
1062
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

PAPER

Economical and Fault-Tolerant Load Balancing in Distributed
Stream Processing Systems

Fuyuan XIAO†, Nonmember, Teruaki KITASUKA†, Member, and Masayoshi ARITSUGI†a), Senior Member

SUMMARY We present an economical and fault-tolerant load balanc-
ing strategy (EFTLBS) based on an operator replication mechanism and
a load shedding method, that fully utilizes the network resources to re-
alize continuous and highly-available data stream processing without dy-
namic operator migration over wide area networks. In this paper, we first
design an economical operator distribution (EOD) plan based on a bin-
packing model under the constraints of each stream bandwidth as well as
each server’s CPU capacity. Next, we devise super-operator (SO) that load
balances multi-degree operator replicas. Moreover, for improving the fault-
tolerance of the system, we color the SOs based on a coloring bin-packing
(CBP) model that assigns peer operator replicas to different servers. To
minimize the effects of input rate bursts upon the system, we take advan-
tage of a load shedding method while keeping the QoS guarantees made
by the system based on the SO scheme and the CBP model. Finally, we
substantiate the utility of our work through experiments on ns-3.
key words: distributed data stream processing systems (DDSPSs),
load balancing strategy, fault-tolerance, economical operator distribution
(EOD)

1. Introduction

Nowadays, there has been increasing interest in han-
dling high volume data and continuous data streams
with low latency on distributed stream processing systems
(DSPSs) [1]–[6]. In such systems, data streams are pro-
cessed in or near real-time for a variety of purposes, such as
network monitoring, intrusion detection, real-time analysis
and customized e-commerce applications. In those applica-
tion domains, continuous and highly-available data stream
processing with low latency is critical for dealing with real-
world events.

In DSPSs, however, bursts in data may cause bottle-
necks at some points along the server chain. Bottlenecks
slow down the data stream processing and network trans-
mission, and result in high latency. There are several kinds
of load balancing strategies to deal with the above prob-
lems. According to the classification of load management
strategy’s attribution, there are three kinds of techniques.
One is dynamic load management [7]–[10] in which oper-
ators can be moved in the case of servers overload during
the data stream processing. Needless to say, operator move-
ment is too expensive to alleviate short-term bursts; more-
over, some systems do not support the ability to move oper-

Manuscript received July 15, 2011.
Manuscript revised November 22, 2011.
†The authors are with the Graduate School of Science and

Technology, Kumamoto University, Kumamoto-shi, 860–8555
Japan.

a) E-mail: aritsugi@cs.kumamoto-u.ac.jp
DOI: 10.1587/transinf.E95.D.1062

ators dynamically. As a result, dealing with short-term load
fluctuations by frequent operator re-distribution is typically
prohibited. Another is static load management, such as re-
silient operator distribution (ROD) [11]. ROD, a static load
management method, can provide an elastic initial distribu-
tion plan to avoid overload for input rates without operator
movement. However, such an approach does not regard en-
ergy consumption. Although there are many resources over
the wide area network, we should take energy consump-
tion into consideration that is a crucial and rising problem
in the real world [12], namely, fully utilizing the network
resources for decreasing resources waste. The other is the
load shedding method [13]–[15] that drops part of data once
servers are overloaded during the data stream processing. In
those load shedding techniques, however, they just take the
load balancing of a single-degree operator replication into
account while selectively dropping some data for load bal-
ancing. Such a behavior gives rise to the poor quality of
query results and loses the QoS guarantees of the system.
Moreover, the previous system models [8]–[11], [13]–[15],
are based on the assumption that the bandwidth is not a bot-
tleneck. In the real world, however, it may cause overload
on the network during the stream processing.

To overcome the limitations of the previous techniques,
we propose a novel approach, an economical and fault-
tolerant load balancing strategy (EFTLBS). The EFTLBS
aims to fully utilize the network resources to realize con-
tinuous and highly-available data stream processing without
dynamic operator migration over wide area networks. In
our method, for initializing a good economical operator dis-
tribution (EOD) plan before the data stream processing, we
design an operator distribution plan based on a bin-packing
(BP) model that is expressed as a set of linear functions of
input stream rates (illustrated in Sect. 2.3). In addition, Xing
et al. [11] proposed that dealing with the “high impact” op-
erators late may cause the system to significantly deviate
from the optimal results. Conclusively, the load balancing
of multi-degree operator replicas for initializing an operator
distribution plan takes an essential effect in the performance
of the system. Hence, we devise super-operator (SO) that
load balances multi-degree operator replicas for initializing
an operator distribution plan.

Then for improving the fault-tolerance of the system,
we also develop coloring super-operator (CSO) based on a
coloring bin-packing (CBP) model. The CSO assigns peer
operator replicas to different servers to overcome the prob-
lems of server failures (illustrated in Sect. 3). To minimize

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

XIAO et al.: ECONOMICAL AND FAULT-TOLERANT LOAD BALANCING IN DISTRIBUTED STREAM PROCESSING SYSTEMS
1063

the effects of input rate bursts upon the system without op-
erator movement during the data stream processing, we take
full advantage of a load shedding method while keeping the
QoS guarantees made by the system based on a multi-degree
operator replication mechanism and the CBP model (illus-
trated in Sect. 4). Through seamlessly combining the above
methods, namely, the EOD approach, the CSO scheme and
the load shedding method, we can realize continuous and
highly-available data stream processing.

In this paper, we also model the bandwidth capac-
ity of each stream as well as each server’s CPU capacity
as the constraints in our economical operator distribution
(EOD) model. More specifically, we express the load of
each stream and the load of each operator as a function of
input stream rates of the system based on the bin-packing
model. For given input stream rates and a given operator as-
signment plan, the system is feasible, i.e., none of the nodes
and bandwidth of the streams are overloaded. Our goal is to
find a minimum energy consumption scheme in which a sys-
tem stars using the minimization of the number of servers, in
other words, having maximum server utilization for decreas-
ing the network resources waste. We call such a technique
as an economical and fault-tolerant load balancing strategy
(EFTLBS).

1.1 Challenges

In this paper, we consider stream processing in a wide area
network that spans diverse areas of the globe. To realize
correct and timely processing, we must address the follow-
ing challenges [11], [16]:

• In a wide area network, as we use more servers, server
failures are more likely to occur. A failed server cannot
send data that gives rise to the poor quality of query
results and loses the QoS guarantees of the system.

• Computer networks are vulnerable to link failures and
congestion. The communication outages sometimes
cause high latency.

• A server can be overloaded due to the input rate bursts
upon the system or by other applications that share the
server. In this case, the stream processing at subsequent
servers also gets delayed.

1.2 Contributions

To overcome the limitations of the previous techniques
based on the above challenges, we propose the EFTLBS.
The contributions of this paper are as follows:

• We propose a new concept of load balancing, econom-
ical and fault-tolerant load balancing, to realize con-
tinuous and highly-available stream processing over a
wide area network.

• We propose a global load management strategy to en-
sure the normal operation of the system not only for op-
erator distribution at the beginning of the system run-
ning but also for controlling overloaded nodes while

the system runs.
• We develop coloring super-operator (CSO) based on

a coloring bin-packing (CBP) model that assigns peer
operator replicas to different servers to improve the
fault-tolerance of the system.

• We take full advantage of a load shedding method
based on a multi-degree operator replication mecha-
nism and the CBP model to realize static load balanc-
ing and keep the QoS guarantees of the whole system
without dynamic operator migration among nodes.

• We propose modeling load balancing as a bin pack-
ing optimization problem under the limitations of each
stream bandwidth as well as each computer’s CPU ca-
pacity.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2,
we first show the assumptions of our load model. Next, we
design an economical operator distribution (EOD) plan and
formalize the EOD problem for the system based on a bin-
packing pattern. We also model the bandwidth capacity of
each stream as well as each server’s CPU capacity as the
constraints in our EOD plan. In Sect. 3, we devise super-
operator (SO) and color each SO based on a coloring bin-
packing (CBP) model for overcoming the problems of server
failures. In addition, in Sect. 4, we also model the load shed-
ding problem based on the SO scheme and the CBP model
to overcome the problems of input rate bursts. In Sect. 5, we
seamlessly combine the EOD approach, the CSO scheme,
and the load shedding method as an economical and fault-
tolerant load balancing strategy (EFTLBS) to achieve con-
tinuous and highly-available data stream processing with
low latency over wide area networks. Then, we show the
experimental results in Sect. 6. We present the related work
in Sect. 7 and conclude in Sect. 8.

2. Economical Operator Distribution Plan

In this section, we first describe the assumptions behind
our work and introduce some key definitions and nota-
tions. Next, we describe our economical operator distribu-
tion model under the limitations of each server’s CPU ca-
pacity and each stream bandwidth capacity in detail. Then,
we formally state the corresponding EOD model as a bin-
packing (BP) optimization problem.

2.1 Assumptions

• System Configuration. We assume a wide area net-
work that consists of loosely coupled, shared-nothing
computers as the substructure for the stream processing
in which multi-degree operator replicas run in parallel
and independently [16].

• Communication. We assume that the servers are con-

1064
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

nected with a fast, reliable, order-preserving and ro-
bust message delivery network protocol such as TCP.
We further assume that the bandwidth is a limited re-
source but the network transfer delays as well as the
CPU overhead for the data stream transfer are negligi-
ble.

• Query. The operators to be distributed on the servers
are connected in a data-flow-style acyclic query graph.
The graph is generally referred to as a directed acyclic
graph (DAG). In this paper, we take each continuous
query operator as the minimum task allocation unit.

• Failure Model. We assume there are fail-stop
server/network failures. We do not consider Byzantine
failures [17].

2.2 Definitions and Notations

We now introduce some key notations and definitions that
are used in the remainder of this paper (shown in Table 1).

We represent the distribution of operators on nodes of
the system by the following operator allocation matrix:

A = {ai j}n×m

where ai j = 1 if operator o j is assigned to node Ni and ai j =

0 otherwise while Σn
i=1ai j represents the replication degree.

We represent the connection among operators by the
following operator connection matrix:

Bo = {bo
jh}m×m

where bo
jh = 1 if operator o j is connected to operator oh and

bo
jh = 0 otherwise.

We also represent the connection among nodes that is
used for stream processing by the following node connec-
tion used for the stream processing matrix:

Bn = {bn
is}n×n

where bn
is = 1 if and only if there exists at least one stream

between nodes Ni and Ns, i.e., Σm−1
j=1 Σ

m
h= j+1ai jbo

jhash > 0 and
bn

is = 0 otherwise.

2.3 Load Model

We define the EOD problem based on a bin-packing (BP)
model as follows. Consider a query diagram as shown in
Fig. 1. We assume there are n nodes (Ni, i = 1, · · ·, n), each
with a fixed dedicated CPU capacity Nc

i (i = 1, · · ·, n), m
operators (oj, j = 1, · · ·,m), d input streams (Ik, k = 1, · · ·, d),
the input stream rate of each of which is represented as rk in
the system, and each bandwidth between nodes Ni and Ns

with a fixed dedicated bandwidth capacity Bc
is. Generally,

an operator may have multiple input streams and multiple
output streams. The rate of a stream is defined as the number
of data items (tuples) that arrive at the stream per second.
We define c j as the cost of an operator o j in terms of the
average processing times (seconds) for processing an input
tuple with respect to input streams. The selectivity of an

Table 1 Notation.

Notation Meaning

n number of nodes

m number of operators

d number of the system input streams

Ni the ith node

o j the jth operator

Ik the kth input stream

rk the kth input stream rate

Uc
i CPU utilization of node Ni

Ci color recorded list of Node Ni

Bn
is bandwidth utilization between nodes Ni and Ns

Bo
jh bandwidth utilization between operators o j and oh

lni load of node Ni

loj load of operator o j

O j(j+1) super-operator combining o j and o j+1

loj(j+1) load of super-operator O j(j+1)

Cb
is available bandwidth capacity between nodes Ni and Ns

Cc
i available CPU capacity of node Ni

Nc
i total CPU/processing capacity of node Ni

Bc
is total bandwidth capacity between nodes Ni and Ns

c j cost of operator o j

sk j selectivity for the kth input stream to down operator o j

A operator allocation matrix {ai j}n×m

Bn node connection used for the stream processing matrix

{bn
is}n×n

Bo operator connection matrix {bo
jh}m×m

Z node utilization ratio

F average selected-nodes’ CPU utilization ratio

Bo
[j(j+1)][h(h+1)] bandwidth utilization between super-operators O j(j+1)

and Oh(h+1)

Cs summary color recorded list of non-peer operator

S is stream between nodes Ni and Ns

operator, s j, is defined as the ratio of the output stream rates
to the input stream rates: #output/#input (s j, j = 1, · · · ,m).
We denote the selectivity for the kth input stream to the down
operator o j by sk j (k = 1, · · · , d, j = 1, · · · ,m). We define
the load of each operator in terms of a function of operator
costs, selectivities and the system input stream rates. We
define the bandwidth of each stream as the number of data
items (tuples) that are transferred per second, that is, as a

XIAO et al.: ECONOMICAL AND FAULT-TOLERANT LOAD BALANCING IN DISTRIBUTED STREAM PROCESSING SYSTEMS
1065

Fig. 1 Example of query diagram.

function of selectivities and the system input stream rates.
Our economical operator distribution algorithm is

based on a BP model where the load of each operator o j

for input stream rate rk can be written as a linear function,
i.e.,

loj = Σ
d
k=1rk sk jc j, 1 ≤ j ≤ m, (1)

and the load of each node Ni for rk can be written as a linear
function, i.e.,

lni = Σ
m
j=1Σ

d
k=1rk sk jc jai j, 1 ≤ i ≤ n, (2)

and the bandwidth utilization between two operators, oj and
oh, for rk can be written as a linear function, i.e.,

Bo
jh = Σ

d
k=1rk sk jb

o
jh, 1 ≤ j < h ≤ m, (3)

and the bandwidth utilization between two nodes, Ni and Ns

that install operators o j and oh, respectively, for rk can be
written as a linear function, i.e.,

Bn
is = Σ

m−1
j=1 Σ

m
h= j+1Σ

d
k=1rk sk jai jb

o
jhash,

1 ≤ i < s ≤ n. (4)

Through the above formulas, we can deduce the fol-
lowing equations:

lni = Σ
m
j=1lojai j, 1 ≤ i ≤ n, (5)

Bn
is = Σ

m−1
j=1 Σ

m
h= j+1Bo

jhbn
is, 1 ≤ i < s ≤ n. (6)

For simplicity, we assume that the system input stream
rates are variables while the operator costs and selectivities
are constants. Because the cost and the selectivity of an op-
erator are related to the attribution of the operator, we can
get the values of them through test in advance. Under this
assumption, all operator loads are the linear functions of the
system’s input stream rate.

2.4 Mathematical Model of Economical Operator Distri-
bution Plan

Our goal is to find an energy management scheme that stars
with a system using the minimum number of nodes, for de-
creasing the network resources waste. We aim to fully uti-
lize the network resources through the EOD plan. We for-
mally state the corresponding EOD model as a bin packing
optimization problem as follows:

Economical operator distribution (EOD) problem:
Given a sequence O = (o1, · · · , om) of operators, each
with a load loj , a sequence N=(N1,· · · , Nn) of nodes, each
with an available CPU capacity Cc

i , and a sequence S =
(S 12, · · · , S is, · · · , S (n−1)n), 1 ≤ i < s ≤ n of streams, each
with an available bandwidth capacity Cb

is, we aim to put
those operators onto a minimum number of nodes, i.e., find

min Z =
Σn

i=1ni

n
, or (7)

max F =
Σn

i=1Uc
i

Σn
i=1ni

(8)

s.t. lni ≤ Cc
i (9)

Bn
is ≤ Cb

is (10)

ni =

⎧⎪⎪⎨⎪⎪⎩
1, if and only if Σm

j=1ai j > 0

0, otherwise
. (11)

Z and F represent the node utilization ratio and the
average selected-nodes’ CPU utilization ratio, respectively.
Σn

i=1ni represents the number of selected-nodes, and the CPU
utilization of the selected node Ni for rk can be written as a
linear function, i.e.,

Uc
i = lni . (12)

A set of linear constraints on the load of nodes is defined
as the load constraints by (9), and a set of linear constraints
on the bandwidth among nodes is defined as the bandwidth
constraints by (10).

3. Coloring Super-Operator Scheme

In DSPSs, the replication mechanism allows continuous ac-
cess to data when a node fails. Here we want to exploit the
replication mechanism for related but different purposes: for
allowing continuous data access not only when a node fails,
but also when some nodes are overloaded, i.e., for lever-
aging a replication-based scheme to safely and easily load
shedding some nodes while keeping the QoS guarantees of
the system. We define an overloaded node as when a node
receives bytes in unit of time beyond the node processing
capacity.

When we look at the load shedding [13]–[15], com-
monly used techniques in load balancing, we find that al-
though they try to maximize the total weighted throughput,
they could not keep the QoS guarantees of the system due
to dropping some tuples. For instance, if one node is over-
loaded, it will drop some tuples selectively. In our approach,
on the other hand, we make full use of multi-degree opera-
tor replicas framework to solve this problem other than the
previous methods (illustrated in Sect. 4).

1066
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

Fig. 2 A framework of multi-degree operator replicas.

3.1 Super Operator Based on Multi-Degree Operator
Replicas

As described in Fig. 2, there is a framework of multi-degree
operator replicas, such as multi-Union operator replicas,
multi-Join operator replicas and multi-Filter operator repli-
cas in which Union1,1, Union1,2 and Union1,3 are each
other’s replicas, namely, they are peer operator replicas and
have the same function in the system. In Fig. 2, each op-
erator runs in parallel and independently. In other words,
each operator can receive input tuples in parallel from each
upstream operator and send output tuples in parallel to each
downstream operator. As shown in Fig. 2, Join2,1 can re-
ceive input tuples in parallel from Union1,1, Union1,2 or
Union1,3. After processing those data, Join2,1 sends output
tuples in parallel to Filter3,1, Filter3,2 and Filter3,3. There-
fore, such a DSPS based on multi-degree operator replicas
framework has a good fault-tolerant characteristic. Even in
the case of a single operator failure, this DSPS works nor-
mally. For example, if Join2,2 is broken, downstream oper-
ators Filter3,1, Filter3,2 and Filter3,3 can receive data from
upstream operators Join2,1 or Join2,3 (here, we assume one
of Join2,2’s replicas, Join2,1 or Join2,3 is assigned to a dif-
ferent node at least).

As explained before, we exploit the replication mech-
anism for dealing with not only the node failure, but also
the node overload. We devise the super-operator mainly for
the following reasons, one is to prepare for coloring super-
operator and load shedding to keep consecutive and highly-
available data stream processing in the case of node failure
or input rate bursts. The other is for keeping the SO with
“high impact” in processing early. Because [11] argued that
assigning the “high impact” operators late may cause the
system to significantly deviate from the optimal results, the
load balancing of multi-degree operator replicas for initial-
izing an operator distribution plan takes an essential effect
in the performance of the system.

We assume there is a coordinator in the system and the
loads information of all operators are reported to the coordi-
nator that works as the same as Vivaldi [18]. After statistics
collection, the coordinator orders all operators in descend-

Table 2 An example of the SOs based on multi-degree operator replicas.

Node N1 N2 · · · Nm−1 Nm

RD2 the 1st replica: o1 o2 · · · om−1 om

the 2nd replica: o
′
2 o

′
3 · · · o

′
m o

′
1

SO: O12 O23 · · · O(m−1)m Om1

the 1st replica: o1 o2 · · · om−1 om

RD3 the 2nd replica: o
′
2 o

′
3 · · · o

′
m o

′
1

the 3rd replica: o
′
3 o

′
4 · · · o

′
1 o

′
2

SO: O123 O234 · · · O(m−1)m1 Om12

· · ·
the 1st replica: o1 o2 · · · om−1 om

RDr the 2nd replica: o
′
2 o

′
3 · · · o

′
m o

′
1

· · ·
the rth replica: o

′
r o

′
r+1 · · · o

′
r−2 o

′
r−1

SO: O12···r O23···(r+1) · · · O(m−1)m···(r−2) Om1···(r−1)

ing by their loads.
As shown in Table 2, there are different replication de-

grees (RDs) and we can chose the RD according to different
application requirements. We denote RDx(2 ≤ x ≤ r) as
the replication degree in which r represents the maximum
number of operator replicas. We order the operator replicas
in each degree, respectively. Therefore, RDx has x ordered
groups. For example, in the case of two-degree operator
replicas, there are two ordered groups: one is for the 1st

degree, o1, o2, . . . , om, and the other is for the 2nd degree,
o
′
1, o

′
2, . . . , o

′
m in which operator o

′
1 is operator o1’s replica,

i.e., they are peer operator replicas and have the same func-
tion in the system. In our approach, we sort operators in
descending order based on their weight. In the following,
we assume that the weight of each operator o j is equal to its
load loj (here, we assume o1 has the largest weight, o2 has the

second largest weight, and so on). Then we pair the jth op-
erator in the 1st degree replica’s ordered list with the (j+1)th

operator in the 2nd degree replica’s ordered list (for j = m,
this operator in the 1st degree replica’s ordered list will be
paired with the first operator in the 2nd degree replica’s or-
dered list as om1 as shown in Table 2). For simplicity, we as-
sume two-degree replication in the following without losing
generality. In the case of two-degree replication as shown
in Table 2, operator o1 in the 1st degree of replica’s ordered
list has the largest weight and operator o

′
2 in the 2nd degree

of replica’s ordered list has the second largest weight, then
we combine operator o1 and operator o

′
2 as a super-operator

O12.
Consequently, the load of a super-operator Oj(j+1) for

input rate rk can be represented as a linear function, i.e.,

loj(j+1) = loj + loj+1. (13)

The bandwidth utilization between super-operators

XIAO et al.: ECONOMICAL AND FAULT-TOLERANT LOAD BALANCING IN DISTRIBUTED STREAM PROCESSING SYSTEMS
1067

Oj(j+1) and Oh(h+1) for input rate rk can be written as a linear
function, i.e.,

Bo
[j(j+1)][h(h+1)]=Bo

jh + Bo
(j+1)h + Bo

j(h+1) + Bo
(j+1)(h+1)=Σ

d
k=1rk

×{sk j(b
o
(j+1)h + bo

(j+1)(h+1)) + sk(j+1)(b
o
jh + bo

j(h+1))}. (14)

The bandwidth utilization between two nodes Ni and
Ns for super-operators can be written as a linear function,
i.e.,

Bn
is = Σ

m−1
j=1 Σ

m
h= j+1Bo

[j(j+1)][h(h+1)]b
n
is, 1 ≤ i < s ≤ n. (15)

3.2 Mathematical Model of Coloring Super-Operator

We introduce coloring SO in this paper for the following two
reasons: one is for putting the SO with “high-weight” on dif-
ferent nodes, and the other is for overcoming the problems
of node failure. If all peer operator replicas are assigned to
the same node, the system cannot handle with the problems
of node failures. Therefore, we color super-operator based
on a coloring bin-packing (CBP) model that assigns peer
operator replicas to different nodes, e.g., operator o2 is as-
signed on node N2 while operator o

′
2 is assigned on node N1

as shown in Table 2. In other words, we combine one opera-
tor with its non-peer operator’s replicas as the SO, e.g., oper-
ator o2 is the replica of operator o

′
2’s peer operator; operator

o1 is o2’s or o
′
2’s non-peer operator replica. We formally

state the coloring super-operator (CSO) problem based on a
CBP model.

Coloring super-operator (CSO) problem: Given a
sequence O = (O12, O23,· · · ,Om1) of SOs and a sequence
N = (N1,N2, · · · ,Nn) of nodes, each with a color recorded
list Ci (1 ≤ i ≤ n), we aim to color each SO and put those
SOs on appropriate nodes. The concrete steps are as fol-
lows:

1. We first color the SOs as (O12(ai1ai2),
O23(ai2ai3), · · · ,Oj(j+1)(ai jai(j+1)), · · · , O(m−1)m(ai(m−1)aim),
Om1(aimai1)).

2. i ← 1. We try to assign a candidate SO, Oj(j+1), to
node Ni(1 ≤ i ≤ n).

3. When we try to distribute a candidate SO on node Ni,
we first check the value of Ni’s color recorded list according
to the color of candidate SO, Oj(j+1)(ai jai(j+1)), i.e., find the
values of ai j and ai(j+1) in the color recorded list Ci:

Ci = (ai1, ai2, · · · , aim) (16)

s.t. ai j =

⎧⎪⎪⎨⎪⎪⎩
1, one of o j’s peer replica is assigned to Ni

0, otherwise
,

Σn
i=1ai j = 2. (17)

4. If ai j = 0 and ai(j+1) = 0, it means there are no peer
operator’s replicas for operators oj and o j+1, respectively,
that are assigned in node Ni. Then, we can put this candidate
Oj(j+1) in node Ni. After that, the values of both ai j and

ai(j+1) are recorded as 1, respectively, in Ni’s color recorded
list.

5. If ai j = 1 or ai(j+1) = 1, i← i + 1 and go to step 3.
For example, if O(j−1) j and O(j+1)(j+2) have been as-

signed on Ni, the values of ai(j−1), ai j, ai(j+1) and ai(j+2) have
been recorded as 1 in Ni’s color recorded list, respectively.
For candidate Oj(j+1), it means its peer operator replicas o j

and o j+1 have been assigned in Ni before. Hence, it is pro-
hibitive for the candidate Oj(j+1) to be assigned in this node.

4. Load Shedding Method Based on the SO Scheme
and the CBP Model

As described in Sect. 2, the EOD plan tends to use a “first-
fit” BP model for distributing operators in order to reduce
the network resources waste. However, using this scheme,
the system cannot tolerate an input rate burst or a spike in an
input rate. Here, we take advantage of a simple load shed-
ding scheme based on the SO scheme and the CBP model
to solve those problems, namely, if the loads of nodes are
over their load level threshold, we alternatively control the
non-peer operator replicas to drop processing some tuples in
order to alleviate the burden of the overload nodes. In our
replication mechanism, we considered the replicas for each
query. It means there is no trouble for different users whose
queries are processed by different replicas. Consequently,
while we drop processing some tuples, we can provide the
QoS guarantees of the system for different users.

Load shedding problem: Given a sequence O =

(o1, · · · , o j, · · · , om) of operators, a sequence C = (C1, · · · ,
Ci, · · · , Cn) of nodes’ color recorded lists and a summary
color recorded list of non-peer operator Cs = (a1, · · · , a j,
· · · , am) that is controlled by the coordinator in the system.
We aim to utilize a load shedding scheme among non-peer
operator replicas to alleviate the burden of the overloaded
nodes while keeping the QoS guarantees of the system. The
process consists of the following steps:

1. When node Ni is overloaded, we first check the
values in Cs, according to node Ni’s color recorded list Ci

where the values are equal to 1, i.e., find the values about
existent operators (ai j = 1) of Ni in Cs:

Cs = (a1, a2, · · · , am) (18)

a j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, one of o j’s peer replica is used for

load shedding

0, otherwise

, (19)

s.t. ai j =

⎧⎪⎪⎨⎪⎪⎩
1, one of o j’s peer replica is assigned to Ni

0, otherwise
,

Σn
i=1ai j = 2. (20)

2. If a j = 0, then no peer operator replica is used for
load shedding for this operator, we can select this operator
to give up processing some tuples to alleviate the burden of

1068
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

Fig. 3 Load shedding scenarios.

Fig. 4 Stream system based on EFTLBS.

this node.
3. If a j = 1, it means its peer replica is used for load

shedding, it is prohibitive for this operator to be used for
load shedding.

Figure 3 shows examples of load shedding. In this fig-
ure, scenarios 1 and 2 are based on the query graph of Fig. 4
in which peer operator replicas run in parallel and indepen-
dently so that each downstream operator can use whichever
data arrives first. We assume that each operator has the load
that is expressed by different patterns rectangle as shown in
Fig. 3. If any load of nodes is over their load level threshold,
we drop processing some tuples to alleviate the burden of
those nodes. In the case of scenario 1, we assume nodes N1

and N2 are overloaded successively. For node N1, we first
check the value of operators o1 and o

′
2 in the summary color

list of non-peer operator. If any one of o1 or o
′
2’s value is

equal to 0, we can randomly select one operator to drop pro-
cessing some tuples until N1’s load is under the load level
threshold (assume selecting operator o1 in the figure). Then,
the value of operator o1 in the summary color list of non-
peer operator must be recorded as 1. After that, for node N2,
we also first check the value of operators o2 and o

′
1 in the

summary color list of non-peer operator. Because operator
o1 has been selected for load shedding and the value of op-
erator o1 in the summary color list of non-peer operator has
been equal to 1, we just can select operator o2 to drop pro-
cessing some tuples until N2’s load is under the load level
threshold. In such scheme, although we drop some part of
tuples, we also can get good quality query results by one of
chains, from operator o

′
1 to operator o

′
2 in the figure, thereby

keeping the high QoS guarantees of the system. In the case
of scenario 2, we also assume nodes N1, N2 and N3 are over-
loaded successively. We control operator o1, operator o2 and
operator o3 to drop processing some tuples, respectively, un-

til those loads of nodes are under the load level threshold.
Although we drop processing some tuples for load balanc-
ing of the data stream system, we can get good query results
by one of chains, from operator o

′
1 to operator o

′
2 to operator

o
′
3, thereby keeping the high QoS guarantees of the system.

If all operator replicas are already used for load shedding,
we propose to select the operator that has the most load for
load shedding in this scheme. On the other hand, we active
this operator’s backup that exits in the non-overloaded node
to keep the QoS guarantees of the system that works as the
same as paper [19].

5. Economical and Fault-Tolerant Load Balancing
Strategy

Through seamlessly combining the EOD plan discussed
in Sect. 2, the CSO scheme discussed in Sect. 3, and the
load shedding method discussed in Sect. 4, we present here
an economical and fault-tolerant load balancing strategy
(EFTLBS). The EFTLBS algorithm consists of two parts
as shown in Algorithm 1. One is for the operator distribu-
tion at the beginning of the system running. The other is
for controlling overloaded nodes while the system runs. For
simplicity, we assume that the degree of operator replicas is
two in the following without losing generality.

The steps of controlling overloaded nodes have been
explained in Sect. 4. The steps of the operator distribution
are as follows:

Phase 1: Ordering Operators and Nodes. This phase
sorts each degree’s operator replicas in descending order
based on the load of operators, loj (line 8). Similar sorting
orders are commonly used in greedy load balancing and bin
packing algorithms [11], [20]–[22]. We also sort nodes in
descending order based on their available capacity of nodes
(line 9) where the details have been explained in Sects. 3.1
and 3.2. Needless to say, we do not need to take this step
into consideration in such an environment that all nodes
have the same available capacity.

Phase 2: Combining and Coloring SOs. In this
phase, we pair the operator having the largest weight with
the operator having the second largest weight, pair the op-
erator having the second largest weight with the operator
having the third largest weight as super-operator, and so
on (line 11). For solving the problems of server failures
and input rate bursts, we color those super-operators as
Oj(j+1)(ai jai(j+1)) (line 12).

Phase 3: Allocating SOs by the EOD plan. This
phase goes through the ordered list of super-operators and
iteratively assigns them to those candidates. Our basic des-
tination node selection policy is based on a “first-fit” BP
model: at each step, we must judge whether the load, loj(j+1),
of a candidate SO, is less than the available capacity of
node, Cc

i . If it does not meet the above mentioned condi-
tion, we will try to assign this SO to node Ni+1 (line 27).
After that, we will check the value of ai j and ai(j+1) in Ni’s
color recorded list, Ci (lines 14-16). If ai j and ai(j+1) are
unequal to 1, it means any one of this SO’s peer replicas

XIAO et al.: ECONOMICAL AND FAULT-TOLERANT LOAD BALANCING IN DISTRIBUTED STREAM PROCESSING SYSTEMS
1069

Algorithm 1 The EFTLBS algorithm

Pseudocode 1: Operator distribution before system running

1 //Initialization
2 for i = 1, ..., n − 1; for s = i + 1, ..., n
3 for j = 1, ...,m − 1; for h = j + 1, ...,m
4 ai j ← 0, bn

is ← 0, bo
jh ← 0

5 for i = 1, ..., n; for j = 1, ...,m; lni ← 0,Ci ← 0

6 for j = 1, ...,m; for k = 1, ..., d; loj ←
√

loj1
2 + · · · + lojk

2

7 //Ordering Operators and Nodes
8 sort operators by loj in descending
9 sort nodes by Cc

i in descending
10 //Combining and Coloring Super-Operators
11 combine the jth in one replica’s order list with the (j + 1)th in

another replica’s order list as SO: O j(j+1)

12 color O j(j+1) as O j(j+1)(ai jai(j+1))
13 //Allocating Super-Operators by the EOD plan
14 for j = 1, · · · ,m //classify operators
15 for i = 1, · · · , n //classify nodes
16 if loj(j+1) ≤ Cc

i and (ai j � 1 and ai(j+1) � 1) in color recorded
list Ci

17 if bn
is � 1

18 assign O j(j+1) to node Ni, i.e., ai j ← 1,
ai(j+1) ← 1

19 break //finish assigning O j(j+1)

20 else [bn
is = 1 and (bo

jh = 1 or bo
j(h+1) = 1 or bo

(j+1)h = 1
or bo

(j+1)(h+1) = 1)]

21 if bandwidth Bo
[j(j+1)][h(h+1)] ≥ Cb

is //assume Ni is
connected to Ns and O j(j+1) is connected to Oh(h+1)

22 try to assign this candidate SO to the next node Ni+1

23 else
24 assign O j(j+1) to node Ni, i.e., ai j ← 1,

ai(j+1) ← 1
25 break //finish assigning O j(j+1)

26 else
27 try to assign this candidate SO to the next node Ni+1

28 //Assume Ni is the selected node and assign O j(j+1) to Ni

29 as j ← 1;
30 reset lns ← lns + loj + loj+1, Cc

s ← Nc
s − lns

31 //Assume Ni is connected to Ns and O j(j+1) is connected to Oh(h+1)

32 bn
is ← 1;

33 for i = 1, ..., n − 1; for s = i + 1, ..., n
34 for j = 1, ...,m − 1; for h = j + 1, ...,m
35 Bn

is ← Bn
is + Bo

[j(j+1)][h(h+1)], Cb
is ← Bc

is − Bn
is

Pseudocode 2: Controlling overload nodes while system running

1 //Assume there is at least one operator that is allocated in node Ni

2 //when node Ni is overloaded do
3 for j = 1, · · · ,m //classify operators
4 //check the values of ai j in Ci

5 if ai j = 1
6 //check the values of a j in Cs

7 if a j = 1
8 it’s prohibitive for this operator to be used for load shedding
9 else
10 select this operator to give up processing some tuples
11 break //finish selecting an operator for load shedding

has not been allocated in Ni. Then, we continuously check
the value of bn

is which represents the connection used for the
stream processing between nodes Ni and Ns.

If bn
is is unequal to 1, it means the connection between

nodes Ni and Ns is not used for the stream processing, we
can put Oj(j+1) into this node Ni (lines 17-19). Otherwise,
we must continuously compare the bandwidth utilization
between nodes Ni and Ns with the available bandwidth ca-
pacity between nodes Ni and Ns (lines 20-24) in which we
should check that which operators in super-operators are
connected with each other (line 20). We assume there ex-
ists a connection between Super-operators (Assume Ni is
connected to Ns and Oj(j+1) is connected to Oh(h+1)), then
we have to check if the bandwidth utilization of this stream
is greater than the available capacity of bandwidth between
nodes Ni and Ns (line 21). If meeting the above condition,
try to assign this SO to node Ni+1 for this SO (line 22). Then,
we repeat the above steps until this candidate SO is assigned
onto an appropriate node. If the bandwidth utilization of this
stream is less than the available capacity of bandwidth be-
tween nodes Ni and Ns, we can put Oj(j+1) onto this node Ni

(lines 23-24). Then we reset the load of a node, the band-
width utilization of a stream, the available CPU capacity of
a node and the available bandwidth capacity of a stream for
the next candidate SO assignment (lines 28-35).

6. Experimental Evaluation

6.1 Setup

The experiments run on a machine with an Intel R©CoreTM

duo CPU 3.33 GHz and 4.00 GB main memory underlying
Ubuntu 9.10. We built simulations using ns-3 [23]. To send
tuples and invoke remote procedures, we used TCP sock-
ets. We used a pseudo stream operator which had a con-
stant processing cost per tuple and was a filtering operator
with 50% selectivity, and the computing powers of all nodes
were identical for simplicity. Our experiments, except those
in Sects. 6.6 and 6.7, used a settled query graph as shown
in Fig. 5 for simplicity without losing generality [13], [16],
[24]. In Fig. 5, we used six operators, namely, three opera-
tors and their replicas, and we provided five nodes. In the
future, we would like to discuss for large number of nodes.
For the experiment in Sect. 6.6, we set the total input rate of
the system was the same and constant, and the ratio of total
input rate of the system over the average node processing ca-
pacity was 0.5. For the experiment in Sect. 6.7, we used the

Fig. 5 An example of query graph based on two-degree of replication.

1070
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

query graph shown in Fig. 5, but the number of replication’s
degree varied. Given the query graph, we deployed those
operator replicas based on the loads information of opera-
tors and nodes under different operator distribution plans in
which the load information was obtained statistically from
the coordinator. In the following evaluations, the node uti-
lization ratio defined by (7) and the average selected-nodes’
CPU utilization ratio defined by (8) were used.

6.2 Operator Distribution Plans

We compared our method, EFTLBS, with two alternative
distribution approaches. One, called Resilient Operator Dis-
tribution (ROD) load balancing that was designed in [7], or-
ders operators by their loads and assigns operators in de-
scending order to the currently least loaded node. It assigns
operators in the following steps: (1) Sort operators in de-
scending order. (2) Assign the most loaded candidate oper-
ator to the currently least loaded node. (3) Repeat steps (1)
and (2) until all operators are assigned. The other algorithm,
called economical operator distribution (EOD), prefers to
put operators that are sorted by their loads in descending or-
der onto the nodes that are sorted by their available CPU
capacities in descending order based on a “first-fit” bin-
packing model to minimize energy consumption. It assigns
operators in the following steps: (1) Sort nodes and opera-
tors in descending order, respectively. (2) Try to assign the
most loaded candidate operator to the least loaded node, say
Ns. (3) Assign the following candidate operators to Ns until
this node has no capacity to install a new candidate operator.
(4) If node Ns is full, then try to assign the following oper-
ators to a new node Ns+1 instead of Ns and repeat steps (3)
and (4) until all operators are assigned. We assumed there
existed at least one node that had enough CPU capacity for
each operator.

6.3 Comparing the Techniques based on Bandwidth Lim-
itation

We compared the reliability of EFTLBS, ROD and EOD un-
der the limitations of each stream bandwidth as well as each
computer’s CPU capacity. We simulated this experiment in
1 minute and simulated a spike in an input rate at time 20
sec and a failure of one node at time 40 sec in the duration.
The latency of a tuple L is defined as the difference between
the time that tuple a was produced by the upstream operator
o2 or o

′
2 and the time that tuple a was received by the down-

stream operator o3 or o
′
3. We define the increasing delay LB

that is caused by the bandwidth overload in the ROD and

EOD approaches as 1
λ

(
Bn

is(tuples/sec)

Bc
is(tuples/sec)

− 1
)
, where

Bn
is

Bc
is

is greater

than 1, λ is equal to rk, Bn
is expresses the bandwidth utiliza-

tion between nodes Ni and Ns, and Bc
is represents the total

bandwidth capacity between nodes Ni and Ns.
As shown in Fig. 6 (a), it is obvious that the perfor-

mance of EFTLBS is significantly better than the average
performance of the other techniques because it not only as-

(a)

(b)

Fig. 6 Comparing the techniques based on bandwidth limitation.

signs peer replicas to different nodes, but also tries to take
the bandwidth limitation into consideration. Therefore, it
could provide low latency from the beginning of the stream
processing. Even facing a spike in an input rate at 20 sec, it
could use a load shedding method to alleviate the burden of
the stream bandwidth to keep stable latency stream process-
ing. Moreover, because of using CSO, it could tolerate the
node failure’s at 40 sec and get good quality query results
from another smooth query chain. The EOD technique fares
the worst, on the contrary, because it tries to keep all nodes
on the same node that results in high-density connection be-
tween two nodes so that it experiences a higher latency from
the beginning of stream processing. On the other hand, it
does not regard bandwidth limitation among nodes so that,
when facing a spike in an input rate at 20 sec, the stream
between two nodes is too overloaded that results in high-
latency to 1.25 sec. In addition, in the case of node failure
at 40 sec, o3 and o

′
3 did not produce any output because it

no longer received tuples from o1 or o
′
1 that were assigned

in the same broken node. ROD, which dose not consider the
bandwidth limitation or the system’s fault-tolerance, could
not put up with a spike in an input rate at 20 sec or the node’s
failure at 40 sec. Figure 6 (b) expresses the relation in terms
of L, λ, Bn

is, Bc
is, and the average processing time per in-

put tuple, c, for the ROD and EOD methods. As shown
in Fig. 6 (b), based on the setting that λ, Bc

is and c are con-
stants, L is linear with Bn

is, (LB <
1
λ
). As the bandwidth is

overloaded, L is in proportion to Bn
is. Note that the EFTLBS

could give low latency.

6.4 Varying the Numbers of Input Streams

We varied the number of input streams from 2, to 4, 6, 8,
and 10 in which each input stream had the same input rate.
We set the ratio of each input rate of the system over the av-

XIAO et al.: ECONOMICAL AND FAULT-TOLERANT LOAD BALANCING IN DISTRIBUTED STREAM PROCESSING SYSTEMS
1071

erage node processing capacity as 0.4. As shown in Fig. 7,
it is obvious that the performance of ROD was significantly
worse than the average performance of the other algorithms
as the number of input streams increased, because it tries to
keep the largest loaded operators on the least loaded nodes
so that the loads of all operators are shared by all nodes,
thereby causing waste and insufficient utilization to the re-
sources. On the contrary, EOD always tries to keep opera-
tors on the same node for saving energy consumption, and
hence the average selected-node CPU utilization ratio of this
method is higher than the other methods and the node uti-
lization is lower than the other methods. On the other hand,
the EFTLBS uses coloring SO for trying to allocate peer
operator replicas to different nodes so that it has more node
utilization than the EOD plan.

6.5 Varying the Average Node Processing Capacities

In this experiment, we set the total input rate of the sys-
tem was the same and constant. We first assigned those
operators through the coordinator by using different distri-
bution placement methods. Then we compared the average
selected-node CPU utilization ratio and the node utilization
ratio of those algorithms under the variation of the average
node processing capacity in which a node processing capac-
ity corresponds to this node’s total CPU capacity, Nc

i . As
shown in Fig. 8, the performance of ROD was significantly
worse than the average performance of the other algorithms
as the ratio of the average processing capacity of nodes over
the total input rates of the system increased, because the
ROD method assigns operators to all nodes so that the load
of all operators are shared by all nodes. Consequently, the
average node CPU utilization ratio of ROD is lower than the
other distribution plans and ROD has the highest node uti-
lization ratio, 1. The average node CPU utilization is also in
inverse proportion to the average node processing capacity.
The EFTLBS lies between ROD and EOD because, while

Fig. 7 Impact of the numbers of input streams.

Fig. 8 Impact of the average node processing capacitie.

the EFTLBS tries to save energy consumption, this algo-
rithm assigns operators based on coloring SO and thus tends
to allocate peer operator replicas to different nodes. Because
EOD takes reducing energy consumption into consideration
it tries to put operators on the same node. Therefore, the
average node CPU utilization ratio of the EOD method is
higher than the ROD and EFTLBS plans and the node uti-
lization ratio of the EOD method is lower than the ROD and
EFTLBS plans.

6.6 Varying the Numbers of Operators

In this experiment, for the ROD method, as shown in Fig. 9,
the average selected-node CPU utilization is in inverse pro-
portion of the number of operators. The reason is the loads
of all operators are shared by all nodes so that the more op-
erators there are, the more nodes will be used. On the other
hand, comparing the EFTLBS with the EOD plan, we can
see they have almost the same average selected-node CPU
utilization and the node utilization. Because the total input
rate of the system was the same, the more operators there
are, the smaller input rate each operator has. However, be-
cause of the impact of SO, the EFTLBS must put peer oper-
ator replicas into different nodes so that it uses more nodes
than the EOD plan as the number of operators increasing to
10, as shown in Fig. 9.

6.7 Impact of Replication

In this experiment, we set each input rate of the system was
the same and constant, and the ratio of each input rates of the
system over the average node processing capacity was 0.2.
Figure 10 (a) shows, as the increasing of the replication’s
degree, the average selected-node CPU utilization ratio also
increased. Figure 10 (b) shows the variation of node utiliza-
tion ratio, as the degree of replication increased from 2, to
3, 4, and 5. Because there was enough processing capacity

Fig. 9 Impact of the numbers of operators.

(a) (b)

Fig. 10 Impact of degrees of replication.

1072
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

for each node to process those input rates, we can see as the
average selected-node CPU utilization ratio was increasing
the node utilization ratio was almost constant.

From the experimental evaluation in Sect. 6.3, we can
conclude that as the increasing of the replication’s degree,
the performance of fault-tolerance of each method is im-
proved. Because even some nodes failed, we can get query
results from other good chains. For the performance of load
balancing, as we also evaluated in Sect. 6.3, even facing
an input rate burst resulting in the overload of a node, the
EFTLBS could use a load shedding method to keep stable
latency stream processing in any degree of replication. On
the contrary, the EOD technique cannot deal with an input
rate burst, even as the increasing of the replication’s degree.
Because it tries to keep all operators on the same node, for
this stream processing system, the selected-nodes have no
extra CPU to handle with the load balancing of the system.
The ROD plan can tolerate an input rate burst, because it
tries to allocate operators on the most idle node so that, for
this stream processing system, the selected-nodes have ex-
tra CPU to handle with the load balancing of the system. We
would like to make some extension about the fault-tolerance
and efficient load balancing in a real environment in the fu-
ture.

7. Related Work

Load balancing has been explored extensively for conven-
tional distributed and parallel computing systems [7]–[11],
[13]–[15]. In principle, those load balancing schemes are
categorized into dynamic load distribution plans, static load
distribution plans and load shedding techniques. The dy-
namic operator allocation techniques are used in papers [7]–
[10] in which they migrate the operators for the load bal-
ancing of the system when a node is overloaded. Opera-
tor movement is too expensive to alleviate short-term bursts;
moreover some systems do not support the ability to move
operators dynamically. In our method, therefore, we pro-
pose a new method to realize load balancing without dy-
namic operator migration.

Approaches in [7], [11] apply static load distribution
techniques where they provide an elastic initial distribu-
tion plan to avoid overload for input rates without operator
movement. However, they do not regard energy consump-
tion that is a crucial and rising problem in the real world.
Hence, we take energy consumption into consideration.

Previous papers [13]–[15] use load shedding tech-
niques to handle with the overload of nodes that drop part
of data in the case of the servers overloaded during the data
stream processing. Although they try to maximize the to-
tal weighted throughput, they could not keep good quality
query results due to dropping some tuples. Therefore, we
make full use of multi-degree operator replicas framework
to solve this problem. In addition, all of those approaches
are based on one degree of replication where they do not
load balances multi-degree operator replicas and they also
assume that the bandwidth is not limited. Therefore, those

techniques are unsuited for such environments in which
multi-degree operator replicas run in parallel and indepen-
dently [16].

In summary, to overcome the limitations of the previ-
ous techniques, we propose a new approach, the economi-
cal and fault-tolerant load balancing strategy (EFTLBS) that
based an operator replication mechanism and a load shed-
ding mechanism to realize continuous and highly-available
data stream processing without dynamic operator migration
over wide area networks.

8. Conclusion

We have argued that the load balancing of continuous and
high-available data stream processing applications raises
novel challenges and opportunities over wide area networks.
We have proposed the economical and fault-tolerant load
balancing strategy (EFTLBS), which fully utilizes the net-
work resources to realize continuous and highly-available
data stream processing without dynamic operator migra-
tion over wide area networks. Through simulations, we
have confirmed that our approach is better than the other
techniques in economical, continuous and highly-available
data stream processing under the constraints of each stream
bandwidth as well as each node’s CPU capacity. In other
words, the performance of the EFTLBS is balanced in terms
of the ratios of average selected-node CPU utilization and
node utilization.

We proposed a novel load balancing framework that
can provide continuous and highly-available data stream
processing over wide area networks. In our framework, we
use static data collection of the loads information so that
such a scheme may cause the deviation of loads informa-
tion due to networks properties. On the other hand, we set
those parameters on the basis of paper [25]. Needless to say,
in future work, we plan to study self-tuning techniques for
operator distribution and do some experiments in a real en-
vironment.

References

[1] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,
J.H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N.
Tatbul, Y. Xing, and S.B. Zdonik, “The design of the Borealis stream
processing engine,” Proc. Second Biennial Conference on Innova-
tive Data Systems Research, CIDR, pp.277–289, Jan. 2005. Avail-
able at http://www.cidrdb.org/cidr2005/papers/P23.pdf

[2] D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new
model and architecture for data stream management,” The VLDB
Journal, vol.12, no.2, pp.120–139, 2003. DOI 10.1007/s00778-003-
0095-z.

[3] M. Balazinska, H. Balakrishnan, S.R. Madden, and M. Stonebraker,
“Fault-tolerance in the borealis distributed stream processing sys-
tem,” ACM Trans. Database Syst., vol.33, no.1, pp.1–44, 2008. DOI
10.1145/1331904.1331907.

[4] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman,
F. Reiss, and M. Shah, “TelegraphCQ: Continuous dataflow pro-
cessing for an uncertain world,” Proc. First Biennial Conference on

XIAO et al.: ECONOMICAL AND FAULT-TOLERANT LOAD BALANCING IN DISTRIBUTED STREAM PROCESSING SYSTEMS
1073

Innovative Data Systems Research, CIDR, Jan. 2003. Available at
http://www.cidrdb.org/cidr2003/program/p24.pdf

[5] J.H. Hwang, Y. Xing, U. Çetintemel, and S.B. Zdonik, “A coop-
erative, self-configuring high-availability solution for stream pro-
cessing,” Proc. 23rd International Conference on Data Engineering,
ICDE, pp.176–185, 2007. DOI 10.1109/ICDE.2007.367863.

[6] M.A. Shah, J.M. Hellerstein, and E. Brewer, “Highly available,
fault-tolerant, parallel dataflows,” Proc. 2004 ACM SIGMOD inter-
national conference on Management of data, SIGMOD, New York,
NY, USA, pp.827–838, ACM, 2004. DOI 10.1145/
1007568.1007662.

[7] N. Tatbul, Y. Ahmad, U. Çetintemel, J.H. Hwang, Y. Xing, and S.B.
Zdonik, “Load management and high availability in the borealis dis-
tributed stream processing engine,” in GeoSensor Networks, ed. S.
Nittel, A. Labrinidis, and A. Stefanidis, Lecture Notes in Computer
Science, vol.4540, pp.66–85, Springer Berlin / Heidelberg, 2008.
DOI 10.1007/978-3-540-79996-2 5.

[8] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U.
Çetintemel, Y. Xing, and S.B. Zdonik, “Scalable distributed stream
processing,” Proc. First Biennial Conference on Innovative Data
Systems Research, CIDR, 2003. Available at
http://www.cidrdb.org/cidr2003/program/p23.pdf

[9] M. Balazinska, H. Balakrishnan, and M. Stonebraker, “Contract-
based load management in federated distributed systems,” Proceed-
ings of the First Symposium on Networked Systems Design and Im-
plementation, NSDI, pp.197–210, 2004.
http://www.usenix.org/events/nsdi04/tech/balazinska.html

[10] Y. Xing, S. Zdonik, and J.H. Hwang, “Dynamic load distribu-
tion in the borealis stream processor,” Proceedings of the 21st In-
ternational Conference on Data Engineering, ICDE, Los Alami-
tos, CA, USA, pp.791–802, IEEE Computer Society, 2005. DOI
10.1109/ICDE.2005.53.

[11] Y. Xing, J.H. Hwang, U. Çetintemel, and S. Zdonik, “Provid-
ing resiliency to load variations in distributed stream process-
ing,” Proc. 32nd international conference on Very large data
bases, VLDB, pp.775–786, VLDB Endowment, 2006. Available at
http://www.vldb.org/conf/2006/p775-xing.pdf

[12] W. Lang, J.M. Patel, and J.F. Naughton, “On energy management,
load balancing and replication,” SIGMOD Rec., vol.38, no.4, pp.35–
42, Dec. 2009. DOI 10.1145/1815948.1815956.

[13] N. Tatbul, U. Çetintemel, and S.B. Zdonik, “Staying FIT: Effi-
cient load shedding techniques for distributed stream processing,”
Proc. 33rd international conference on Very large data bases, VLDB,
pp.159–170, 2007. Available at
http://www.vldb.org/conf/2007/papers/research/p159-tatbul.pdf

[14] N. Tatbul, U. Çetintemel, S.B. Zdonik, M. Cherniack, and M.
Stonebraker, “Load shedding in a data stream manager,” Proc.
29th International Conference on Very Large Data Bases, VLDB,
pp.309–320, 2003. Available at
http://www.vldb.org/conf/2003/papers/S10P03.pdf

[15] N. Tatbul and S. Zdonik, “Dealing with overload in distributed
stream processing systems,” Proc. 22nd International Confer-
ence on Data Engineering Workshops, ICDE Workshops, Los
Alamitos, CA, USA, p.24, IEEE Computer Society, 2006. DOI
10.1109/ICDEW.2006.45.

[16] J.H. Hwang, U. Çetintemel, and S.B. Zdonik, “Fast and highly-
available stream processing over wide area networks,” Proc. 24th
International Conference on Data Engineering, ICDE, pp.804–813,
2008. DOI 10.1109/ICDE.2008.4497489.

[17] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” Proc.
Third Symposium on Operating Systems Design and Implementa-
tion, OSDI, Berkeley, CA, USA, pp.173–186, USENIX Association,
1999. http://portal.acm.org/citation.cfm?id=296806.296824

[18] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi:
A decentralized network coordinate system,” SIGCOMM Com-
put. Commun. Rev., vol.34, no.4, pp.15–26, Aug. 2004. DOI
10.1145/1030194.1015471.

[19] F. Xiao, K. Nagano, T. Itokawa, T. Kitasuka, and M. Aritsugi,
“A self-recovery technique for highly-available stream processing
over local area networks,” Proc. 2010 IEEE Region 10 Conference,
TENCON, pp.2406–2411, Nov. 2010. DOI 10.1109/
TENCON.2010.5685904.

[20] E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson, Approximation
algorithms for bin packing: a survey, pp.46–93, PWS Publishing
Co., Boston, MA, USA, 1997.
http://portal.acm.org/citation.cfm?id=241938.241940

[21] J. Hromkovic, Algorithmics for hard problems, Springer, 1998.
[22] V.V. Vazirani, Approximation Algorithms, Springer, 2001.
[23] The ns-3 network simulator. http://www.nsnam.org/
[24] J.H. Hwang, U. Çetintemel, and S.B. Zdonik, “Fast and reliable

stream processing over wide area networks,” Proc. 23rd Interna-
tional Conference on Data Engineering Workshop, ICDEW, pp.604–
613, 2007. DOI 10.1109/ICDEW.2007.4401047.

[25] J.H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M.
Stonebraker, and S. Zdonik, “High-availability algorithms for dis-
tributed stream processing,” Proc. 21st International Conference on
Data Engineering, ICDE, Los Alamitos, CA, USA, pp.779–790,
IEEE Computer Society, 2005. DOI 10.1109/ICDE.2005.72.

Fuyuan Xiao received her B.E. degree in
computer science and technology from Guilin
University of Technology, China, in 2008. She
received her M.E. degree in information sci-
ence and engineering from Guilin University
of Technology, China, in 2011. Since 2011,
she has been studying for her D.E. degree at
the Graduate School of Science and Technol-
ogy, Kumamoto University, Japan. Her research
interests include database systems and paral-
lel/distributed data processing.

Teruaki Kitasuka received his B.E.
Degree from Kyoto University, M.E. Degree
from Nara Institute of Science and Technology
(NAIST), and D.E. Degree from Kyushu Uni-
versity, Japan, in 1993, 1995 and 2006, respec-
tively. He worked for SHARP Corporation from
1995 to 2001. He was a research associate in
the Faculty of Information Science and Electri-
cal Engineering, Kyushu University, from 2001
to 2007. Since 2007, he has been an associate
professor in the Graduate School of Science and

Technology, Kumamoto University. His research interests include location-
aware systems, and ubiquitous, mobile and embedded computing. He is a
member of IPSJ and IEEE.

Masayoshi Aritsugi received his B.E. and
D.E. degrees in computer science and com-
munication engineering from Kyushu Univer-
sity, Japan, in 1991 and 1996, respectively.
From 1996 to 2007, he was with the Depart-
ment of Computer Science, Gunma University,
Japan. Since 2007, he has been a Professor at
the Graduate School of Science and Technol-
ogy, Kumamoto University, Japan. His research
interests include database systems and paral-
lel/distributed data processing. He is a member

of IPSJ, ACM, IEEE-CS, and DBSJ.

