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Fast Hypercomplex Polar Fourier Analysis

Zhuo YANG†a), Nonmember and Sei-ichiro KAMATA†b), Member

SUMMARY Hypercomplex polar Fourier analysis treats a signal as a
vector field and generalizes the conventional polar Fourier analysis. It can
handle signals represented by hypercomplex numbers such as color images.
Hypercomplex polar Fourier analysis is reversible that means it can recon-
struct image. Its coefficient has rotation invariance property that can be
used for feature extraction. However in order to increase the computation
speed, fast algorithm is needed especially for image processing applications
like realtime systems and limited resource platforms. This paper presents
fast hypercomplex polar Fourier analysis based on symmetric properties
and mathematical properties of trigonometric functions. Proposed fast hy-
percomplex polar Fourier analysis computes symmetric points simultane-
ously, which significantly reduce the computation time.
key words: fast hypercomplex polar Fourier analysis, hypercomplex polar
Fourier analysis, Fourier analysis

1. Introduction

Fourier analysis has been widely used and is still under
active research in image processing, signal processing and
many engineering fields [1]. By representing image as hy-
percomplex numbers, especially the quaternions discovered
by Hamilton [2],hypercomplex Fourier transform is pro-
posed for color image processing [3]. The relationship be-
tween right-side quaternion Fourier transform and left-side
quaternion Fourier transform is established [4]. Based on
hypercomplex Fourier transform, effective algorithms for
motion estimation in color image sequences are studied [5].
Quaternionic Gabor filters are designed to combine the color
channels and the orientations in the image plane [6].

Inspired from these findings, we have studied hyper-
complex polar Fourier analysis. By introducing a hyper-
complex number, hypercomplex polar Fourier analysis [8]
treats a signal as a vector field and generalizes the polar
Fourier analysis [7]. Hypercomplex polar Fourier analysis
can handle color image. With orthogonality, it can decom-
pose and reconstruct color image. The coefficients hold ro-
tation invariant property. With these properties, it can be
widely used as an image processing tool. Unfortunately,
hypercomplex polar Fourier analysis involve many Bessel
function and trigonometric computations, for which no fast
method has been reported. Therefore, reduction of the com-
putation time is very significant.
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This paper focuses on fast hypercomplex polar Fourier
analysis. Fast and compact method to compute the coef-
ficients of hypercomplex polar Fourier analysis is proposed
by using mathematical properties of trigonometric functions
and points relationships in multi-spectral images. The two
dimensional basis function of hypercomplex polar Fourier
analysis has symmetry properties with respect to the x axis,
y axis, y = x line, y = −x line and origin that can be used
for fast computation. The computational complexity can be
reduced by calculating half of the first quadrant. For im-
age processing applications, computation time is important
factor. Using the proposed method, only one eighth compu-
tational time is needed.

The organization of this paper is as follows. The ba-
sic theory of hypercomplex polar Fourier analysis including
mathematics definitions are provided in Sect. 2. Section 3
presents the proposed method in detail. Experiments are de-
signed to demonstrate effectiveness of the proposed method
in Sect. 4. Finally, Sect. 5 concludes this study.

2. Background

2.1 Hypercomplex Number

As a type of hypercomplex number and generalization of
complex number, the quaternion, its properties and appli-
cations have been studied [9]. In signal and image pro-
cessing, quaternion number based methods are actively re-
searched [3]–[6], [10].

Complex number has two components, the real part and
imaginary part. Quaternion has one real part and three imag-
inary parts. Given a, b, c, d ∈ R, a quaternion q ∈ H (H
denotes Hamilton) is defined as

q = S(q) +V(q),S(q) = a,V(q) = bi + c j + dk (1)

where S(q) is scalar part and V(q) is vector part. i, j, k are
imaginary operators obeying the following rules

i2 = j2 = k2 = −1, i j = − ji = k,
jk = −k j = i, ki = −ik = j,

(2)

The norm of quaternion q is

‖q‖ =
√

a2 + b2 + c2 + d2. (3)

Quaternion q is named as unit quaternion if it is in set

U = {q|q ∈ H, ‖q‖ = 1}. (4)
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If quaternion q in following set,

P = {q|q ∈ H,S(q) = 0}, (5)

it is called pure quaternion. The quaternions belonging to
set

S = {q|q ∈ U, q ∈ P}, (6)

are called unit pure quaternion. Euler formula holds for hy-
percomplex numbers,

eμφ = cos(φ) + μ sin(φ) (7)

Color image can be represented in as hypercomplex number
form [3]

f (x, y) = fR(x, y)i + fG(x, y) j + fB(x, y)k, (8)

where fR(x, y), fG(x, y) and fB(x, y) are the red, green and
blue components.

2.2 HyperComplex Polar Fourier Analysis

Given a 2D function f (x, y), it can be transformed from
cartesian coordinate to polar coordinate f (r, ϕ), where r and
ϕ denote radius and azimuth respectively. Hypercomplex
Polar Fourier analysis involves points within the largest in-
ner circle of the image. After normalization, it is defined on
the unit circle that r ≤ 1 and can be expanded with respect
to the basis function. Hypercomplex polar Fourier analysis
is defined as

f (r, ϕ) =
∞∑

n=1

∞∑
m=−∞

HPnmRnm(r)eμmϕ, (9)

where μ is unit pure quaternion and is defined as μ = 1√
3
i +

1√
3

j + 1√
3
k, and the coefficient is

HPnm =
1√
2π

∫ 1

0

∫ 2π

0
Rnm(r) f (r, ϕ)e−μmϕrdrdϕ

=
1√
2π

∫ 1

0

∫ 2π

0
Rnm(r) f (r, ϕ)(cos mϕ − μ sin mϕ)rdrdϕ

(10)

(a) Original (b) n = 5 (c) n = 10 (d) n = 20

(e) n = 40 (f) n = 60 (g) n = 80 (h) n = 100

Fig. 1 Hypercomplex polar Fourier analysis.

where

Rnm(r) =
1√
N(m)

n

Jm(xmnr), (11)

in which Jm is the m-th order first class Bessel series [11],
and N(m)

n can be deduced by imposing boundary conditions
according to the Sturm-Lioville (S-L) theory [12]. With
zero-value boundary condition,

N(m)
n =

1
2

J2
m+1(xmn), (12)

in which xmn is the nth positive root for Jm(x).
The coefficient HPnm is rotation invariant. Hypercom-

plex polar Fourier analysis is reversible. As Fig. 1 shown
with n increases bigger, more and more detail part of the
image can be obtained.

3. Fast Hypercomplex Polar Fourier Analysis

This section presents fast hypercomplex polar Fourier analy-
sis. From Eq. (10), for same radius r, the different integrand
part for each point is f (r, ϕ)(cos mϕ − μ sin mϕ). As shown
in Fig. 2, point (x, y) is a point in first quadrant below y = x,
has seven other symmetric points with respect to x axis, y
axis, y = x, y = −x and origin.

Mappings between polar and cartesian coordinates are
show in Table 1.

Fig. 2 Symmetric points in multi-spectral image.

Table 1 (r,θ) and its symmetric points.

Polar Coordinate Cartesian Coordinate
(r, θ) (x, y)
(r, π2 − θ) (y, x)
(r, π2 + θ) (−y, x)
(r, π − θ) (−x, y)
(r, π + θ) (−x, −y)
(r, 3π

2 − θ) (−y, −x)
(r, 3π

2 + θ) (y, −x)
(r, 2π − θ) (x, −y)
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Gm(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( f (x, y) + f (y, x) + f (−y, x) + f (−x, y)

+ f (−x,−y) + f (−y,−x) + f (y,−x) + f (x,−y))cos(mϕ) if mod(m, 4) = 0

( f (x, y) − f (−x, y) − f (−x,−y) + f (x,−y))cos(mϕ)

+( f (y, x) − f (−y, x) − f (−y,−x) + f (y,−x))sin(mϕ) if mod(m, 4) = 1

( f (x, y) − f (y, x) − f (−y, x) + f (−x, y)

+ f (−x,−y) − f (−y,−x) − f (y,−x) + f (x,−y))cos(mϕ) if mod(m, 4) = 2

( f (x, y) − f (−x, y) − f (−x,−y) + f (x,−y))cos(mϕ)

−( f (y, x) − f (−y, x) − f (−y,−x) + f (y,−x))sin(mϕ) if mod(m, 4) = 3

(22)

Hm(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( f (x, y) − f (y, x) + f (−y, x) − f (−x, y)

+ f (−x,−y) − f (−y,−x) + f (y,−x) − f (x,−y))sin(mϕ) if mod(m, 4) = 0

( f (x, y) + f (−x, y) − f (−x,−y) − f (x,−y))sin(mϕ)

+( f (y, x) + f (−y, x) − f (−y,−x) − f (y,−x))cos(mϕ) if mod(m, 4) = 1

( f (x, y) + f (y, x) − f (−y, x) − f (−x, y)

+ f (−x,−y) + f (−y,−x) − f (y,−x) − f (x,−y))sin(mϕ) if mod(m, 4) = 2

( f (x, y) + f (−x, y) − f (−x,−y) − f (x,−y))sin(mϕ)

−( f (y, x) + f (−y, x) − f (−y,−x) − f (y,−x))cos(mϕ) if mod(m, 4) = 3

(23)

Within period 2π, sin(ϕ) and cos(ϕ) functions are pe-
riodic functions. Periods for sin(mϕ) and cos(mϕ) are
2π/m. Derived from the periodic and symmetric properties
of trigonometric functions that used in FFT [13], mathemat-
ical relationships for trigonometric functions exist with re-
spect to different m. If l is divided by 4 with remainder 1
that means mod(l, 4) = 1, following relationship for sine
function can be deduced

sin
(
l
(
π

2
− θ

))
= cos(lθ), (13)

sin
(
l
(
π

2
+ θ

))
= cos(lθ), (14)

sin (l (π − θ)) = sin(lθ), (15)

sin (l (π + θ)) = −sin(lθ), (16)

sin

(
l

(
3π
2
− θ

))
= −cos(lθ), (17)

sin

(
l

(
3π
2
+ θ

))
= −cos(lθ), (18)

sin (l (2π − θ)) = −sin(lθ). (19)

Similar relationships also exist for cosine function and
other l values. For the eight symmetric points on the same
radius r, if coefficients can be calculated simultaneously,
then the computation time for trigonometric function and
Bessel function can be reduced.

Based on foregoing discussion, fast hypercomplex po-
lar Fourier analysis is given by

FastHPnm=
1√
2π

�

D

Rnm(
√

x2 + y2)

(Gm(x, y) − μHm(x, y))dxdy

, (20)

where

D = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ x2 + y2 ≤ 1} ,
(21)

and Gm(x, y) and Hm(x, y) are shown in Eq. (22), (23).
With same result, proposed method can share compu-

tation between symmetric points that substantially cut down
the time in order to obtain the final result. The proposed
method is unrelated to image content. Experiments are de-
signed and results are given in following section.

4. Experimental Results

The performance of the proposed fast hypercomplex po-
lar Fourier analysis in computation reduction is validated
through comparative experiments using different images.
Images with different content are tested for test to illustrate
the efficiency and feasibility of the proposed method over di-
rect computation. PC environment (Celeron 1.86 GHz, 2 G
Memory) is used to perform the experiments. Algorithms
are implemented by C++. GNU Scientific Library [14] is
used for Bessel function.

4.1 Synthetic Images

In this experiment, synthetic images are generated using the
formula ,

f (i, j) = round[random(N,N)],
0 ≤ f (i, j) ≤ 255,∀i, j,

(24)



LETTER
1169

Table 2 CPU elapsed time for synthetic images.

Resolution Direct Method Proposed Method Ratio
64*64 0.119 0.016 0.133

128*128 0.494 0.068 0.138
256*256 1.981 0.274 0.138
512*512 8.029 1.102 0.137

Fig. 3 Standard images.

Table 3 CPU elapsed time for test standard images.

Coefficients Direct Method Proposed Method Ratio
5 0.965 0.130 0.135

10 1.924 0.262 0.136
20 3.888 0.532 0.137
30 5.884 0.804 0.137
40 7.846 1.066 0.136

where f (i, j) is the function which its pixels integer in val-
ues, N×N the image resolution and i, j are the indices of the
image pixels. In this experiment, largest value V of f (i, j)
equals 255. Color image is generated.

These synthetic images are varied in resolution and
content. Hypercomplex polar Fourier analysis is applied to
the synthetic images. Direct calculations use Eq. (10). The
proposed methods use Eq. (20). The number of coefficients
computed for fast hypercomplex polar Fourier analysis is
20. With same computation result, but two methods take
different running time. Their computation performances in
terms of the average CPU elapsed time are given in Table 2.
The results show that computation time is greatly reduced.
Experimental results on real images are given in next sub-
section.

4.2 Real Images

Test data set consists of standard images as shown in Fig. 3.
With different number of coefficients computed, the perfor-
mances in terms of CPU elapsed time are given in Table 3.
From the result, the proposed method is effective and is un-
related to number of coefficients and image content. By
sharing computation between symmetric points, fast hyper-
complex polar Fourier analysis significantly boost the speed.

5. Conclusions

In this letter, fast hypercomplex polar Fourier analysis is
proposed based on previous work. By using the symmet-
ric properties and mathematical properties of trigonomet-
ric functions, the proposed method calculates one eighth of
Bessel functions and trigonometric functions. That means,
for two dimensional images proposed method largely re-
duces the computation time. Experimental results are given
on different images to illustrate the effectiveness. Image
processing applications that need fast hypercomplex polar
Fourier analysis will benefit from this work.
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