
1012
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

PAPER Special Section on Knowledge-Based Software Engineering

Impact Analysis on an Attributed Goal Graph∗

Shinpei HAYASHI†, Daisuke TANABE†, Haruhiko KAIYA††, Nonmembers, and Motoshi SAEKI†a), Member

SUMMARY Requirements changes frequently occur at any time of a
software development process, and their management is a crucial issue
to develop software of high quality. Meanwhile, goal-oriented analysis
techniques are being put into practice to elicit requirements. In this situ-
ation, the change management of goal graphs and its support are necessary.
This paper presents a technique related to the change management of goal
graphs, realizing impact analysis on a goal graph when its modifications
occur. Our impact analysis detects conflicts that arise when a new goal is
added, and investigates the achievability of the other goals when an exist-
ing goal is deleted. We have implemented a supporting tool for automating
the analysis. Two case studies suggested the efficiency of the proposed
approach.
key words: goal-oriented analysis, impact analysis, change management

1. Introduction

Requirements changes frequently occur after a requirements
specification is completed and even during its requirements
elicitation step, by various reasons such as changing busi-
ness goals and improving information technology. In this
situation, it is a crucial issue how to manage requirements
changes, more concretely to analyze impacts and change
propagation for keeping consistency etc.

Meanwhile, goal-oriented or goal-driven analysis
methods [2] have been used for requirements elicitation and
are putting into practice [3]. In goal-oriented analysis, the
customers’ and/or users’ abstract goals to be achieved are
gradually decomposed into more concrete sub-goals. This
decomposition process is recorded as a graph whose nodes
and edges respectively express the goals and their decompo-
sition relationships. This graph is called a goal graph. Thus
a goal graph includes dependency relationships among the
goals.

Impact analysis is a promising technique for require-
ments change management, and it can effectively work on a
goal graph. Requirements analysts produce a requirements
specification documents, e.g., in IEEE 830 standard compli-
ant form [4], based on the derived goals. Although a final
product in requirements analysis step is not a goal graph but

Manuscript received July 1, 2011.
Manuscript revised October 31, 2011.
†The authors are with the Department of Computer Science,

Tokyo Institute of Technology, Tokyo, 152–8552 Japan.
††The author is with the Department of Computer Science,

Shinshu University, Nagano-shi, 380–8553 Japan.
∗This paper is revised based on [1], which appeared in the

proceedings of 16th IEEE International Requirements Engineering
Conference, c© 2008 IEEE.

a) E-mail: saeki@se.cs.titech.ac.jp
DOI: 10.1587/transinf.E95.D.1012

a specification document, and change management can be
done on the document, managing changes on the goal graph
is more useful rather than on the document [5]. This is be-
cause goal graphs include the information how to derive the
goals and why the goals are derived, and these information
are useful in order to maintain forward traceability. Based
on the process that requirements changes are managed on a
goal graph, when a requirements change occurs, a require-
ments analyst does not modify the specification document
directly but rather do the goal graph. Using semi-automated
techniques to generate IEEE 830 requirements document
from goal graphs [6], the analyst can obtain the latest re-
quirements document from the latest goal graph. Under
the situation above, measuring the impacts of requirements
changes on a goal graph is useful in order to keep consis-
tency of the managed goal graph.

This paper presents a supporting technique to manage
a changes on goal graphs. We use an extended version of
goal graph, called attributed goal graph [7]. We propose
the technique for change management and its supporting
tool for an attributed goal graph. Structural changes on at-
tributed goal graphs include addition and deletion of nodes
and edges. In this paper, we focus on the support of im-
pact analysis when the structure of a goal graph is changed.
When an analyst adds a new goal to a goal graph, conflicts
to the other existing goals may occur. The deletion of an ex-
isting goal may cause the failure in achieving certain goals.
The detection of these conflicts and of the achievement fail-
ure should be automated because the detection by manual is
not so easy in the case of the more complicated and larger
goal graph. We have embedded the functions of impact
analysis into the existing tool of Attributed Goal-Oriented
Requirements Analysis (AGORA) method, which had been
developed by us [7] to measure the quality of requirements
being elicited based on IEEE 830.

In our previous papers related to AGORA, in addition
to the measurement of requirements quality, we have shown
the other beneficial points of attached attributes to a goal
graph, e.g., the supports for detecting discordances among
stakeholders [8] and for making decisions on requirements
selection [9]. The contribution of this paper is to propose
the technical support of changing requirements on an at-
tributed goal graph elicited by AGORA method. In partic-
ular, we adopt new attribute called goal characteristics and
show that AGORA’s attributes are useful for impact analysis
of the graph.

The rest of the paper is organized as follows. We in-

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



HAYASHI et al.: IMPACT ANALYSIS ON AN ATTRIBUTED GOAL GRAPH
1013

troduce attributed goal graphs in the next section. Section 3
presents the techniques of impact analysis on an attributed
goal graph. The qualitative evaluation of the tool together
with case studies is discussed in Sect. 5. Sections 6 and 7
are respectively for related work and concluding remarks.

2. Preliminary: Attributed Goal Graph

In goal-oriented analysis, customers’ needs are modeled
as goals to be achieved by software-intensive systems that
will be developed, and the goals are decomposed and re-
fined into a set of more concrete sub-goals. After finish-
ing goal-oriented analysis, a requirements analyst obtains
an directed acyclic (cycle-free) graph called goal graph.
Its nodes express goals to be achieved by the system that
will be developed, and its edges represent logical depen-
dency relationships between the connected goals. More con-
cretely, a goal can be decomposed into sub-goals, and the
achievement of the sub-goals contributes to its achievement.
We have two types of goal decomposition; one is AND-
decomposition, and the other is OR. On the one hand, in
AND-decomposition, if all of the sub-goals are achieved,
their parent goal can be achieved or satisfied. On the other
hand, in OR-decomposition, the achievement of at least one
sub-goal leads to the achievement of its parent goal.

Figure 1 illustrates a part of a goal graph which has
been obtained from requirements analysis of a Web account
system of high quality. Ovals (nodes) and arrows (directed
edges) respectively express goals and decomposition rela-
tionships among the goals. The edges attached with an arc
outgoing from a parent node show an AND-decomposition.
For example, two goals “Easy to register an account” and
“Others do not register me” should be achieved in order
to achieve their parent goal in the figure. In contrast, ei-
ther “Password Authentication”, “Authentication by SSH”,
or both are necessary to be achieved for the goal “Others do
not register me”. The usage of this type of graph, so called
AND-OR graph, is a common feature in a family of goal-
oriented analysis.

The AGORA method using attributed goal graphs is an

Fig. 1 Example of attributed goal graph for a Web account system.

extended version of the goal-oriented analysis. In AGORA
method, a requirements analyst can attach several types of
attributes to a goal graph during constructing it [10]: 1) con-
tribution values to edges, 2) preference matrices to nodes,
3) the definitions of additional attribute names, their value
types, and their calculating expressions to nodes, and 4) se-
mantic tags to nodes. The contribution values and semantic
tags can be utilized to analyze the impact of changes on a
goal graph in this paper. The preference matrices and the
definitions are respectively used for detecting requirements
discordances among stakeholders [8] and for evaluating al-
ternatives of requirements [9]. These two types of attributes
are not used in this paper, and we focus on contribution val-
ues and semantic tags.

The contribution value is attached to an edge between
a parent goal and its sub-goal. It can be an integer from
−10 to +10. The value indicates the contribution degree
of a sub-goal to the achievement of its parent goal. The
higher the value is more contribution the sub-goal provides.
Negative values mean that the focused sub-goal blocks the
achievement of its parent goal. Analysts can give the dif-
ferent score for each edge in OR-decomposition while they
must attach the same value to all of the edges in AND-
decomposition because nothing but a complete set of the
edges can contribute to the achievement of the parent goal.
In the example of Fig. 1, the root goal “Web account sys-
tem of high quality” has been refined into two sub-goals
with AND-decomposition, and the contribution value +7
has been attached to them. Unless both of the sub-goals
“Easy to register an account” and “Others do not regis-
ter me” are achieved, their parent goal cannot be done. If
both of them are achieved, the parent goal is achieved with
the degree +7. In contrast, the goal “Others do not reg-
ister me” is further decomposed into two sub-goals with
OR-decomposition, and they have the values +6 and +9 re-
spectively. If an analyst selects the goal “Authentication by
SSH” to achieve the parent goal, he/she can obtain the con-
tribution degree +9 higher than the other alternative.

Some notations for representing an attributed goal
graph are formally defined as follows. We write the con-
tribution value on the edge between a parent goal g1 and
its sub-goal g2 as c(g1, g2). The functions pa(g) and sub(g)
respectively denote the sets of all the parent goals and the
sub-goals of g. We also define two disjoint sets of parent
goals of g as follows:

pa+(g) = { g′ | g′ ∈ pa(g) ∧ c(g′, g) ≥ 0 },
pa−(g) = { g′ | g′ ∈ pa(g) ∧ c(g′, g) < 0 }.

pa+(g) and pa−(g) respectively express the parent goals that
g positively contributes to and that g prevents.

3. Proposed Technique

Our technique supports the impact analysis to a goal graph
when the structure of the graph is changed. We have two
kinds of basic modification operations: 1) creating a new



1014
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

element and 2) deleting an existing element. Any modifica-
tions on a goal graph can be represented as their combina-
tions. In this section, we present what impact analysis can
and should be considered for each type of basic modification
operation, using simple examples.

We focus on the following two typical situations that
may cause subsequent changes of a goal graph structure for
addition and deletion of goals; 1) an addition of a new goal
may cause a conflict with existing goals, and 2) a deletion of
a goal may cause a damaging effect on the achievement of
root goals. For detecting the former case, we use goal char-
acteristics because they directly indicate the potential con-
flicts of two goals. For the latter case, we use contribution
values. The contribution value-based analysis is suitable for
measuring the impact when a goal is deleted because addi-
tions of goals do not decrease the achievability of root goals
except for the introduction of edges having negative contri-
bution values.

Note that requirements analysts can easily combine the
proposed technique and the previous analysis techniques.
For example, detecting discordances among stakeholders [8]
may lead to structural changes of a goal graph (e.g., deletion
of goals) in order to solve the discordance so that they can
indirectly obtain the benefits of impact analysis after their
subsequent structural changes. Additionally, analysts can
apply the techniques of discordance detection and/or alter-
native evaluation [9] again after the structural changes of a
goal graph.

3.1 Adding an Element

When adding a new goal, the resulting modification may
cause a conflict between the existing goals and the newly
added goal. Suppose that an analyst adds a new goal “Pass-
word Authentication” as shown in the left side of Fig. 2. The
resulting goal graph shown in the right side of the figure
may include a conflict to the existing goal “One can com-
plete to register immediately”, because generally requesting
a user to input his/her password whenever he/she enters the
account system reduces the easiness to use it. To detect this
kind of conflicts, we need semantic information of goals. In
this example, we used a general property that the improve-
ment of security often causes the deterioration of usability.
In this situation, we can consider Security and Usability as
abstract semantic elements, which can represent the mean-
ing of goals from a specific viewpoint. We call these el-

Fig. 2 Adding a goal.

ements goal characteristics. Therefore we have the cate-
gories of these goal characteristics in advance, and encour-
age analysts to attach the suitable elements of the goal char-
acteristics to the goals whenever they newly create goals.
Inference rules on goal characteristics can detect the possi-
bility of conflicts between goals.

The next issue is what semantic categories as goal char-
acteristics and inference rules on them we should prepare. In
this paper, as an example, we focus on quality characteristics
of ISO 9126 [11]. We have selected some of them, including
the sub-characteristics, closely related to software require-
ments. Furthermore, we had a set of pairs of the selected
characteristics that may often cause conflicts. The pairs are
called conflict pairs. Suppose that an existing goal g1 and
a newly added goal g2 respectively have goal characteristics
c1 and c2. If the pair (c1, c2) is a conflict pair, it is suggested
to an analyst that g2 may cause a conflict to g1. Although we
happened to show the example of ISO 9126 characteristics,
an analyst can define goal characteristics and their conflict
pairs as he/she wants according to his/her aim and situation.

Figure 3 shows an example of the function of detecting
conflicts. Our analyst defines six goal characteristics, Secu-
rity, Performance, Usability, Resource Efficiency, Maintain-
ability, and Portability, and a set of their conflict pair, e.g.,
(Security, Usability) or (Security, Performance). The ana-
lyst has attached semantic tag Usability, which represents
the goal characteristic of Usability, to the goal “Easy to reg-
ister an account”. Semantic tags are shown in an attributed
goal graph like stereotypes in UML class diagrams, such as
�Usability	. After adding a new goal “Password authen-
tication”, attaching �Security	 as shown in the example,
our technique suggests which existing goals can have con-
flicts to the new one. In the figure, the goal “Easy to register
an account” may have a conflict to the new one.

Based on the detected conflicted pairs, the goals af-
fected by the added goal are suggested to users. Users will
analyze the relationship and trades-offs between the sug-
gested goal and the added goal, and negotiate with stake-
holders if necessary for each suggested goal. For estimat-
ing the cost of the analysis, consider that an analyst adds a
new goal g to a goal graph having n goals. The number of
the detected conflict pairs will be estimated at most m × n,

Fig. 3 Detecting goal conflicts.



HAYASHI et al.: IMPACT ANALYSIS ON AN ATTRIBUTED GOAL GRAPH
1015

Fig. 4 Calculating achievement and obstruction degrees.

where m is the number of goal characteristics that conflict
with the characteristics of g. Basically m is low because we
mainly use well-known and limited characteristics such as
ones appeared in ISO 9126. The number of goals in a goal
graph n is estimated less than hundreds even if the graph is
produced in a large industrial project [12]. Thus, we esti-
mate that the number of the detected conflict pairs will be
at most several hundreds, and the cost is then acceptable.
Moreover, suppose a case that a user starts with a goal graph
having only one root goal and then adds n goals at once in
the next version. Even though this very extreme case, the
estimated number of the suggested conflicts will be at most
m × n2 and is still polynomial instead of exponential.

3.2 Deleting an Element

When deleting a goal from a goal graph, its effects are prop-
agated to its parent goals. For example, if a sub-goal that
is generated with AND-decomposition is deleted, its parent
goal cannot be logically achieved any longer. In contrast,
in the case of OR-decomposition, although the achievement
of its parent goal is not changed, the degree of its achieve-
ment may be changed. Suppose that a goal g1 has two
sub-goals g2 and g3 in OR-decomposition, and their con-
tribution values to g1 are +10 and +1 respectively. Even
if an analyst deletes either of g2 or g3, not both, g1 is still
achieved. However, if he/she deletes g2 having the contri-
bution value +10, the degree of achieving g1 becomes lower
because the remaining goal g3 has low contribution value +1
to the achievement of g1. In this case, it can be considered
that the deletion of g2 has the impact on the achievement of
g1 with the degree 10/(10 + 1) = 0.91. We calculate an im-
pact degree of a goal to the achievement of the root goal in
a goal graph, using contribution values. Intuitively, the im-
pact degree of a goal expresses the loss of the achievement
of the root goal when it is deleted.

The technique to calculate an impact degree of a goal
g to the root goal is as follows. First, we calculate two val-
ues called achievement degree and obstruction degree for g.
We respectively write them as ach(g) and obs(g). They are
defined as follows:

ach(g) = max
g1∈pa+(g)
g2∈pa−(g)

{
ach(g1)

c(g1, g)
10

, −obs(g2)
c(g2, g)

10

}
,

obs(g) = max
g1∈pa+(g)
g2∈pa−(g)

{
obs(g1)

c(g1, g)
10

, −ach(g2)
c(g2, g)

10

}
.

The divisions of contribution values by 10 are for putting the
values into the range from −1 to 1, because contribution val-
ues are attached with 10 scales. For a root goal gR, which has
no parents, we have ach(gR) = 1 and obs(gR) = 0 and start
the calculation of the other goals following the above equa-
tions in top-down direction in the goal graph. Figure 4 illus-
trates how their calculation progresses. Here, the notation
gi[ai, oi] in the figure means ach(gi) = ai and obs(gi) = oi.
Basically, the idea that a goal has a positive or negative value
for its achievement is similar to the satisfiability and denia-
bility of the approach by Giorgini et al. [13]. However, we
adapted it to the calculation of impact degree.

Next, we calculate an impact degree using the above
achievement and obstruction degrees. There are three cases
of impacts of deleting a goal to the achievement of its parent
goal, as follows.

The first case is the occurrences of logically unachiev-
able goals (called Upward Impact 1). If one of sub-goals
in AND-decomposition is deleted, its parent goal cannot be
logically achieved. In the example of Fig. 1, when an ana-
lyst deletes the goal “Easy to register an account”, its parent
goal “Web account system of high quality” cannot be logi-
cally achieved any longer, because the goal is connected to
its parent goal with AND-decomposition. However, in this
example, its deletion leads the damage of the achievement of
its parent with 7/10 = 0.7 degree, based on the contribution
value +7.

The second case is the decreasing of sub-goals to
achieve its parent goal (called Upward Impact 2). Even if
an analyst deletes one of the sub-goals that their parent goal
is OR-decomposed to, the achievability of the parent goal
holds as far as at least one sub-goal remains. However, if
he/she deletes a sub-goal of higher contribution value, the
achievability of its parent goal may decrease. Suppose that
the analyst deletes the goal “Authentication by SSH” shown
in Fig. 1. Its parent goal “Others do not register me” is still
achievable because the sub-goal “Password Authentication”
remains. We estimate the impact of deleting the goal of
higher contribution as 9/(6 + 9) = 0.6, by using a propor-
tional distribution of the contribution values of its sub-goals,
as mentioned in the beginning of this subsection.



1016
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

The last case is the resolution of conflicts (called Up-
ward Impact 3). If a goal having an edge whose contribution
value is negative is deleted, its parent goal results in having
none of the sub-goals that prevent its achievement. Suppose
that an analyst deletes the goal g6 in Fig. 4. For its parent
goal g2, the goal that blocks the achievement of g2 is deleted,
and this deletion allows to increasing the achievement de-
gree of g2. We can estimate the impact of this deletion as
(−6)/10 = −0.6. The minus sign of the value means a good
impact to the achievement of the parent goal. The example
of this category will be shown later using Fig. 5.

To sum up, we define the impact degree imp(g1, g2)
of the goal g2 to the root goal through its parent goal g1

using the achievement and obstruction degrees of g1, ac-
cording to the above classification of the edge e between
g1 and g2, as follows. For Upward Impact 1, if e is an AND-
decomposition edge and has a positive contribution value,
we have

imp(g1, g2) = {ach(g1) − obs(g1)}c(g1, g2)
10

.

For Upward Impact 2, if e is an OR-decomposition edge and
has a positive contribution value, we have

imp(g1, g2) = {ach(g1) − obs(g2)} c(g1, g2)∑
g∈sub(g1) c(g1, g)

.

For Upward Impact 3, if e has a negative contribution value,

(a) Deleting a sub-goal having a negative edge in OR-decomposition.

(b) Deleting a sub-goal in AND-decomposition.

Fig. 5 Examples of calculating impact degrees.

as well as for Upward Impact 1, we have

imp(g1, g2) = {ach(g1) − obs(g2)}c(g1, g2)
10

.

Figure 5 shows two examples to calculate the impact
degrees of a specified goal. Note that this example goal
graph of a Web account system has a negative edge −8 be-
tween “Easy to register an account” and “Password authen-
tication”, unlike the example in Fig. 1. In Fig. 5 (a), our ana-
lyst selects the goal “Password authentication” to be deleted
and calculates its impact degree to the root goal “Web ac-
count system of high quality”. After the execution of the
impact analysis, the analyst obtains two impact degrees: 1)
−0.56 to the root goal through the parent goal “Easy to reg-
ister an account” and its classification of Upward Impact 3,
and 2) 0.28 through “Others do not register me” of the clas-
sification of Upward Impact 2. As for the first impact de-
gree, the minus value shows a good impact to the achieve-
ment of the root goal because “Password authentication” ob-
structed the achievement of “Easy to register an account”,
and this obstruction is deleted. Since the sub-goal that the
analyst selected for the deletion was in OR-decomposition
from “Others do not register me”, there are no other impacts
to the upper goals on achievement view, and thus our tool
stops the further analysis. In contrast, as shown in Fig. 5 (b),
the analyst focuses on the goal “One can complete to reg-
ister immediately”. The impact analysis suggests the ob-
struction through its parent “Easy to register an account” to
the root goal, because all of them are connected with AND-
decomposition, i.e., Upward Impact 1.

4. Supporting Tool

We have implemented a supporting tool for our impact anal-
ysis technique. The tool is implemented as a plug-in of
Eclipse. The impact analysis feature is integrated with the
goal graph editor of the AGORA tool.

Figure 6 shows a screenshot of our tool. The graph ed-
itor has the abilities to attach attributes including semantic
tags in addition to build goal graphs. Our tool can suggest
the affected goals in contexts of adding or deleting a goal.
Analysts can check the impacts of goals in two ways: 1) the
color of nodes in a visualized goal graph and 2) a tabular
form. After the impact analysis feature turns on, when an
analyst selects a goal, the resulting impacts are immediately
suggested to the analyst. In Fig. 6, after the selection of the
goal “One can complete to register immediately” for delet-
ing it, two upper goals are suggested to the analyst. The
goals “Web account system of high quality” and “Easy to
register an account” are colored with pink in the visualized
graph. The impacts are also listed up in Impact tab sheet of
Properties view, including their types, e.g., Upward Impact
1, and degrees. Using the graph view and Impact tab sheet,
analysts can easily compare the effects of two or more goals
because the analysis and notification are performed imme-
diately after the selection of a goal.



HAYASHI et al.: IMPACT ANALYSIS ON AN ATTRIBUTED GOAL GRAPH
1017

Fig. 6 Screenshot of the supporting tool.

5. Case Studies

In this section, we have a quantitative evaluation of our tool
with respect to the ability for detecting conflicts and calcu-
lating impact degrees by using two case studies. The aims
of our case studies are to check whether our technique can
1) detect all potentials of conflicts when a goal is added and
2) calculate impact degrees of alternatives so as to identify
the alternative of more impact when either of two goals is
alternatively deleted.

5.1 Case 1: A Seat Reservation System for Trains

Requirements for a seat reservation system for trains are
elicited by using our goal-oriented method. First, 29 goals
were defined as initial requirements, and each goal is related
to several goal characteristics. The analyst used the goal
characteristic Cost and a conflict pair (Security, Cost) in ad-
dition to (Security, Usability) and (Security, Performance)
listed up in Sect. 3.1. Then, our customer requires the new
goal “Safety monitor for administrators provided”, in ad-
dition to the initial requirements, and the goal is added as
shown in Fig. 7. The semantic tag �Security	 is attached
to this newly added goal.

Our tool tells us nine goals (colored in Fig. 7) could
have conflicts with the goal. An expert checked whether

these nine goals had really conflicts or not, and the expert
decided that four of these nine goals annotated as actual
conflict with downward triangles in Fig. 7 had actually con-
flicts to the newly added goal. In addition, the expert did not
find conflicts no other than these four goals. Five out of the
nine goals (5 = 9− 4) had no conflicts to the added goal, ac-
cording to the expert. Some of these five goals were the par-
ent goals of the four actually conflict goals. As a result, there
is no oversight in finding conflict goals. In other words, con-
flict goals are completely recalled. Although the precision
was not so good (4/9 = 44.4%), to us, it is more significant
not to miss conflict goals, i.e., higher recalls, rather than get-
ting higher precision with lower recalls. Therefore, our tool
is good enough with respect to conflict detection.

5.2 Case 2: A Meeting Scheduler

Requirements for a meeting scheduler system were also
elicited using a goal-oriented method. We used the goal
graph shown in [14]. Following five goals were defined
as initial requirements to the system: “Schedule meeting”
“Minimal effort”, “Good quality schedule”, “Minimal dis-
turbances”, and “Accurate constraints”. Based on these five
goals, 19 goals are defined as temporary requirements for
this system, where some conflict and/or alternative goals ex-
ist. Then, we attached attributes of AGORA method to the
goal graph. The resulting goal graph is shown in Fig. 8.



1018
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

Fig. 7 Attributed goal graph of a seat reservation system.

Fig. 8 Attributed goal graph of a meeting scheduler.

We investigate impacts to the root goal “Schedule
meeting” by deleting following two goals for each: “(Sched-
ule fixed) Automatically” and “(Schedule fixed) Manually”.
Table 1 shows the results of impact analysis. Our tool tells
us the former goal gives more impacts rather than latter one
by calculation results of their impact degrees. This result
meets our intuition. Therefore, our tool is useful with re-
spect to impact detection. This kind of impact analysis helps
us to make a decision of choosing one from alternatives.
Suppose that we should delete either of the above two goals,

Table 1 Suggested upward impacts.

Target Goal Type Impact

Automatically Choose schedule Upward Impact 2 0.588
Good quality schedule Upward Impact 1 0.8
Minimal conflicts Upward Impact 1 0.5
Good participation Upward Impact 3 −0.4
Matching effort Upward Impact 1 1.0
Minimal effort Upward Impact 1 0.8

Manually Choose schedule Upward Impact 2 0.412
Good quality schedule Upward Impact 1 0.8
Minimal conflicts Upward Impact 3 −0.56
Good participation Upward Impact 1 0.56
Matching effort Upward Impact 3 −1.0

due to reducing development cost. Since the impact degree
of “Automatically” is larger to the root goal, it would be
better that we would leave it remained and delete the other,
i.e., “Manually”. Our tool also suggests to us how to change
the structure of a goal model so as to minimize bad impacts
when some goals are deleted.

6. Related Work

The techniques of impact analysis on requirements are not
so popular in contrast to that on source code. In industry, re-
quirements are usually managed and traced using general
spreadsheets with retrieval functions by means of attach-
ing attribute values to each requirement, e.g., identification
numbers, dates, version number, or authors. Process im-
provement discipline such as standard process and/or proce-
dure for changes is largely focused.

Quality attributes for each requirement are also used
for finding conflicts among requirements [15]. In this re-
search, quality attributes such as efficiency and reliability



HAYASHI et al.: IMPACT ANALYSIS ON AN ATTRIBUTED GOAL GRAPH
1019

are put for each requirement, and by using predefined matri-
ces of attributes, conflicts among requirements are detected.
This approach is quite similar to our approach, but they do
not apply their approach to goal models yet. We can find
another type of interesting contribution on metrics related to
the co-evolution of a business process and the information
systems that support it [16]. By using the proposed tech-
nique, we can measure the misalignment of its information
systems when the business process is changed. We can ap-
ply this technique to measure stable parts and volatile ones
on modifying a goal graph.

Rather than impact analysis, detecting and recovering
traceability links between requirements documents and soft-
ware artifacts are also important. If we can establish trace-
ability links from a requirements document to a destination
artifact, and the requirement document is changed, we can
be helped to propagate the change to the destination. Jan et
al. [17] focused on forward traceability of non-functional re-
quirements, but they do not focus on traceability among re-
quirements. For example, traceability links from a require-
ments specification to its architectural design are recovered
and managed semi-automatically. They generate a proba-
bilistic model based on the frequency of the terms appearing
in each document, and traceability links are generated based
on the model. This approach can be used for our approach
if there is enough documentation for each goal. They also
presented an excellent survey and comparison for the tech-
niques to detect traceability links [18].

Contrary to our approach, there are some research top-
ics for analyzing the histories of requirements evolution. For
example, the PRINCE model [19] provides a model for re-
quirements evolution focusing on the maturation patterns of
requirements elicitation processes. Their aim differs from
ours, because our approach focuses a snapshot of a goal
graph and its change, and provides the degrees of the change
impact.

7. Conclusion and Future Work

This paper presented an impact analysis technique of adding
and deleting goals in an attributed goal graph for require-
ments changes in goal-oriented analysis. Furthermore, we
have implemented a supporting tool based on our proposed
techniques and assessed it through case studies.

Future work can be listed up as follows.

• We represent a conflict with a binary relation, e.g., a
pair of Security and Usability. In more practical set-
ting, more complicated representation of conflicts, e.g.,
conflicts in a specific context and ternary or more con-
flict relation, may be required.
• As growth of a goal graph, the technique to construct

the goal graph together with attributes becomes a sig-
nificant problem. The techniques of hierarchical de-
composition and grouping of a large goal graph can
be considered, and we can attach attribute values to
representative goals only and propagate automatically

them to the other child goals. The construction of a
large goal graph is a common issue in a family of goal-
oriented approaches, which should be tackled with in
future.
• Our case studies mentioned in Sect. 5 were limited. To

argue the generality of our findings, more case studies
covering various domains are necessary. In particular,
to avoid missing the detection of conflicts, the high re-
call value of detection should be guaranteed. In addi-
tion to refining the category of goal characteristics and
conflict representation, the methodological support to
attach a goal characteristic to a goal correctly is also
necessary.
• Our approach of detecting conflicts is based on explicit

dependency among requirements. Thus we can apply it
to the other modeling techniques where make require-
ment dependency explicitly represented, such as the or-
der of tasks [20]. Showing its wide applicability is one
of the future issues.
• In our approach, we respectively applied characteristic-

based and contribution value-based analyses for check-
ing impacts only when a goal is respectively added and
deleted. Although the approach can deal with two typ-
ical situations of goal graph modifications, other possi-
bilities still remain. Coping with some other possibili-
ties, e.g., addition of a goal with an edge having nega-
tive contribution value, can be a possible future work.
Additionally, other types of impacts, e.g., impacts to
attributes rather than the structure of goal graphs, are
also needed for consideration.
• In AGORA methodology, we can know which goals

are selected for achieving the root goals and the others
are not by evaluating alternatives of requirements [9].
When detecting conflicts between existing goals and
an added goal, we can consider that the conflicts with
selected goals are more important than those with non-
selected goals. Emphasizing the resulting conflict pairs
according to the selection of alternatives is one of the
future issues.

Acknowledgements

The authors would like to thank Mr. Kohei Uno, Mr. Kinji
Akemine, and Mr. Takashi Yoshikawa for implementing the
initial version of our tool.

References

[1] D. Tanabe, K. Uno, K. Akemine, T. Yoshikawa, H. Kaiya, and M.
Saeki, “Supporting requirements change management in goal ori-
ented analysis,” Proc. 16th IEEE International Requirements Engi-
neering Conference (RE’08), pp.3–12, 2008.

[2] E. Yu, “Towards modeling and reasoning support for early-phase re-
quirements engineering,” Proc. 3rd IEEE International Symposium
on Requirements Engineering (RE’97), pp.226–235, 1997.

[3] C. Rolland, C. Souveyet, and C. Ben Achour, “Guiding goal model-
ing using scenarios,” IEEE Trans. Softw. Eng., vol.24, no.12,
pp.1055–1071, 1998.



1020
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

[4] “IEEE recommended practice for software requirements specifica-
tions,” tech. rep., IEEE Std. 830-1998, 1998.

[5] A. van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications, Wiley, 2009.

[6] “Objectiver: Sitehomepage.” available at http://www.objectiver.com/
[7] H. Kaiya, H. Horai, and M. Saeki, “AGORA: Attributed goal-

oriented requirements analysis method,” Proc. IEEE Joint Interna-
tional Requirements Engineering Conference (RE’02), pp.13–22,
2002.

[8] H. Kaiya, D. Shinbara, J. Kawano, and M. Saeki, “Improving the de-
tection of requirements discordances among stakeholders,” Require-
ments Engineering, vol.10, no.4, pp.289–303, 2005.

[9] K. Yamamoto and M. Saeki, “Attributed goal-oriented analysis
method for selecting alternatives of software requirements,” IEICE
Trans. Inf. & Syst., vol.E91-D, no.4, pp.921–932, April 2008.

[10] M. Saeki, S. Hayashi, and H. Kaiya, “A tool for attributed goal-
oriented requirements analysis,” Proc. 24th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE’09),
pp.670–672, 2009.

[11] ISO 9126: “Information Technology – Software product evaluation
– Quality characteristics and guidelines for their use,” 1991.

[12] A. van Lamsweerde, “Goal-oriented requirements enginering: A
roundtrip from research to practice,” Proc. 12th IEEE International
Requirements Engineering Conference (RE’04), pp.4–7, 2004.

[13] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Rea-
soning with goal models,” Proc. 21st International Conference on
Conceptual Modeling (ER’02), LNCS 2503, pp.167–181, 2002.

[14] J. Mylopoulos, “Goal-oriented requirements engineering, Part II,”
2006. Presented at 14th IEEE International Requiements Engineer-
ing Conference (RE’06). available at http://www.ifi.uzh.ch/req/
events/RE06/ConferenceProgram/RE06 slides Mylopoulos.pdf

[15] A. Egyed and P. Grunbacher, “Identifying requirements conflicts and
cooperation: How quality attributes and automated traceability can
help,” IEEE Softw., vol.21, no.6, pp.50–58, 2004.

[16] T. Bodhuin, R. Esposito, C. Pacelli, and M. Tortorella, “Im-
pact analysis for supporting the co-evolution of business processes
and supporting software systems,” Workshop Proc. 16th Interna-
tional Conference on Advanced Information Systems Engineering
(CAiSE’04), pp.146–150, 2004.

[17] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and
S. Christina, “Goal-centric traceability for managing non-functional
requirements,” Proc. 27th International Conference on Software En-
gineering (ICSE’05), pp.362–371, 2005.

[18] J. Cleland-Huang, “Toward improved traceability of non-functional
requirements,” Proc. 3rd International Workshop on Traceability in
Emerging Forms of Software Engineering (TEFSE’05), pp.14–19,
2005.

[19] T. Nakatani, S. Hori, M. Tsuda, M. Inoki, K. Katamine, and M.
Hashimoto, “Towards a strategic requirements elicitation — A pro-
posal of the PRINCE model,” Proc. 4th International Conference on
Software and Data Technologies (ICSOFT’09), pp.145–150, 2009.

[20] S. Liaskos, S.A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Inte-
grating preferences into goal models for requirements engineering,”
Proc. 18th IEEE International Requirements Engineering Confer-
ence (RE’10), pp.135–144, 2010.

Shinpei Hayashi received a BE degree in
information engineering from Hokkaido Univer-
sity in 2004. He also respectively recieved ME
and DE degrees in computer science from Tokyo
Institute of Technology in 2006 and 2008. He
is currently an assistant professor of computer
science at Tokyo Institute of Technology. His
research interests include software changes and
software development environment. He is the
maintainer of the current AGORA tool.

Daisuke Tanabe received a BE degree in
computer science from Tokyo Institute of Tech-
nology in 2007. He is currently working at
AGREX INC. His research interests include re-
quirements engineering and change impact anal-
ysis.

Haruhiko Kaiya is an associate professor of
software engineering in Shinshu University. He
is also a visiting associate professor in National
Institute of Informatics (NII).

Motoshi Saeki respectively received a BE
degree in electrical and electronic engineering,
and ME and DE degrees in computer science
from Tokyo Institute of Technology, in 1978,
1980, and 1983. He is currently a professor of
computer science at Tokyo Institute of Technol-
ogy. His research interests include requirements
engineering, software design methods, software
process modeling, and computer supported co-
operative work (CSCW).


