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Novel Algorithm for Polar and Spherical Fourier Analysis on Two
and Three Dimensional Images

Zhuo YANG†a), Nonmember and Sei-ichiro KAMATA†b), Member

SUMMARY Polar and Spherical Fourier analysis can be used to extract
rotation invariant features for image retrieval and pattern recognition tasks.
They are demonstrated to show superiorities comparing with other meth-
ods on describing rotation invariant features of two and three dimensional
images. Based on mathematical properties of trigonometric functions and
associated Legendre polynomials, fast algorithms are proposed for multi-
media applications like real time systems and large multimedia databases
in order to increase the computation speed. The symmetric points are com-
puted simultaneously. Inspired by relative prime number theory, systematic
analysis are given in this paper. Novel algorithm is deduced that provide
even faster speed. Proposed method are 9–15% faster than previous work.
The experimental results on two and three dimensional images are given to
illustrate the effectiveness of the proposed method. Multimedia signal pro-
cessing applications that need real time polar and spherical Fourier analysis
can be benefit from this work.
key words: polar Fourier analysis, spherical Fourier analysis, rotation
invariant, relative prime number, image retrieval

1. Introduction

Fourier analysis is very significant in multimedia signal pro-
cessing techniques and applications, such as shape descrip-
tion [1] and image retrieval [2]. By applying Fourier anal-
ysis to polar and spherical coordinates, polar and spherical
Fourier analysis are proposed to extract rotation invariant
features for analyzing two and three dimensional images and
demonstrated to show superiorities comparing with other
methods [3]. Rotation invariant feature extraction is one of
the essential challenges in multimedia retrieval because ob-
jects should be considered to be the same even if they are
rotated in many multimedia signal processing applications.
With the orthogonal property, polar and spherical Fourier
analysis can characterize the image function using a set of
mutually independent descriptors with minimum redundant
and maximal discriminant information.

Polar Fourier analysis introduced Foureir-Bessel series
to image analysis. Fourier-Bessel series is mainly used on
physics-related applications [4], [5]. With boundary condi-
tion for the basis functions, Fourier-Bessel series for image
functions that defined on a finite interval can be obtained.
Spherical Fourier analysis treats the object as a whole and
can more effectively describes three dimensional image data
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comparing to Spherical Harmonics that are used in repre-
sentation and registration of images [6]–[8]. Many Bessel
functions, associated Legendre polynomials [9] and trigono-
metric functions [10] are involved in coefficients generation.
The high computational complexity is the constraint for
multimedia signal processing applications such as limited
computing environments and large multimedia databases.
Therefore, it is very important to speed up the computation
speed.

Fast algorithms [11] are proposed by using mathemat-
ical properties of trigonometric functions and associated
Legendre polynomials. Inspired by [12], the basis function
of polar Fourier analysis has symmetry properties with re-
spect to the x axis, y axis, y = x line, y = −x line and origin
that can be used for fast computation. Similar properties ex-
ist in three dimensional case. Previous work is about 8 and
16 times faster than direct computation for polar and spher-
ical Fourier analysis respectively.

This paper focus on whether it is possible to develop
even faster algorithms. Inspired by number theory [13]–[15]
and its usage on discrete Fourier transform [12], [16], rela-
tive prime numbers are introduced to accelerate polar and
spherical Fourier analysis. Relative prime point is a point
that its coordinates are relative prime number. Probability
of relative prime points under odd and even number size im-
ages are about 0.61 and 0.81 respectively. Relative prime
points can be used to significantly boost computation speed
for polar and spherical Fourier analysis. They are orthog-
onal and reversible. The coefficients of them are rotation
invariant that can be used as patterns. Comparing to previ-
ous work, proposed method is about 9–15% faster.

The organization of this paper is as follows. The basic
theories of polar and spherical Fourier analysis and their fast
algorithms are introduced in Sect. 2. The proposed method
is presented in Sect. 3 after defining relative prime point and
analyzing its distribution. In Sect. 4, the performance of the
proposed methods for polar and spherical Fourier analysis
are compared with previous work against both two and three
dimensional images. The experimental results illustrate that
proposed method is really effective. Finally, Sect. 5 con-
cludes this study.

2. Background

This section briefly introduces the background of polar and
spherical Fourier analysis [3] and fast algorithms [11].

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers
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2.1 Polar Fourier Analysis

After transforming two dimensional image function f (x, y)
from cartesian coordinates to polar coordinates f (r, ϕ),
where r and ϕ denote radius and azimuth respectively. It
is defined on the unit circle that r ≤ 1, and can be expanded
with respect to the basis functions Ψnm(r, ϕ) as

f (r, ϕ) =
∞∑

n=1

∞∑
m=−∞

PnmΨnm(r, ϕ), (1)

where the coefficient is

Pnm =

∫ 1

0

∫ 2π

0
f (r, ϕ)Ψ∗nm(r, ϕ)rdrdϕ. (2)

The basis function is given by

Ψnm(r, ϕ) = Rnm(r)Φm(ϕ), (3)

where

Rnm(r) =
1√
N(m)

n

Jm(xmnr), (4)

in which Jm is the m-th order first class Bessel series [9], and

Φm(ϕ) =
1√
2π

eimϕ. (5)

N(m)
n can be deduced by imposing boundary conditions ac-

cording to the Sturm-Lioville (S-L) theory [10].
Rewrite (2) with (3)–(5),

Pnm =

∫ 1

0

∫ 2π

0
f (r, ϕ)(cos mϕ − i sin mϕ)

Rnm(r)rdrdϕ.
(6)

The coefficient |Pnm| is rotation invariant and is called
Polar Fourier Descriptors.

2.2 Spherical Fourier Analysis

Given a three dimensional image function f (x, y, z), it can be
transformed from cartesian coordinates to spherical coordi-
nates f (r, θ, ϕ) where r, θ and ϕ denote the radius, inclina-
tion and azimuth respectively. It is defined on the unit sphere
that r ≤ 1, and can be expanded in terms of Ψnlm(r, θ, ϕ)

f (r, θ, ϕ) =
∞∑

n=1

∞∑
l=0

l∑
m=−l

SnlmΨnlm(r, θ, ϕ), (7)

where the coefficient is

Snlm =

∫ 1

0

∫ π

0

∫ 2π

0
f (r, θ, ϕ)

Ψ∗nlm(r, θ, ϕ)r2 sin θdrdθdϕ.

(8)

The basis function is given by

Ψnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ), (9)

where

Rnl(r) =
1√
N(l)

n

j(xlnr), (10)

in which xln are positive roots for jl(x)

jl(x) =

√
π

2x
Jl+ 1

2
(x), (11)

and

Ylm(θ, ϕ) =

√
(2l + 1)(l − m)!

4π(l + m)!
Plm(cos θ)eimϕ, (12)

in which Plm is the associated Legendre polynomial. N(l)
n is

determined by S-L boundary conditions.
The coefficient of spherical Fourier analysis is rewrit-

ten with (9)–(12),

Snlm =

∫ 1

0

∫ π

0

∫ 2π

0
f (r, θ, ϕ)Plm(cos θ)

(cos mϕ − i sin mϕ)

√
(2l + 1)(l − m)!

2π(l + m)!
Rnl(r)r2 sin θdrdθdϕ.

(13)

Spherical Fourier Descriptor is defined as√√√ l∑
m=−l

|Snlm|. (14)

and is rotation invariant property of the three dimensional
image function for n and l.

2.3 Fast Algorithms

From Eq. (8), as for the points on same radius r, the differ-
ent integrand part of each point is f (r, ϕ)(cos mϕ− i sin mϕ).
Point (x, y) is a point in first quadrant below y = x, has seven
other symmetric points with respect to x axis, y axis, y = x,
y = −x and origin.

As known sin(ϕ) and cos(ϕ) functions are periodic
functions with period 2π. Periods for sin(mϕ) and cos(mϕ)
are 2π/m. Derived from the periodic and symmetric proper-
ties of trigonometric functions that used in FFT [12], math-
ematical relationships for trigonometric functions exist with
respect to different m. Fast algorithm is given by

Fast Pnm=

�

D

Rnm(
√

x2 + y2)

(Gm(x, y) − iHm(x, y))dxdy,

(15)

where

D = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ x2 + y2 ≤ 1}, (16)
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Gm(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( f (x, y) + f (y, x) + f (−y, x) + f (−x, y)

+ f (−x,−y) + f (−y,−x) + f (y,−x) + f (x,−y))cos(mϕ) if mod(m, 4) = 0

( f (x, y) − f (−x, y) − f (−x,−y) + f (x,−y))cos(mϕ)

+( f (y, x) − f (−y, x) − f (−y,−x) + f (y,−x))sin(mϕ) if mod(m, 4) = 1

( f (x, y) − f (y, x) − f (−y, x) + f (−x, y)

+ f (−x,−y) − f (−y,−x) − f (y,−x) + f (x,−y))cos(mϕ) if mod(m, 4) = 2

( f (x, y) − f (−x, y) − f (−x,−y) + f (x,−y))cos(mϕ)

−( f (y, x) − f (−y, x) − f (−y,−x) + f (y,−x))sin(mϕ) if mod(m, 4) = 3

(17)

Hm(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( f (x, y) − f (y, x) + f (−y, x) − f (−x, y)

+ f (−x,−y) − f (−y,−x) + f (y,−x) − f (x,−y))sin(mϕ) if mod(m, 4) = 0

( f (x, y) + f (−x, y) − f (−x,−y) − f (x,−y))sin(mϕ)

+( f (y, x) + f (−y, x) − f (−y,−x) − f (y,−x))cos(mϕ) if mod(m, 4) = 1

( f (x, y) + f (y, x) − f (−y, x) − f (−x, y)

+ f (−x,−y) + f (−y,−x) − f (y,−x) − f (x,−y))sin(mϕ) if mod(m, 4) = 2

( f (x, y) + f (−x, y) − f (−x,−y) − f (x,−y))sin(mϕ)

−( f (y, x) + f (−y, x) − f (−y,−x) − f (y,−x))cos(mϕ) if mod(m, 4) = 3

(18)

Fig. 1 3D space symmetric points.

and Gm(x, y) and Hm(x, y) are given in Eqs. (17) and (18).
By using this equation, the coefficient can be generated by
using part of the basic functions. Computational complexity
is reduced, only one eighth of the trigonometric and Bessel
coefficients are needed.

From Eq. (13), for the points with the same ra-
dius r, the different integrand part of each point is
f (r, θ, ϕ)Plm(cos θ)(cos mϕ − i sin mϕ). As Fig. 1 shown,
point (x, y, z) in the first spherical quadrant bound with y = 0
and y = x planes, has 15 other symmetric points with respect
to x axis, y axis, z axis, y = x plane, y = −x plane and origin.

Mathematical property of associated Legendre polyno-
mial [12] is given by

Plm(−x) =

⎧⎪⎪⎨⎪⎪⎩Plm(x) if l + m is even

−Plm(x) if l + m is odd
, (19)

for integer l and m. With this property, by combining the
eight symmetric points in both up half sphere and down half
sphere, fast algorithm is given by

FastSnlm=

�

S

Rnl

(√
x2 + y2 + z2

)

Plm

⎛⎜⎜⎜⎜⎜⎝ |z|√
x2 + y2 + z2

⎞⎟⎟⎟⎟⎟⎠
√

(2l + 1)(l − m)!
2π(l + m)!

(Glm(x, y, z) − iHlm(x, y, z))dxdydz

, (20)

where

S = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 1,
x2 + y2 + z2 ≤ 1} , (21)

and Glm(x, y, z) and Hlm(x, y, z) are given in Eqs. (22) and
(23). By using this equation, the coefficient can be com-
puted by only calculating half of the first spherical quadrant.
Computational complexity is reduced, only one sixteenth of
the trigonometric function, Bessel function and associated
Legendre polynomial coefficients are calculated. The fast
algorithms are irrelevant with image content [11].

3. Novel Algorithm

Foregoing section introduced background and fast algo-
rithms. Whether it is possible to compute coefficients of
polar and spherical Fourier analysis much faster is an inter-
esting question. Inspired by number theory [13]–[15], this
section presents faster algorithms for coefficient calculation
that involve much more symmetric points computed simul-
taneously.

Let’s recall number theory knowledge. Given two inte-
gers a and b, with at least one of these being nonzero. The
largest positive integer that divides both a, b is termed as the
greatest common divisor of a and b.

gcd(a, b). (24)
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Glm(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(( f (x, y, z) + f (y, x, z) + f (−y, x, z) + f (−x, y, z)

+ f (−x,−y, z) + f (−y,−x, z) + f (y,−x, z) + f (x,−y, z))

+(−1)l( f (x, y,−z) + f (y, x,−z) + f (−y, x,−z) + f (−x, y,−z)

+ f (−x,−y,−z) + f (−y,−x,−z) + f (y,−x,−z) + f (x,−y,−z)))cos(mϕ) if mod(m, 4) = 0

(( f (x, y, z) − f (−x, y, z) − f (−x,−y, z) + f (x,−y, z))+

(−1)l+1( f (x, y,−z) − f (−x, y,−z) − f (−x,−y,−z) + f (x,−y,−z)))cos(mϕ)

+(( f (y, x, z) − f (−y, x, z) − f (−y,−x, z) + f (y,−x, z))+

(−1)l+1( f (y, x,−z) − f (−y, x,−z) − f (−y,−x,−z) + f (y,−x,−z)))sin(mϕ) if mod(m, 4) = 1

(( f (x, y, z) − f (y, x, z) − f (−y, x, z) + f (−x, y, z)

+ f (−x,−y, z) − f (−y,−x, z) − f (y,−x, z) + f (x,−y, z))

+(−1)l( f (x, y,−z) − f (y, x,−z) − f (−y, x,−z) + f (−x, y,−z)

+ f (−x,−y,−z) − f (−y,−x,−z) − f (y,−x,−z) + f (x,−y,−z)))cos(mϕ) if mod(m, 4) = 2

(( f (x, y, z) − f (−x, y, z) − f (−x,−y, z) + f (x,−y, z))+

(−1)l+1( f (x, y,−z) − f (−x, y,−z) − f (−x,−y,−z) + f (x,−y,−z)))cos(mϕ)

−(( f (y, x, z) − f (−y, x, z) − f (−y,−x, z) + f (y,−x, z))+

(−1)l+1( f (y, x,−z) − f (−y, x,−z) − f (−y,−x,−z) + f (y,−x,−z)))sin(mϕ) if mod(m, 4) = 3

(22)

Hlm(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(( f (x, y, z) − f (y, x, z) + f (−y, x, z) − f (−x, y, z)

+ f (−x,−y, z) − f (−y,−x, z) + f (y,−x, z) − f (x,−y, z))

+(−1)l( f (x, y,−z) − f (y, x,−z) + f (−y, x,−z) − f (−x, y,−z)

+ f (−x,−y,−z) − f (−y,−x,−z) + f (y,−x,−z) − f (x,−y,−z)))sin(mϕ) if mod(m, 4) = 0

(( f (x, y, z) + f (−x, y, z) − f (−x,−y, z) − f (x,−y, z))+

(−1)l+1( f (x, y,−z) + f (−x, y,−z) − f (−x,−y,−z) − f (x,−y,−z)))sin(mϕ)

+(( f (y, x, z) + f (−y, x, z) − f (−y,−x, z) − f (y,−x, z))+

(−1)l+1( f (y, x,−z) + f (−y, x,−z) − f (−y,−x,−z) − f (y,−x,−z)))cos(mϕ) if mod(m, 4) = 1

(( f (x, y, z) + f (y, x, z) − f (−y, x, z) − f (−x, y, z)

+ f (−x,−y, z) + f (−y,−x, z) − f (y,−x, z) − f (x,−y, z))

+(−1)l( f (x, y,−z) + f (y, x,−z) − f (−y, x,−z) − f (−x, y,−z)

+ f (−x,−y,−z) + f (−y,−x,−z) − f (y,−x,−z) − f (x,−y,−z)))sin(mϕ) if mod(m, 4) = 2

(( f (x, y, z) + f (−x, y, z) − f (−x,−y, z) − f (x,−y, z))+

(−1)l+1( f (x, y,−z) + f (−x, y,−z) − f (−x,−y,−z) − f (x,−y,−z)))sin(mϕ)

−(( f (y, x, z) + f (−y, x, z) − f (−y,−x, z) − f (y,−x, z))+

(−1)l+1( f (y, x,−z) + f (−y, x,−z) − f (−y,−x,−z) − f (y,−x,−z)))cos(mϕ) if mod(m, 4) = 3

(23)

Here are some examples gcd(2, 6) = 2, gcd(3, 5) = 1 and
gcd(3, 8) = 1.

Given two integers a and b, they are said to be rela-
tive prime if their greatest common divisor is 1. They are
defined [14] by

a⊥b, if gcd(a, b) = 1. (25)

Conventionally 1 is relative prime to any other positive inte-
ger [13].

1⊥a, if a ∈ N. (26)

Given an N × N size image, there are two steps needed to
transform from conventional cartesian coordinate to normal-
ized unit coordinate that polar Fourier analysis defined.

First, move the origin from left upper corner of image
to the center. The transform equation of a point P(Xp,Yp)
from original coordinate to its corresponding centered coor-
dinate (Xc,Yc) is given by

CartesianToCenter(Xp,Yp)

=

(
Xp − N − 1

2
,

N − 1
2
− Yp

)
= (Xc,Yc).

(27)

Second, the centered coordinate is normalized to unit. The
transform equation from centered coordinates to normalized
is

CenterToUnit(Xc,Yc) =

(
2Xc

N − 1
,

2Yc

N − 1

)
= (x, y), (28)

and its reverse transform equation is
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Fig. 2 Odd and even number size image mapping in the first quadrant.

UnitToCenter(x, y) =

(
(N − 1)x

2
,

(N − 1)y
2

)
= (Xc,Yc).

(29)

For example in 21 × 21 size image, cartesian coordinates
(Xp,Yp) are (12, 9), (14, 8) and (16, 7). Based on Eq. (27),
after moving origin to center of image their coordinates
(Xc,Yc) equal to (2, 1), (4, 2) and (6, 3). Based on Eq. (28),
after normalized to unit their coordinates (x, y) are (0.2, 0.1),
(0.4, 0.2) and (0.6, 0.3). Figure 2 shows the first quadrant of
21 × 21 size image after mapping to unit circle. We define
(x, y) is a relative prime point if satisfied

rpp(x, y) =

⎧⎪⎪⎨⎪⎪⎩Xc⊥Yc, if N is odd

2Xc⊥2Yc, if N is even.
(30)

Given a relative prime point (x, y), for odd number size
image, the points set in same angle can be represented by
{(kx, ky)|k ∈ N}, for even number size image, they can be
represented by {((2k − 1)x, (2k − 1)y)|k ∈ N}. The relative
prime points distributions of odd number size image and
even number size image are different as shown in Fig. 2.
When computing the coefficient of polar Fourier analysis,
no need to generate the angular part if a point is not a rel-
ative prime point. Table 1 gives a distribution of relative
prime points within a circle with different size radius.

Table 2 gives a distribution of relative primes but only
for odd numbers. This is useful for even number size image.
There is theoretical proof [15] to show the probability of two
randomly given integers

p(a⊥b) =
1
ζ(2)

=
6
π2
≈ 0.607927102 ≈ 61%, (31)

where ζ(z) refers to the Riemann zeta function. From Ta-
bles 1, 2 and Eq. (31), we can find that large number of
points are not relative prime points, that means their angular
part is not needed to calculated while computing coefficient
of polar Fourier analysis. The improvement is unrelated to
image content itself. That will be shown in next section.

Based on foregoing discussion, novel algorithm to
compute coefficient of polar Fourier analysis is given by

Table 1 Probability of Relative Prime Points in Odd Number Size Im-
age.

Radius Relative Prime Points Probability
1–200 9544 0.614434

201–400 28657 0.610321
401–600 47746 0.609277
601–800 66847 0.608879

801–1000 85927 0.608544
1001–2000 716216 0.608383

Table 2 Probability of Relative Prime Points in Even Number Size Im-
age.

Radius Relative Prime Points Probability
1–199 3186 0.818392

201–399 9550 0.813043
401–599 15918 0.811977
601–799 22273 0.811491
801–999 28655 0.811412

1001–1999 238738 0.811066

FasterPnm=

�

A

K∑
k=1

{
Rnm

(
k
√

x2 + y2

)

(Gm(kx, ky) − iHm(kx, ky))

}
dxdy,

(32)

where

K =

⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1√
x2 + y2

⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (33)

and

A = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x,
0 ≤ x2 + y2 ≤ 1, rpp(x, y)}, (34)


x� is floor function that return integral part of x. Given a
point (x, y) that is a relative prime point, then by multiplying
a factor k all the coordinates (kx, ky) that are in the same an-
gle can be obtained. Figure 3 gives an example to compute
24 points together. By using Eq. (32) much more symmetric
points are involved, and only small number of computation
is needed to generate the coefficient. With same result, the
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Fig. 3 Symmetric relative prime points.

Fig. 4 3D symmetric relative prime points.

computation time is different as shown in experimental re-
sults.

For each slice of a sphere, it is similar to a circle as
shown in Fig. 2. Therefore, coefficient of spherical Fourier
analysis can be computed by

FasterSnlm =

�

B

K∑
k=1

{
Rnl

(√
k2x2 + k2y2 + z2

)

Plm

⎛⎜⎜⎜⎜⎜⎝ |z|√
k2x2 + k2y2 + z2

⎞⎟⎟⎟⎟⎟⎠
√

(2l + 1)(l − m)!
2π(l + m)!

(Glm(kx, ky, z) − iHlm(kx, ky, z))}dxdydz,

(35)

where

K =

⎢⎢⎢⎢⎢⎢⎢⎢⎣
√

1 − z2√
x2 + y2

⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (36)

and

B = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 1,
x2 + y2 + z2 ≤ 1, rpp(x, y)}, (37)

and Glm(x, y, z) and Hlm(x, y, z) are given in Eq. (22) and
Eq. (23). Figure 4 shows 32 points are computed at the same

time. Much more symmetric points are calculated concur-
rently. By sharing computation between symmetric points,
time reduction is achieved without information loss.

4. Experimental Results

The performance of the proposed algorithms for polar and
spherical Fourier analysis is validated through comparative
experiments using two and three dimensional images. Vari-
ous images are tested to illustrate the effectiveness and fea-
sibility of the proposed algorithms. PC environment (Intel
Celeron 1.86 G Hz, 2 G Memory) is used to perform the ex-
periments.

4.1 Two Dimensional Images

The performance tests of coefficient computation of polar
Fourier analysis are carried out for two dimensional im-
ages. The real images for testing consist of eight standard
images. Two dimensional images that used in the test are
shown in Fig. 5. The distributions of relative prime points
on odd and even size images are different. For better under-
standing the performance, the images are resized to odd and
even size. Different coefficients of polar Fourier analysis are
computed. The test results are shown in Table 3. With the
same computation result, the calculation time is different.
As shown in Fig. 2 that discussed in previous section, rel-
ative prime point is computed and shared with other points
on the same angle. Probability of relative prime points under
odd number size images is about 0.61. Based on the results,
proposed method is about 15% faster than previous work in
odd size images. Probability of relative prime points under
even number size images is about 0.81. As for even size im-
ages, computation time of proposed method takes 10% less
than previous work.

4.2 Three Dimensional Images

Coefficient of spherical Fourier analysis are computed for
three dimensional images. Test data consist of eight im-
ages from Princeton three dimensional image database [17].
Three dimensional images that used in this experiment are
shown in Fig. 6. Because the distributions of relative prime
points on odd and even size images are different, the images
are resized to odd and even size for performance test. Differ-
ent coefficients of spherical Fourier analysis are calculated.
Table 4 gives detail about test results. With the same co-
efficient result, the CPU elapsed time is reduced. For each
slice of sphere, it is similar with two dimensional images as
shown in Fig. 4. Based on the results, proposed method is
about 15% faster than previous work in odd size images. As
for even size images, computation time of proposed method
takes 9% less than previous work.

5. Conclusions

In this paper, novel algorithm for polar and spherical Fourier
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Fig. 5 Two dimensional images.

Fig. 6 Three dimensional images.

Table 3 CPU elapsed time for two dimensional images.

Size C T S P P/T P/S
127 10 3.790 0.486 0.412 0.109 0.851
127 20 7.477 0.958 0.825 0.110 0.861
128 10 3.878 0.514 0.465 0.119 0.902
128 20 7.752 1.030 0.924 0.119 0.897
C = coefficient, T = traditional method, S = symmetric
method, P = proposed method

Table 4 CPU elapsed time for three dimensional images.

Size C T S P P/T P/S
127 10 337.523 22.350 18.950 0.056 0.848
127 20 674.415 44.693 37.996 0.056 0.849
128 10 355.921 23.726 21.591 0.061 0.909
128 20 711.403 47.406 43.320 0.061 0.912
C = coefficient, T = traditional method, S = symmetric
method, P = proposed method

analysis is proposed for two and three dimensional images.
Based on previous work that deduced by using mathemati-
cal properties of trigonometric functions and associate Leg-
endre polynomials, number theory is employed to boost the
computation speed of polar and spherical Fourier analysis
in this paper. Much more symmetric points are computed
simultaneously. Experimental results are given on both two
and three dimensional images to illustrate the effectiveness
of the proposed method. Proposed algorithm for polar and
spherical Fourier analysis is 9–15% faster than previous
work. Investigations on further improvement and hardware
based enhancement are under consideration as future work.
Wide range of multimedia signal processing applications
that need polar and spherical Fourier analysis will benefit
from this work.
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