . .}.

For each process pi, (u, u′) ∈ enteri iff pci(u) =
rs, pci(u′) = cs, locked(u) = f alse, locked(u′) = true
and pc j(u′) = pc j(u) for each p j � pi; and (u, u′) ∈
exiti iff pci(u) = cs, pci(u′) = rs, locked(u′) = f alse
and pc j(u′) = pc j(u) for each p j � pi.

A part of state transitions in MME is shown in Fig. 1. An
arrow labelled by a transition t from a state u to u′ denotes
(u, u′) ∈ t. The triple black points denote the transitions
from u0 to other states, which are not depicted in the figure.

Fig. 1 A part of state transitions inMME.

2.2 EQT Specs

EQT Specs denote a class of equational theory specifications
that are developed in OTS/CafeOBJ method in CafeOBJ.
Transitions are defined with equations. Let Υ be a sort for
states. An EQT Spec consists of (1) a finite set O of ob-
servers, (2) an arbitrary initial state init, (3) a finite setA of
actions, and (4) a family E of sets of equations. Each ob-
server o is an operator whose rank is Υ Do1 . . .Dom → Do.
An observer corresponds to a (possibly infinite) set of data
fields in a state u. Each action a is an operator with rank
Υ Da1 . . .Dan → Υ. An action a represents a (possibly in-
finite) class of transitions in T . Each action a is given an
operator c-a with rank Υ Da1 . . .Dan → Bool, representing
the condition under which the transitions represented by a
take place. Einit ∈ E is a set of equations which init must
satisfy, and for each action a, Ea ∈ E is a set of equations
which can be interpreted as the definition of a class of tran-
sitions represented by a.

For instance, an EQT Spec ofMME is as follows:

Pid, and Label are sorts for process identifiers, queues and
labels†. Constants rs, ws and cs are of sort Label, corre-
sponding to labels rs,ws and cs, respectively. Variable υ is
of Υ, and x, y are of Pid. Every variable in an equation (or a
rewriting rule) is universally quantified and its scope is in the
equation (or the rewriting rule). Symbol � denotes equiva-

†By convention, symbols like sorts, constants and function
symbols at specification level are differentiated from those at math-
ematical level by using typewriter font.
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lence relations over data types. The observer locked corre-
sponds to the data field locked : Bool in states inMME, and
pc to an infinite set of fields {pc1 : Label, pc2 : Label, . . .}.
Constant init together with Einit specifies IME. Action
enter corresponds to an infinite class {enter1, enter2, . . .}
of transitions. The set Eenter of equations can be inter-
preted as the definition of the class of transitions. Action
exit together with Eexit specifies the class of transitions
{exit1, exit2, . . . , }. Term enter(υ, y) represents a successor
of the state denoted by υ if c-enter(υ, y) holds. Otherwise,
enter(υ, y) is equivalent to υ.

States in MME are represented in SME by terms of Υ,
e.g. states u0, u1, and u2 shown in Fig. 1 are represented
by terms init, enter(init, p1), and enter(init, p2),
respectively. For instance, pc1(u1) is cs. Correspond-
ingly, pc(enter(init, p1), p1) equals cs. The reduction of
pc(enter(init, p1), p1) in SME is as follow. According to
the second equation in Eenter with υ being init, x and y be-
ing p1, we have

pc(enter(init, p1), p1) = (if p1 � p1 then
cs else pc(init, p1) fi) if c-enter(init, p1)

According to the first equation in Einit, pc(init, p1)
equals rs and locked(init) equals false, indicating
c-enter(init, p1) holds. Because p1 � p1 is true, the
right-hand side (RHS) of the equation above equals cs,
namely that pc(enter(init, p1), p1) equals cs. Similarly,
we have pc(enter(init, p1), pi) equals rs for pi(i > 1) and
locked(enter(init, p1)) equals true.

2.3 RWT Specs

RWT Specs denotes a new style of rewrite theory specifica-
tions in Maude. Each state in RWT Specs is denoted by sort
State, which is represented as a set of components. There
are two kinds of components, i.e. action components and
observable components. They are denoted by sorts AComp
and OComp respectively, which are subsort of State. An ac-
tion component corresponds to a class of transitions in state
machines, and an observable component to a data field in a
state.

An RWT Spec consists of (1) a finite set OC of observ-
able component constructors, (2) a finite set AC of action
component constructors, (3) a set F of function symbols for
the representation of initial states, with a set EF of equations
for the function symbols inF , and (4) a finite setR of rewrit-
ing rules. An observable component constructor is declared
in the form of oc[ , . . . , ]: which is a function symbol with
rank Do1 . . .Dom Do → OComp†. An observable component
constructor represents a (possibly infinite) set of data fields
in a state. An action component constructor ac is a function
symbol whose rank is SetDt1, . . . , SetDtn → AComp, where
SetDti is a sort for sets of elements of Dti. Each rewriting
rule in R specifies a (possibly infinite) class of transitions.

An RWT Spec SME that specifies the state machine
MME is as follows:

The sort SetPid denotes sets of process identifiers. Given a
term ps which denotes a set of process identifiers, init(ps)
represents the initial state when the processes participate
in the mutual exclusion protocol. Rewriting rules rwenter
and rwexit respectively specify the two classes of transitions
{enter1, enter2, . . .} and {exit1, exit2, . . .} inMME.

3. EADS Specs

In RWT Specs, terms at the left-hand side (LHS) in rewrit-
ing rules represent segments of states. Rewriting rules de-
note these segments are correspondingly changed into those
that are represented by terms at RHS in the rules, while the
rest segments of states are kept unchanged. A segment at
LHS in a rewriting rule consists of one action component,
and a finite collection of observable components. Since one
observable component only corresponds to one data field in
a state in state machines, a rewriting rule can only specify
the changes of a finite set of data fields in a state, namely
that if there exists a rewriting rule for a transition (u, u′) ∈ t,
there must be a finite number of data fields in u′ different
from their corresponding data fields in u. Moreover, if the
change of a data field depends on other data fields, the de-
pended data fields must be finite. Therefore, if an EQT Spec
can be translated into an RWT Spec, the state machine spec-
ified by the EQT Spec must satisfy the two conditions.

However, the forementioned conditions are not suffi-
cient. Let us consider a state machine where states are of
type {l0 : N, l1 : N, . . .}. The initial state is {l0 = 0, l1 =
0, l2 = 0, l3 = 0, . . .}. There is only one transition inc s.t.
(u, u′) ∈ inc iff for each i : N if i ≤ l0(u) then li(u′) = li(u)+1,
otherwise, li(u′) = li(u). The transition chain from the initial
state is like:

{l0 = 0, l1 = 0, l2 = 0, l3 = 0, . . .} inc−→ {l0 = 1, l1 = 0, l2 =

0, l3 = 0, . . .} inc−→ {l0 = 2, l1 = 1, l2 = 0, l3 = 0, . . .} inc−→
{l0 = 3, l1 = 2, l2 = 1, l3 = 0, . . .} inc−→ · · ·

The state machine cannot be specified by any RWT Spec,
because the number of changed natural numbers from u to
u′ varies for all (u, u′) ∈ inc. After each transition, the

†CafeOBJ and Maude allows mixfix operators. An underscore
indicates the place where an argument is put.
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number of changed natural numbers is increased and un-
bounded. Hence, for each transition t ∈ T in a state ma-
chine which is specifiable in an RWT Spec, there must be
only a bounded number of data fields changed from u to u′

for each (u, u′) ∈ t. Moreover, each changed data field in u′

must depend upon a bounded number of data fields in u. We
call the state machines that satisfy the conditions are double
bounded, and corresponding EQT Specs double bounded
EQT Specs. Any state machines that can be specified in
RWT Specs are double bounded. Obviously, an EQT Spec
that species the above state machine is not double bounded.

To automate the translation from double bounded EQT
Specs into RWT Specs, we first need to check if the EQT
Spec is double bounded. However, it is not decidable to
check whether any given EQT Specs are double bounded.
Let us consider Post’s Correspondence Problem (PCP) [9]
on alphabet {a, b}:

Input: a finite sequence {(a1, b1), (a2, b2), . . . , (an, bn)}
of pairs of the alphabet {a, b}.

Output: the answer to the question whether there is a
sequence (solution) i1, i2, . . . , ik of natural
numbers s.t. ai1 · · · aik = bi1 · · · bik

It is well-known that PCP is undecidable.
Let us consider an EQT Spec SPCP(pcp-instance), where

pcp-instance is an input sequence of PCP. Let Seq be a
sort for sequences, sq be a variable of Seq, and check be a
function symbol representing if a sequence is a solution to
the input. SPCP(pcp-instance) is as follow:

• OPCP � {isSolution : Υ Seq→ Bool}
• APCP � {solve : Υ→ Υ}
• EPCP � {Einit,Esolve}

– Einit � {isSolution(init, sq) = false}
– Esolve � {isSolution(solve(υ), sq) =
check(pcp-instance, sq)}

Note that if pcp-instance has a solution sq, a repetition of
sq is also a solution. Consequently, infinitely many ob-
servable values are changed by the transition from init to
solve(init). Thus, given an input sequence pcp-instance
for PCP, there exists a solution to pcp-instance if and only
if SPCP(pcp-instance) is not double bounded. Therefore, given
an any EQT Spec, it is undecidable to check if it is double
bounded.

Hence, we need to impose some constraints to EQT
Specs and identify a sub-class of EQT Specs which are dou-
ble bounded, and decidable to check whether any given EQT
Spec is in the sub-class. Such a sub-class of EQT Specs are
called EADS Specs. Without loss of generality, we suppose
that a special sort Pid is predefined for the processes (or
principals). All EADS Specs must conform to the following
syntax-level constraints:

1. Each o ∈ O is declared in the form of o : Υ → Do or
o : Υ Pid→ Do;

2. If there exists o ∈ O s.t. o : Υ Pid → Do, the declara-

tion of each a ∈ A should be one of the following two
forms:

a. a : Υ {Da1 . . .Dan} → Υ, where each Dai cannot
be Pid †;

b. a : Υ Pid {Da2 . . .Dan} → Υ;

Otherwise, there is no restriction on the declaration of
each a ∈ A;

3. If there exists o ∈ O s.t. o : Υ Pid → Do, equations
must be in one of the following forms according the
declaration of a and o:

a. for o : Υ → Do and a : Υ {Da1 . . .Dan} → Υ (Dai

cannot be Pid): o(a(υ{, y1, . . . , yn})) = Toa if
c-a(υ{, y1, . . . , yn});

b. for o : Υ Pid → Do and a : Υ {Da1 . . .Dan} →
Υ (Dai cannot be Pid): o(a(υ{, y1, . . . , yn}), y) =
o(υ, y);

c. for o : Υ → Do and a : Υ Pid {Da2 . . .Dan} → Υ:
o(a(υ, y1{, y2, . . . , yn})) = Toa if
c-a(υ, y1{, y2, . . . , yn});

d. for o : Υ Pid→ Do and a : Υ Pid {Da2 . . .Dan} →
Υ: o(a(υ, y1{, y2, . . . , yn}), y) = (if y � y1 then Toa

else o(υ, y) fi) if c-a(υ, y1{, y2, . . . , yn});

where, Toa is a term which represents the result into
which the value observed by o is changed by action a.
If all observers o ∈ O are in the form of o : Υ → Do,
equations must be in form of (3a), but each Dai can be
any sort for data elements.

4. All observers o′ ∈ O (can be o) in Toa and
c-a(υ, y1{, y2, . . . , yn}) must be used in the form of
o′(υ{, y1});

5. Only observers, actions and the function symbol c-a
associated to each action a can have Υ in their arity;

6. No actions are used in oa(υ, y1, {y2, . . . , yn}) and
c-a(υ, y1{, y2, . . . , yn}).

We assume that a state machine M can be specified by
an EADS Spec. Constraint 1 indicates that there are only
two kinds of data fields in M. Data fields represented by
o : Υ → Do are called system-level data fields, which
generally specify shared resources. Those represented by
o : Υ Pid → Do are called process-level data fields, which
generally represent resources that can only be accessed by
a specific process. Constraint 2 indicates whenever there
are process-level data fields in M, only two kinds of tran-
sitions are allowed in M. One is called system-level tran-
sition represented by a : Υ {Da1 . . .Dan} → Υ. A system-
level transition refers to a transition that is caused by the
system. The other is process-level transition represented
by a : Υ Pid {Da2 . . .Dan} → Υ. A process-level transi-
tion refers to a transition that is caused by a process. Con-
straint 3 assures that only a bounded number of values in
data fields in a state are changed by a transition. Equa-
tions (3a) and (3b) indicate that in the dynamic system only

†Contents in { and } may or may not occur.
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system-level values can be changed by system-level transi-
tions, and Eqs. (3c) and (3d) indicate a process-level transi-
tion can only change system-level values and the process’s
own values. Constraint 4 indicates a process-level transition
executed by a process can only access the system-level data
fields and the process-level data fields owned by the process.
Constraint 5 guarantees that if a state machine can be speci-
fied by an EADS Spec, the changes of data fields in its states
depend upon a bounded number of data fields, so do the con-
ditions under which the transitions can take place in states.
Constraint 6 assures that each action can be interpreted as a
transition.

EADS Specs specify a class of asynchronous dis-
tributed systems such as communication protocols and dis-
tributed mutual exclusion protocols, and some class of asyn-
chronous shared-memory systems such as the mutual exclu-
sion protocol in this paper. These systems are characterized
by the two main features: (1) A system consists of multiple
processes (or principals, etc.) and some shared resources,
and (2) Each process (or principal) has only bounded num-
ber of components, and each process is only allowed to
access and modify its own components, besides shared re-
sources.

4. Translation Strategy

The translation from an EADS Spec to an RWT Spec con-
sists of two phases. The first phase is to generate observ-
able component constructorsOC and action component con-
structorsAC from O andA, and to generate rewriting rules
R from E. The second phase includes the optimization of
translated RWT Specs and the construction of initial states
for the optimized RWT Specs.

4.1 Generation of OC andAC

According to the declaration of observers O and actions A,
we can generate observable component constructors OC and
action component constructorsAC, as shown in Fig. 2.

4.2 Generation of R

We need to construct a set R of rewriting rules to specify
the actions in A. There is a rewriting rule corresponding to
each action.

If all observers in an EADS Spec are declared in the
form of o : Υ → Do, we consider all these observers
to construct a rewriting rule for each action a s.t. a :
Υ Da1, . . . ,Dan → Υ (n ≥ 0). According to Eq. (3a), o(υ)

Fig. 2 Translation from O andA into OC andAC.

is changed into Toa↓S when c-a(υ) holds†. We introduce a
fresh variable do of Do denoting the value denoted by o(υ)
in a data field. We assume there are m (m ≥ 1) observers s.t.
O = {o1, . . . , om}. A rewriting rule that is constructed from
a and Ea is as follow:

a((y1 ys1), . . . , (yn, ysn))(o1: o1(υ)) . . . (om: om(υ))⇒
a((y1 ys1), . . . , (yn, ysn))(o1: To1a↓S) . . . (om: Toma↓S)
if c-t(υ)↓S,

with terms o1(υ), . . . , om(υ) substituted by do1 , . . . , dom re-
spectively. In the rewriting rule, each component at LHS
has a corresponding successor at RHS. The action compo-
nent keeps unchanged. The change of observable compo-
nents like from (o : o(υ)) to (o: Toa↓S) exactly denotes the
one from o(υ) to Toa↓S in the original EQT Spec. Note that
Toa↓S can be o(υ), which means that corresponding shared
resource is not changed. If o(υ) is also not used by other
observable component, it can be removed from the rewrit-
ing rule. This step is called optimization (see Sect. 4.3 for
details).

If there exists an observer o in an EADS Spec s.t.
o : Υ Pid → Do, actions are declared in the form of ei-
ther a : Υ Da1 . . .Dan → Υ (n ≥ 0) (Dai cannot be Pid) or
a : Υ Pid Da2 . . .Dan → Υ (n ≥ 0). In the first case, only
system-level data fields can be changed by the transition rep-
resented by a. We only need to consider those observers that
denote system-level data fields, i.e. the observers that are in
form of o : Υ→ Do, o(υ). The way of constructing a rewrit-
ing rule for a is similar to the case when all observers are
declared in the form of o : Υ→ Do.

In the second case, since an observer a ∈ A s.t. a :
Υ Pid Da2 . . .Dan → Υ (n ≥ 0) denotes a process-level
transition, both system-level and process-level data fields
can be accessed. Let y1 be a variable of Pid and y2, . . . , yn

be variables of Da2, . . . ,Dan respectively. We consider a
process-level transition denoted by a w.r.t. y1 and parame-
ters y2, . . . , yn. For system-level data fields represented by
o ∈ O s.t. o : Υ → Do, we deal with it similarly like in
the construction of rewriting rules for system-level transi-
tions. For each o ∈ O s.t. o : Υ Pid → Do, among
process-level data fields denoted by o, only those owned by
y1 can be accessed. In the state denoted by υ, the value in a
process-level data field of the process y1 w.r.t. o is denoted
by o(υ, y1). According to Eq. (3d), it is changed into Toa↓S
in the successor a(υ, y1, y2, . . . , yn) under the condition that
c-a(υ, y1, y2, . . . , yn) holds. We introduce a fresh variable do

of Do corresponding to o(υ, y1). We assume that the first
k observers are in the form of o : Υ → Do and rest of
o : Υ Pid → Do in m observers {o1, . . . , ok, ok+1, . . . , om}.
A rewriting rule specifying a set of process-level transitions
denoted by action a and Ea w.r.t. y1, y2, . . . , yn is as follow:

a((y1 ys1), (y2 ys2), . . . , (yn ysn)) (o1: o1(υ)) . . .
(ok: ok(υ))(ok+1[y1]: ok+1(υ, y1)) . . . (om[y1]: om(υ, y1))
⇒ a((y1 ps1), (y2 ys2), . . . , (yn ysn))(o1: To1a↓S) . . .

†Toa↓S represents the canonical form of Toa in context S. We
assume all EADS Specs are confluent and terminating.
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Fig. 3 Translation from OME andAME into OCME andACME.

(ok: Toka↓S)(ok+1[y1]: Tok+1a↓S) . . . (om[y1]: Toma↓S)
if c-t(υ, y1, y2, . . . , yn)↓S,

with o1(υ), . . . , ok(υ), ok+1(υ, y1), . . . , om(υ, y1) substituted
by do1 , . . . , dok , dok+1 , . . . , dom , respectively.

We take the construction of the rule rwenter in SME

from SME as an example. First, observers in OME and ac-
tions inAME are translated into OCME andACME, as shown
in Fig. 3. Since the transitions represented by enter are
process-level transitions. We first construct an intermediate
rewriting rule to specify the transition:

enter((y ys))(pc[y]: pc(υ, y))(locked: locked(υ))⇒
enter((y ys))(pc[y]: pc(enter(υ, y), y)↓SME )(locked:
locked(enter(υ, y))↓SME ) if c-enter(υ, y)↓SME .

According to SME, pc(enter(υ, y), y) is reduced to cs
and locked(enter(υ, y)) to true, under the condi-
tion that c-enter(υ, y) is true, namely that pc(υ, y) �
rs and locked(υ) � false is true. The above rule can
be transformed to:

enter((y ys))(pc[y]: pc(υ, y))(locked: locked(υ))⇒
enter((y ys))(pc[y]: cs)(locked: true)
if pc(υ, y) � rs and not locked(υ).

We introduce fresh variables l of Label and b of Bool, re-
spectively for pc(υ, y) and locked(υ). Then, we obtain the
following rule:

enter((y ys))(pc[y]: l)(locked: b)⇒ enter((y ys))
(pc[y]: cs)(locked: true) if l � rs and not b,

which is exactly the one in SME.

4.3 Optimization of RWT Specs

Generated RWT Specs need to be optimized so that they can
be efficiently model checked in Maude. In Maude, rewriting
with both equations and rules takes place by matching an
LHS against a subject term and evaluating the corresponding
condition [3, chap. 1]. Hence, the less complex the LHS and
the condition of a rewriting rule are, the less time it takes
to match a term to the LHS and to evaluate the condition,
respectively.

A general way of optimizing rewriting rules is delet-
ing redundant terms. In an RWT Spec, action components
are not changed in rewriting rules. They are used to pro-
vide necessary variables to guarantee rewriting rules are ex-
ecutable, because Maude generally requires variables that

occur in the RHS or condition must occur in the LHS to
make rewriting rules executable [3, chap. 6]. However, some
variables in an action component may be also used by some
observable components at the LHS in rewriting rules. In
this situation, these variables in the action component be-
come redundant. For instance, in the rule rwenter, y in the ac-
tion component enter((y ys)) is also used in the observable
component (pc[y]: l). We can remove the action component
from the rule, without affecting the executability of the rule.
We obtain an optimized rule:

(pc[y]: l)(locked: b)⇒ (pc[y]: cs)(locked: true)
if l � rs and not b

Another case is that when a parameter yk, k ∈ {1, . . . , n}
in an action component of a occurs in some observable com-
ponents at LHS of a rewriting rule or yk occurs neither in any
observable components at RHS nor in condition, we can re-
move the kth parameter of a, and consequently revise the
declaration of a in AC. If all parameters of a are removed,
the action component can be removed.

Redundant observable components in rewriting rules
can also be deleted. An observable component is redundant
when the value in it is neither changed by the transition, nor
used by other components or in conditions. A redundant
observable component can be deleted directly from both the
sides of rewriting rules.

Another optimization is to simplify or delete the con-
dition of a rewriting rule. The optimization is achieved by
equivalent replacement. We assume that the condition is a
conjunction. If a conjunct in the condition is an equivalence
relation in the form of x � T and x occurs in neither T nor
the other part of the condition, where x is a variable and T
is a term, we can replace x that occurs in the both sides of
the rewriting rule with T and delete the conjunct from the
condition. Hence, the rule rwenter can be further optimized
to be:

(pc[y]: rs)(locked: b)⇒ (pc[y]: cs)(locked: true)
if not b.

An optimized RWT Spec of mutual exclusion protocol is as
follow:

4.4 Generation of F and EF

The last step is to construct an initial state in the generated
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RWT Spec to correspond to init in the source EADS Spec.
The initial state is specified by a set F of function symbols
and a set EF of equations for F .

In the initial states represented by init, the value of the
data field corresponding to an observer o s.t. o : Υ → Do

is o(init)↓S. Consequently, an observable component (o :
o(init)↓S) in the generated RWT Spec can be constructed to
correspond to the data field. For each observer o ∈ O s.t.
o : Υ Pid→ Do, the value of the data field corresponding to
o with a process y in initial states is denoted by o(init, y)↓S.
Hence, the data field can be denoted by the observable com-
ponent (o[y] : o(init, y)↓S). Given a set of processes, we
need to construct an observable component for each process
to represent the initial state. We declare an auxiliary func-
tion denoted by mk-o : PidSet → State to achieve this.
The following two equations are declared for mk-o:

mk-o(empty-set) = empty-state,
mk-o(y ys) = (o[p] : o(init, y)↓S) mk-o(ys),

Let sai (1 ≤ i ≤ n) denote an instance i.e. a set of
SetDai that are used in the specified system. For each
a : SetDa1 . . . SetDan → AComp, the action component of
a in the initial states can be constructed as a(sa1, . . . , san).

We suppose OC consists of m observable component
constructors, where the first k constructors are declared as
oi: : Doi → OComp for i = 1, . . . , k, and the rest as oi[ ]: :
Pid Doi → OComp for i = k + 1, . . . ,m. We further suppose
OA consists of n action component constructors a1, . . . , an

and each a j takes l j parameters for j = 1, . . . , n. Let
{SetD1, . . . , SetDn′ } be the set of all sorts that are taken by at
least one component constructor inAC. We declare a func-
tion symbol init s.t. init : SetPid SetD1 . . . SetDn′ →
State, and declare the following equation for init:

init(ys, sd1, . . . , sdn′ ) = (o1 : o1(init)↓S) . . . (ok :
ok(init)↓S) mk-ok+1(ys) . . .mk-om(ys)
a1(sd11, . . . , sd1l1 ) . . . an(sdn1, . . . , sdnln ),

where each sdi (1 ≤ i ≤ n′) is a variable of SetDi, and
each sd jw (1 ≤ j ≤ n, 1 ≤ w ≤ l j) is one of sd1, . . . , sdn′ .
Consequently, we obtain a set of function symbols F =
{init,mk-ok+1, . . . ,mk-om}, and a set EF of equations that
are declared for init and mk-ok+1, . . . ,mk-on.

For instance, we show how F ′ME and E′F ′ME
in S′ME

are constructed to represent initial states that correspond to
init in SME. Because AC′ME is empty, we only need to
consider OC′ME. Since only sort Pid is taken as a parameter
sort, init is declared as init : PidSet → State, and we
have init(ys) = (locked: locked(init)↓SME ) mk-pc(ys).
That is init(ys) = (locked: false) mk-pc(ys). Because
pc(init, y) is rs for each process y, mk-pc : PidSet →
State can be declared as follows:

mk-pc(empty-set) = empty-state;
mk-pc(y ys) = (pc[y]: rs) mk-pc(ys).

4.5 Principles of Defining EADS Specs

There may be one or more EADS Specs for a given extended

asynchronous distributed system which consequently corre-
sponds to different RWT Specs generated by the proposed
strategy. The efficiency of RWT Specs varies according to
the complexity of rewriting rules. Some principles should
be followed to develop EADS Specs from which efficient
RWT Specs can be generated: (1) condition should be in
conjunction form if possible, and (2) each conjunct should
be in the form of o(υ{, x1}) � T if possible, where T is a
term.

For instance, the effective condition of action enter is
specified by pc(υ, p) � rs and not locked(υ). The rewrit-
ing rule rwenter can be optimized with the first conjunct in
its condition, as shown in Sect. 4.3. The rule can be fur-
ther optimized if the effective condition can be specified by
an equivalent expression pc(υ, p) � rs and locked(υ) �
false. We have

(pc[y]: rs)(locked: b)⇒ (pc[y]: cs)(locked: true)
if b � false.

Then, we replace b with false in the rule and obtain:

(pc[y]: rs)(locked: false)⇒
(pc[y]: cs)(locked: true)

which is much simpler than the previous optimized one.
Let us consider another example. We assume an ob-

server queue corresponds to a shared queue in a system, and
an action a takes place under the condition that a process p is
at the top of the queue. The condition can be specified by ei-
ther top(queue(υ)) � p or queue(υ) � (q|p), where top is
a function symbol for returning the top element of a queue,
q is a variable of sort queue and the rightmost element is the
top one. The related rewriting rules can be optimized with
the second declaration, but not with the first one.

5. Tool Support: Yast

The proposed translation strategy in Sect. 4 is automated by
a translator called Yast. Yast takes an EQT Spec and first
checks if it is an EADS Spec. If an input EQT Spec is an
EADS Spec, Yast automatically generates a corresponding
RWT Spec, otherwise, it terminates immediately with warn-
ing messages.

Different from other existing translators from CafeOBJ
specifications of state machines into other specifications e.g.
Cafe2Maude [7], Chocolat/SMV [10], Yast is implemented
in Maude meta-programming [11], [12]†. Due to the modu-
larity of Maude meta-programming, Yast has a clear three-
level architecture of the design, as depicted in Fig. 4. The
bottom level is called object-level, where EADS Specs S
and RWT Specs S are interpreted as mathematical theo-
ries. The middle level is called meta-level where EADS
Specs and RWT Specs are treated as data structures, on
which we can perform some kind of analysis or computa-
tions with Maude’s meta-level facilities. Yast admits object-
level EADS Specs S, and then generates corresponding

†Yast together with some examples is now available at
http://www.jaist.ac.jp/˜s0820005.
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Fig. 4 Three-level architecture of Yast.

meta-level representations S. S are then passed as data to
the upper level, which is called meta meta-level. Specifica-
tions of translation strategies are located at the meta meta-
level. They take S as input data, and generate corresponding
meta-level RWT Specs S. Object-level RWT Specs S are
recovered by Maude built-in function downTerm from their
meta-level representations S. The arrows in Fig. 4 show the
data flow inside Yast.

Advantages of implementing Yast in Maude meta-
programming are as follows. (1) Compared to using con-
ventional programming languages, less effort is needed. For
instance, Cafe2Maude is implemented in Java with 3,000
lines of code, while it only needs 2,000 lines of Maude
code to implement Yast. Moreover, Yast is an extension
of Full Maude [3, char. 18]. Full Maude provides an ample
of meta-level functions, which can be reused in the imple-
mentation of Yast. (2) Maude’s meta-level facilities are nat-
urally suited for the translation and optimization. The im-
plementation of Yast is essentially an executable algebraic
specification of the proposed strategy in Maude. It takes
fully advantage of Maude’s reasoning facilities i.e. reducing
to interpret the input EQT Specs and generate optimal RWT
Specs correspondingly. (3) our tool-building experience has
been positive, both in terms of how quickly we were able to
develop the tool, and how easily we could extend and main-
tain it.

Furthermore, thanks to the efficient implementation of
Maude (that can reach 1,300,000 rewrites per second on a
450 MHz Pentinum II for some applications), the perfor-
mance of Yast is also competitive in that most of transla-
tions are finished in seconds. Due to the proposed strategy,
translated RWT Specs are also efficient enough to be model
checked in reasonable time. The efficiency of both Yast and
generated specifications guarantees the usefulness of Yast
in practice.

6. A Case Study: NSPK

NSPK is a security protocol to achieve mutual authentica-
tion between two principals over network [13]. An EADS
Spec SNSPK of NSPK has been developed in order to try
proving the protocol enjoys Secrecy Property. However, the
property fails to be proved in CafeOBJ. A counterexample
is desirable to show NSPK does not satisfy Secrecy Prop-
erty. In this section, we show how to use Yast to generate a
corresponding RWT Spec SNSPK of NSPK from SNSPK.

NSPK can be described as three message exchanges:

Each principal is given a pair of keys: public and private
keys. Ep(m) denotes an encrypted message of a plain mes-
sage m with the principal p’s public key, and np is nonce
(represented by a random number) generated by principal p.
Besides normal principals, intruders are taken into account
to verify Secrecy Property. Intruders are able to (1) wire-
tap any messages in the network, (2) collect nonces used in
messages if ciphertexts in messages can be decrypted by the
intruders (i.e. when ciphertexts are encrypted with the in-
truder’s public key), (3) fake messages based on wiretapped
messages and collected nonces, and (4) put the faked mes-
sages into the network.

To specify NSPK in an EADS Spec SNSPK, some ba-
sic data types and related operations should be first defined,
e.g. Prin for principals, Nonce for nonces, and Msg for mes-
sages, etc. We use one action in NSPK to partially show how
to specify NSPK in an EADS Spec. The action is that Msg1
is sent from one principal to another, which can be specified
by the following code snippet:

Keyword bop is used to declare actions†, and eq (or ceq)
equations (or conditional equations). Sort Sys corresponds
to system states. S is a variable of Sys and P1 and P2 of
Prin. Operators rand, nw and nonces are observers. which
correspond to values in a state, e.g. rand(S) denotes a ran-
dom number in a state corresponding to S. The transition
from S to send1(S,P1,P2) takes places under the condi-
tion that c-send1(S,P1,P2) holds, namely that P1 and P2
are not equal. After the transition takes place, the values are
changed. A new random number replaces the older one; an
encrypted message is added to network and a nonce is wire-
tapped if P2 denotes an intruder. These changes are spec-
ified by the first three conditional equations, respectively.
The last equation says if c-send1(S,P1,P2) does not hold,
S and send1(S,P1,P2) are treated as equal.

Yast generates the following rewriting rule rwsend1 cor-
responding to action send1 in SNSPK.

†We use bop to differentiate actions and observers from other
operators. In the future, all operators will declared by op, instead
of bop.
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A variable Var of sort Sort is declared on-the-fly in
the form of Var:Sort. Sort SetPrin is automatically
generated, denoting sets of principals. Union operator
; is associative and commutative over sets of princi-

pals, so that (V-Prin1:Prin ; V-Prin1set:SetPrin)
denotes a non-empty set of principals and V-Prin1set
can be any principal in a set. The rewriting rule speci-
fies principal V-Prin1 sends Msg1 to principal V-Prin2.
Term (rand: V-rand:Rand) denotes that the random
number is V-rand in a state. It is changed into
next(V-Prin1:Rand) after the action. Consequently, we
obtain (rand: next(V-Prin1:Rand)) as shown at RHS
in the rule. Similarly, the changes of nonces and messages
by the action are also reflected in the rule. The condition
part says V-Prin1 does not equal V-Prin2. The rewriting
rule faithfully specifies the same action that is specified by
equations in SNSPK.

Initially, there are no nonces and messages. Let con-
stant empty denote empty set of nonces and empty set of
messages†, and seed denote an initial random number. An
constant init is declared in SNSPK with the following three
equations, for the representation of initial state in NSPK.

eq rand(init) = seed .

eq nw(init) = empty .

eq nonces(init) = empty .

Yast constructs an initial state generator with the follow-
ing equation in the RWT Spec SNSPK, which corresponds to
init in SNSPK.

Note that there are five action components beside the ob-
servable components. This is because these action compo-
nents cannot be removed after optimization, as shown in the
rule rwsend1. To make sure the generated rewriting rules
executable, these action components should be initially pro-
vided.

The initial state generator represents arbitrary initial

states. In order to do model checking with SNSPK, we need
to provide a concrete initial state by fixing a bounded num-
ber of principals and assigning them to V-SetPrin. For
instance, we assume there are three principals in NSPK de-
noted by p1, p2 and intr, where intr stands for an in-
truder. The initial state specified in SNSPK is init(p1 ;
p2 ; intr), namely that:

fake1(p1 ; p2 ; intr, p1 ; p2 ; intr)

fake2(p1 ; p2 ; intr, p1 ; p2 ; intr)

fake3(p1 ; p2 ; intr, p1 ; p2 ; intr)

fake4(p1 ; p2 ; intr, p1 ; p2 ; intr)

send1(p1 ; p2 ; intr, p1 ; p2 ; intr)

(nonces: empty) (nw: empty) (rand: seed).

7. Experimental Results

In this section, we conduct four experiments to show the
superiority of the proposed strategy to other existing strate-
gies. To the best of our knowledge, there are three exist-
ing strategies for the translation from CafeOBJ equational
theory specifications into Maude rewriting theory specifica-
tions. One straightforward translation strategy (TS1) is de-
scribed in [14]. The basic idea is to construct a rewriting
rule for the transition from an arbitrary state υ to each of its
successors. For instance, the following rule specifies a class
of transitions denoted by enter:

υ⇒ enter(υ, y) if c-enter(υ, y).

To make the rule executable, we add to the both sides of
the rule an additional term pid(y ys) which serves as action
components in our strategy. Hence, we obtain an executable
rule:

pid(y ys) υ⇒ pid(y ys) enter(υ, y) if c-enter(υ, y).

Another translation strategy (TS2) is proposed in [7]. States
in generated specifications by TS2 are explicitly repre-
sented, and only one rewriting rule needs to be constructed
for a class of transitions. However, additional components
are introduced into states to represent transitions, which
drastically increases the scale of the terms representing
states, and hence leads to the inefficiency of translated spec-
ifications. Another improved strategy (TS3) is proposed in
[8]. All possible transitions are first enumerated. For each
transition, a rewriting rule is constructed. Hence, it is not
necessary to introduce additional components to represent
transitions. The scale of the terms representing states is re-
duced, and hence the efficiency of translated specifications
is improved to some extent. However, because the number
of rewriting rules is increased, the efficiency is still beyond
practical use.

We show the superiority of our proposed strategy (de-
noted by TS4 for convenience) to the other three existing

†This is possible because CafeOBJ allows operator overload-
ing.
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strategies in terms of the efficiency of generated specifica-
tions, and the scale of EQT Specs that can be dealt with by
the proposed strategy. We also compare the efficiency of
generated specifications by TS4 with those that are manu-
ally developed. The efficiency is measured by the time that
Maude takes to search a bounded depth of state spaces with
corresponding specifications. We choose a mutual exclu-
sion protocol called Tlock, NSPK, Alternating Bit Proto-
col (ABP) [15] and Suzuki-Kasami Protocol (SKP) [16] as
benchmarks.

Tlock is a mutual exclusion protocol using atomicInc,
which atomically increases the number stored in a variable
and returns the old number. We use Maude to model check
Mutual Exclusion Property of Tlock (there is always at most
one process in a critical section at any moment), with the
specifications generated by TS2, TS3, TS4 together with
a manually developed one. Although Tlock is a simple
protocol, it can be used as a benchmark because all the
four translation strategies can be applied to the EQT Spec
of Tlock, and generated specifications by TS2, TS3, and
TS4 can be model checked by Maude in reasonable time.
The specification generated by TS1 is not used, because
Maude cannot finish searching in reasonable time with it.
We neglect the comparison with TS1 in the following cases
for the same reason. Figure 5 shows the time that Maude
spends on searching bounded depths of state spaces with the
generated specifications by TS2, TS3, TS4, and the manu-
ally developed one. With the increase of depth, the time
spent on searching also increases. The figure shows that the
time taken with specifications generated by TS2 and TS3
increases more drastically than the one with the generated
specification by TS4 or the manually developed one. It also
shows the generated specification by TS4 is almost as effi-
cient as the manually developed one.

The second experiment is about ABP, which is a sim-
plified communication protocol of Transmission Control
Protocol (TCP), aiming at providing a reliable communi-
cation channel over an unreliable channel (for details about
ABP refer to [15]). We use the generated specifications of
ABP together with the manually developed one to model
check Reliable Communication Property of ABP (whenever
the nth packet is delivered to the receiver, all packets up to
the nth one has been delivered without any duplication nor
reordering). Figure 6 shows efficiencies of the generated
specifications by TS2, TS3, and TS4, as well as the man-

Fig. 5 Time on model checking Mutual Exclusion Property of Tlock
with RWT Specs of Tlock generated by different strategies and the man-
ually developed one.

ually developed one. The efficiencies are measured by the
time which Maude spends on searching bounded depths of
state space to model check Reliable Communication Prop-
erty with these specifications. The efficiencies of the spec-
ifications generated by TS2 and TS3 are almost the same,
while the generated specification by TS4 is as efficient as the
manually developed one. However, the efficiency of gener-
ated specification by TS4 is just slightly improved than other
two generated specifications. That is because in the EQT
Spec of ABP, all observers and actions take the system state
as their only parameter. No matter with which strategy, only
one rewriting rule needs to be constructed, and no additional
components need to be introduced into states. Therefore,
the numbers of rewriting rules in all generated specifications
are the same, and the scales of terms representing states are
similar. The only difference is some redundant observable
components are removed in the optimization phase in TS4,
which makes the generated specification be model checked
faster.

We model check Secrecy Property of NSPK (nonces
cannot be leaked to intruders) with the specifications gener-
ated by TS4 and the manually developed one. Maude fails
to admit the specifications generated by TS2, because of the
huge scale of the terms representing states. For instance,
3 principals and 2 random numbers lead to 18 nonces and
32,706 messages, which drastically increase the number of
transitions. Consequently, it leads to the huge scale of terms
to represent these transitions in states. Similarly, it leads to
the huge number of rewriting rules in the specification gen-
erated by TS3, which cannot be admitted by Maude either.
Hence, Fig. 7 only shows the efficiencies of the generated
specification by TS4 and the manually developed one for
NSPK. The efficiencies are measured by the time which
Maude spends on model checking Secrecy Property with

Fig. 6 Time on model checking Reliable Communication Property of
ABP with RWT Specs of ABP generated by different strategies and the
manually developed one.

Fig. 7 Time on model checking Secrecy Property of NSPK with the
RWT Spec of NSPK generated by TS4 and the one manually developed.
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different depths. In the first four depths, the time spent on
the two specifications is almost the same. However, when
the depth is set 5, the time increase drastically, especially
with the generated specification by TS4. That is because the
number of searched states drastically increases from 33,091
to 710,899 when the depth is increased from 4 to 5 both with
the two specifications. Maude fails to finish model checking
in reasonable time when the depth is set 6 with both of the
two specifications due to the huge scale of state space. The
figure also shows that Maude spends more time on model
checking with the generated specification by TS4 than with
the manually developed one. The reason is that some op-
timizations cannot be automatically done in the translation,
but can be manually done. For example, if the condition of
a rewriting rule is ¬(x = u), the rule cannot be automati-
cally transformed into an unconditional rule. However, it is
worthwhile to sacrifice the efficiency to some extent for the
sake of automaticity.

Another experiment is about SKP, which is a dis-
tributed algorithm to achieve mutual exclusion in a com-
puter network, where a fixed number of nodes communicate
with each other only by exchanging messages. The mutual
exclusion means that at most one node is allowed to stay in
its critical section at any moment. The basic idea of SKP
is to transfer the privilege for entering critical sections (for
details refer to [16]). We model check Mutual Exclusion
Property of SKP with the generated specifications. How-
ever, TS2 and TS3 fail to generate Maude specifications of
SKP from the corresponding EQT Spec. That is because
in the EQT Spec of SKP, there are two parameters which
are taken by two actions, corresponding to infinite sets of
elements. Consequently, it is not possible to enumerate all
transitions and to represent them in states or with rewriting
rules. TS4 avoids initializing the two parameters thanks to
optimization. Figure 8 only shows the efficiencies of the
generated specification by TS4 and the manually developed
one. We can tell that the efficiencies of them are very close.

The example of SKP shows that TS4 is superior to
other existing strategies when some parameters that are
taken by actions correspond to infinite set of elements and
cannot be initialized. For instance, assuming that an action
takes a multiset of processes as its parameter, we cannot
enumerate all mulitsets of processes, even if the number of
processes are fixed†.

To sum up, efficiencies of generated specifications by
TS4 are indeed significantly improved, compared with those

Fig. 8 Time on model checking Mutual Exclusion Property of SKP with
the RWT Spec of SKP generated by TS4 and the manually developed one.

by TS1, TS2, and TS4 such as in Tlock, ABP and NSPK.
TS4 also can be applied to some specifications to which TS2
and TS3 cannot be applied, such as in SKP. Unlike manual
translation, the efficiency of generated specifications by TS4
also depends upon the form of original EADS Specs. Some
advices have been proposed on how to develop EADS Specs
for the generation of more efficient RWT Specs [1], such
as specifying the conditions in conjunction forms with each
conjunct represented with equivalence relations so that op-
timizations can be fully applied, etc. Then, we can obtain
an automatically generated RWT Spec which is competi-
tively as efficient as the manually developed one. Although
in some situations the generated specifications by TS4 may
be slightly less efficient than those manually developed, it
is worthwhile to sacrifice a little efficiency for the sake of
automaticity.

8. Related Work

Several alternative approaches to the integration of model
checking and theorem proving have emerged in recent years.
Among them, many verification systems are loosely or
tightly integrated based on specification translation. For in-
stance, SAL can be used as a framework for integrating dif-
ferent symbolic analysis techniques including theorem prov-
ing and model checking [17]. The basic idea of SAL is to
provide a small intermediate language for describing tran-
sition systems, and to achieve integrations by specification
translations among different formalisms via the intermediate
language.

Another application of specification translation is the
integration of the proof assistant PVS with a BDD-based
model checker, which is achieved by translating PVS into
μ-calculus [18]. However, only finite-state fragments of the
PVS language are translated into μ-calculus. Whenever
model checking a property, we need to translate the related
fragment for the property. In our approach, the specifica-
tion of state machines (possibly with infinite state space)
is entirely translated from CafeOBJ equational theories into
Maude rewriting theories, which allows us to model check
different properties with the translated specifications. Re-
cently, the proz tool that is used to validate high-level Z
specifications is integrated into ProB animator, by trans-
lating Z into B [19]. Raise Specification Language (RSL)
is translated into CSPM, in order to use the model checker
FDR to model check the LTL formulae that are expressed in
RAISE [20].

In a narrow sense, although several strategies have
been proposed to translate specifications from CafeOBJ into
Maude for the collaboration of the two verification sys-
tems [7], [8], the inefficiency problem of translated speci-
fications is always the bottleneck in practical verifications.
Our methodology is to investigate a specific class of spec-
ifications in CafeOBJ as a workaround, without the loss of

†We may prove that all such multisets that are actually needed
in the specifications are enumerable.
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practicability. After such a class of specifications is found,
the following work such as the translation strategy and tool
support becomes easier.

9. Conclusion and Future Work

We have shown that not all EQT Specs can be translated
into RWT Specs, and hence investigated a specific class of
EQT Specs called EADS Specs which can be translated into
RWT Specs. We have proposed a strategy for the transla-
tion of EADS Specs into RWT Specs, and implemented a
translator Yast to automate the translation. A case study has
been presented to demonstrate how Yast works. We have
also conducted four experiments. The analysis of the exper-
imental result shows the superiority of the proposed strategy
to other three existing strategies, in terms of the efficiency of
generated specifications and the scale of EQT Specs which
can be dealt with by the proposed strategy. The experimen-
tal results also show for which kind of EADS Specs the pro-
posed strategy is superior to others. The superiority of the
proposed strategy together with the tool support Yast can
save us duplicate effort on specifying state machines in both
equational theories and rewrite rules when we need to incor-
porate CafeOBJ and Maude for system verifications.

Since the proposed translation strategy is straightfor-
ward thanks to its domain, i.e. EADS Specs, there is a clear
correspondence between an input EADS Spec and the gen-
erated RWT Spec by the strategy. However, it is preferable
to prove the correspondence in theory. One possible cor-
respondence for falsification such as IGF is that whenever
a state transition chain can be represented in the generated
RWT Spec, the state transition chain can also be represented
in the original EADS Spec. For instance, we assume there
are two processes represented by constants p1 and p2 of Pid
in S′ME. We have a state transition chain as follow:

init(p1;p2) ↪→
(locked:true)(pc[p1]:cs)(pc[p2]:rs) ↪→
(locked:false)(pc[p1]:rs)(pc[p2]:rs)↪→
(locked:true)(pc[p1]:rs)(pc[p2]:cs),

where, term init(p1;p2) can be reduced to its canonical
form (locked:false)(pc[p1]:rs)(pc[p2]:rs), rep-
resenting the state {locked = f alse, pc1 = rs, pc2 =

rs}. The state satisfies the equations in SME declared
for init, and hence init corresponds to init(p1;p2).
Similarly, term enter(init,p1) in SME corresponds to
(locked:true)(pc[p1]:cs)(pc[p2]:rs). Since the
effective condition represented by c-enter(S,p1) holds
with S being init, there is a transition from init to
enter(init,p1). The transition corresponds to the first
step in the above state transition chain. Consequently, we
have the following state transition chain in SME to corre-
spond to the above chain:

init ↪→ enter(init,p1) ↪→
exit(enter(init,p1),p1) ↪→
enter(exit(enter(init,p1),p1),p2).

The basic idea of proving the correspondence is to
show that the original EADS Spec can simulate the gener-
ated RWT Spec. We first show that for an arbitrary initial
state t0 in the RWT Spec, there exists an initial state υ0 in
the EADS Spec corresponding to t0, in that the state repre-
sented by t0 is also represented by υ0. We then show that
for arbitrary states ti, ti+1 in the RWT Spec and an arbitrary
state υi in the EADS Spec such that ti+1 is successor state
of ti and υi corresponds to ti, there exists a state υi+1 in the
EADS Spec such that υi+1 is a successor state of υi and cor-
responds to ti+1. Then we can claim that the original EADS
Spec simulates the generated RWT Spec. It is a piece of our
future work to complete the proof in theory.
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