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Refactoring Problem of Acyclic Extended Free-Choice Workflow
Nets to Acyclic Well-Structured Workflow Nets

Shingo YAMAGUCHI†a), Senior Member

SUMMARY A workflow net (WF-net for short) is a Petri net which
represents a workflow. There are two important subclasses of WF-nets:
extended free-choice (EFC for short) and well-structured (WS for short).
It is known that most actual workflows can be modeled as EFC WF-nets;
Acyclic WS is a subclass of acyclic EFC but has more analysis methods.
An acyclic EFC WF-net may be transformed to an acyclic WS WF-net
without changing the external behavior of the net. We name such a trans-
formation Acyclic EFC WF-net refactoring. We give a formal definition of
acyclic EFC WF-net refactoring problem. We also give a necessary condi-
tion and a sufficient condition for solving the problem. Those conditions
can be checked in polynomial time. These result in the enhancement of the
analysis power of acyclic EFC WF-nets.
key words: workflow net, refactoring, well-structured, soundness, branch-
ing bisimilarity

1. Introduction

A workflow net (WF-net for short) [1] is a Petri net [2] which
represents a workflow. There are two important subclasses
of WF-nets: extended free-choice (EFC for short) and well-
structured (WS for short). It is known that most actual work-
flows can be modeled as EFC WF-nets; Acyclic WS is a
subclass of acyclic EFC but has more analysis methods, e.g.
heuristic computation of parallel degree [3].

In software engineering, code refactoring [4] has been
attracting a great deal of attention in order to reduce the
complexity of code. Code refactoring is to transform a
source code to a new form without changing its external be-
havior. We try to introduce the concept of refactoring to
the analysis of WF-nets. An acyclic EFC WF-net may be
transformed to an acyclic WS WF-net without changing its
external behavior. We name such a transformation acyclic
EFC WF-net refactoring. If a given acyclic EFC WF-net is
refactored to an acyclic WS WF-net, we can use the analysis
methods of WS WF-nets to analyze the EFC WF-net. This
results in the enhancement of the analysis power of EFC
WF-nets.

In this paper, we give a formal definition of acyclic
EFC WF-net refactoring problem. Next we give a necessary
condition and a sufficient condition for solving the problem.
We also show that those conditions can be checked in poly-
nomial time.
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2. Workflow Nets and Properties

A (labeled) WF-net is a labeled Petri net which represents a
workflow. A labeled Petri net is a four tuple N=(P,T, A, �).
P, T , and A (⊆(P×T )∪(T×P)) are finite sets of places, tran-
sitions, and arcs, respectively. Each transition of a WF-net
represents an action. Some actions can be observed, others
cannot. The former and the latter are called external and in-
ternal, respectively. Actions are identified by label. Internal
actions are labeled as a designated label τ. � : T→A∪{τ} is
a labelling function of transitions, where A denotes the set
of all possible external labels.

Definition 1 (WF-net [1]): A labeled Petri net N=(P,
T, A, �) is a (labeled) WF-net iff (i) N has a single source
place pI (

N•pI=∅ and ∀p∈(P−{pI}) :
N•p�∅) and a single

sink place pO (pO
N•=∅ and ∀p∈(P−{pO}) : p

N•�∅), where
for a node x (∈(P∪T )),

N•x and x
N• denote {y|(y, x)∈A} and

{y|(x, y)∈A}, respectively; and (ii) every place or transition
is on a path from pI to pO. �

Let N=(P,T, A, �) be a WF-net. We represent a mark-
ing of N as a bag over P. A marking is denoted by
M=[pM(p)|p∈P,M(p)>0], where M(p) denotes the number
of tokens in p. Let MX and MY be markings. MX=MY

denotes that ∀p∈P : MX(p)=MY (p). MX≥MY denotes that
∀p∈P : MX(p)≥MY (p). A transition t is said to be firable in
a marking M if M≥N•t. Firing t in M results in a new marking
M′ (=M∪t

N•−N•t). This is denoted by M[N, t〉M′. A marking
M′ is said to be reachable from a marking M if there exists
a firing sequence of transitions transforming M to M′. The
set of all possible markings reachable from M is denoted by
R(N,M).

There are two important subclasses of WF-nets: WS
and EFC. A structural characterization of good workflows
is that two paths initiated by a transition/place should not
be joined by a place/transition. WS is derived from this
structural characterization. To give the formal definition
of WS, we introduce some notations. The Petri net ob-
tained by connecting pO with pI via an additional transi-
tion t∗ is called the short-circuited net of N, denoted by N
(=(P,T∪{t∗}, A∪{(pO, t∗), (t∗, pI)}, �∪{(t∗, τ)})). Let c be an
elementary∗∗ circuit in N. An elementary path ρ from a node
n1 (∈P∪T ) to another node n2 in N is said to be a handle of
∗∗A path/circuit is called elementary if no nodes appear more

than once in the path/circuit.
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c iff ρ∩c={n1, n2}. A handle from a transition to a place is
called a TP-handle. A handle from a place to a transition
is called a PT-handle. A WF-net N is WS if there are nei-
ther TP-handles nor PT-handles in N. A WF-net is EFC if
∀p1, p2∈P: p1

N•∩p2
N•�∅ ⇒ p1

N•=p2
N•. Acyclic WS is a sub-

class of acyclic EFC.
There are two important properties in WF-nets: sound-

ness and branching bisimilarity. Soundness is a criterion of
logical correctness.

Definition 2 (soundness [1]): A WF-net N is sound iff
(i) ∀M∈R(N, [pI]) : ∃M′∈R(N,M) : M′≥[pO]; (ii)
∀M∈R(N, [pI]) : M≥[pO] ⇒ M=[pO]; and (iii) there is no
dead transition in (N, [pI]). �

Branching bisimilarity is widely used as an equiv-
alence relation on WF-nets. Branching bisimilar-
ity intuitively equates WF-nets which have the same
external behavior. The behavior of a WF-net N
(=(P,T, A, �)) is captured by the reachability graph of
(N, [pI]). It is denoted by G=(V, E), where V=R(N, [pI]),
E={(M, �(t),M′)|M,M′∈V, t∈T,M[N, t〉M′}. Let M,M′∈V ,
α∈�(T ). We write M[N, α〉M′ if M′ is reachable from M
by following an edge labeled as α. We write M[N, τ∗〉M′ if
M′ is reachable from M by following any number of edges
labeled as τ. We write M[N, (α)〉M′ if either (i) α=τ and
M=M′; or (ii) M[N, α〉M′.
Definition 3 (branching bisimilarity [5]): Let GX and GY

be the reachability graphs of a WF-net (NX , [pX
I ]) and

another WF-net (NY , [pY
I ]), respectively. A binary rela-

tion R (⊆R(NX , [pX
I ])×R(NY , [pY

I ])) is branching bisimula-
tion iff (i) if MXRMY and MX[NX , α〉M′X , then ∃M′Y ,M

′′
Y∈R(NY , [pY

I ]): MY [NY , τ
∗〉M′′Y , M′′Y [NY , (α)〉M′Y , MXRM′′Y ,

and M′XRM′Y ; (ii) if MXRMY and MY [NY , α〉M′Y , then
∃M′X ,M

′′
X∈R(NX , [pX

I ]): MX[NX , τ
∗〉M′′X , M′′X [NX , (α)〉M′X ,

M′′X RMY , M′XRM′Y ; and (iii) if MXRMY then (MX=[pX
O]

⇒ MY [NY , τ
∗〉[pY

O]) and (MY=[pY
O] ⇒ MX[NX , τ

∗〉[pX
O]).

(NX , [pX
I ]) and (NY , [pY

I ]) are called branching bisimilar, de-
noted by (NX , [pX

I ])∼b(NY , [pY
I ]), iff there exists a branching

bisimulation R between GX and GY . �

3. Acyclic EFC WF-Net Refactoring Problem and Its
Properties

3.1 Definition and Analysis

We first give a formal definition of acyclic EFC WF-net
refactoring problem.

Definition 4: Acyclic EFC WF-net refactoring problem
Input: Acyclic EFC WF-net NX = (PX ,TX , AX , �X), where
every external action is unique in NX

Output: Acyclic WS WF-net NY = (PY ,TY , AY , �Y )
Constraints: (i) (NX , [pX

I ]) ∼b (NY , [pY
I ]); (ii) every external

action is unique in NY . �

Condition (ii) prohibits duplication of any external ac-
tion. An external action is performed by resources (workers

Fig. 1 An acyclic EFC but non-WS WF-net N1.

Fig. 2 An acyclic WS WF-net N1
′, which is obtained by using a triv-

ial algorithm. N1
′ is not an answer of the refactoring problem, because

external actions α, β, γ, and ζ are not unique.

and/or machines). If the action is duplicated, it would share
the resources with its duplicate. This makes it difficult that
those resources are scheduled. Furthermore the action in
the worst case is duplicated exponentially. This may disable
refactoring from running in polynomial time.

There seems to exist a trivial algorithm for solving this
problem. Let N be a sound EFC WF-net. It is known from
Theorem 1 of Ref. [1] that (N, [pI]) is live and safe. From
Theorem 14 of Ref. [2], we can view N as an interconnection
of strongly connected MG-components†. All the strongly
connected MG-components share t∗ as an articulation point,
where t∗ is the transition connecting pO and pI in N. There-
fore for each of the strongly connected MG-components, we
can obtain a MG WF-net†† by removing t∗ from the MG-
component. Connecting all the MG WF-nets so that those
source places and those sink places are respectively shared,
we can obtain an acyclic WS WF-net. Let us consider an ap-
plication example of this trivial algorithm. Figure 1 shows
an acyclic EFC but non-WS WF-net, denoted by N1. Ap-
plying the trivial algorithm to N1, we can obtain an acyclic
WS WF-net, denoted by N1

′, which is shown in Fig. 2. Un-
fortunately, N1

′ is not an answer of the refactoring problem
because it does not satisfy Constraint (ii), i.e. external ac-

†A MG-component N1 of a Petri net N is defined as a subnet
generated by transitions in N1 having the following two properties:
(i) Each place in N1 has at most one incoming arc and at most one
outgoing arc; and (ii) A subnet generated by transitions is the net
consisting of these transitions, all of their input and output places,
and their connecting arcs [2]. A Petri net is strongly connected if,
for every pair of nodes n1 and n2, it contains a directed path from
n1 to n2 and a directed path from n2 to n1.
††A WF-net is marked graph, MG for short, if |pI

N•|=|N•pO|=1

and ∀p∈(P−{pI , pO}) : |N•p|=|pN•|=1.
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tions α, β, γ, and ζ are not unique. Therefore the trivial
algorithm cannot solve the refactoring problem.

We give a decision problem related to the acyclic EFC
WF-net refactoring problem.

Definition 5: EFC-WF-REFACTORING
Instance: Acyclic EFC WF-net NX = (PX ,TX , AX , �X),
where every external action is unique in NX .
Question: Is there an acyclic WS WF-net NY =

(PY ,TY , AY , �Y ) such that (i) (NX , [pX
I ]) ∼b (NY , [pY

I ]); and
(ii) every external action is unique in NY? �

3.2 Necessary Condition

We give a necessary condition for EFC-WF-
REFACTORING.

Property 1: Let NX be an acyclic EFC but non-WS WF-
net whose every external action is unique. If NX is not
sound then there is no acyclic WS WF-net NY such that
(NX , [pX

I ]) ∼b (NY , [pY
I ]) and every external action is unique

in NY . �

Proof: Since NX is not sound, there is a dead marking be-
sides [pX

O] in (NX , [pX
I ]). The dead marking is denoted by

MX
dead. On the other hand, any acyclic WS WF-net is sound

because its short-circuited net has neither TP-handles nor
PT-handles. Since NY is sound, there is no dead marking
besides [pY

O] in (NY , [pY
I ]). Therefore there is no branch-

ing bisimulation relation R such that ∃MY∈R(NY , [pY
I ]) :

MX
deadRMY . Thus this property holds. Q.E.D.

This property implies that we cannot solve the refactor-
ing problem if a given acyclic EFC WF-net is not sound. It
is known from Corollary 1 of Ref. [1] that an EFC WF-net
can be checked for soundness in polynomial time. Thus the
above necessary condition can also be checked in polyno-
mial time.

3.3 Sufficient Condition

Let us consider the net shown in Fig. 1. In this net, well-
structuredness is lost on account of the structure composed
of p3, p4, t4, t5. We focus on such a structure, named cross
structure.

Definition 6 (TP-cross and PT-cross structures): Let N =

(P,T, A, �) be an EFC WF-net.

• For places p1, p2 (∈P) and transitions t1, t2 (∈T ),
(t1, t2, p1, p2) is a TP-cross structure if {(t1, p1), (t1, p2),
(t2, p1), (t2, p2)}⊆A.
• For places p1, p2 (∈P) and transitions t1, t2 (∈T ),

(p1, p2, t1, t2) is a PT-cross structure if {(p1, t1), (p1, t2),
(p2, t1), (p2, t2)}⊆A. �

We define a subclass of acyclic EFC but non-WS,
named cross-bridged (CB for short). A CB WF-net intu-
itively has only one cross structure, which is a cut-set of the
net. To give the formal definition of CB, we use an operator:
Given two WF-nets K and L, place refinement of a place p

Fig. 3 A CB WF-net, NCB
T P , with one TP-cross structure.

Fig. 4 A CB WF-net, NCB
PT , with one PT-cross structure.

of K with L yields a WF-net N = K⊗pL, which is built as

follows: p is replaced in K by L; transitions of
K•p become

input transitions of the source place of L; and transitions of
p

K• become output transitions of the sink place of L. The
formal definition of CB is given as follows:

Definition 7 (cross-bridged; CB): A WF-net N is cross-
bridged, CB for short, if N is

• (((NCB
T P⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO, where NCB

T P is the net
shown in Fig. 3, {pI , p1, p2, pO} is the set of places in
NCB

T P , and LI , L1, L2, LO are acyclic WS WF-nets.
• (((NCB

PT ⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO, where NCB
PT is the net

shown in Fig. 4, {pI , p1, p2, pO} is the set of places in
NCB

PT , and LI , L1, L2, LO are acyclic WS WF-nets. �

Now we give a sufficient condition for EFC-WF-
REFACTORING.

Property 2: Let NX be an acyclic EFC but non-WS WF-
net whose every external action is unique. If NX is CB then
there is an acyclic WS WF-net NY such that (NX , [pX

I ]) ∼b

(NY , [pY
I ]) and every external action is unique in NY . �

Proof: This proof consists of the following two cases: (i)
NX is (((NCB

T P⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO, where NCB
T P is the

net shown in Fig. 3, {pI , p1, p2, pO} is the set of places in
NCB

T P , and LI , L1, L2, LO are acyclic WS WF-nets. (ii) NX

is (((NCB
PT ⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO, where NCB

PT is the net
shown in Fig. 4, {pI , p1, p2, pO} is the set of places in NCB

PT ,
and LI , L1, L2, LO are acyclic WS WF-nets.

Case (i): Let us first consider a special case, i.e.
NX is NCB

T P . Assume that NY is the WF-net NWS
T P shown

in Fig. 5. NWS
T P is obviously acyclic WS. We must

that NWS
T P satisfies Constraints (i) and (ii) of the acyclic

EFC WF-net refactoring problem. In order to show
that NWS

T P satisfies Constraint (i), we assume the follow-
ing relation R between R(NCB

T P , [pI]) and R(NWS
T P , [pI]):

[pI]R[pI], [p1, p2]R[p3], [p1, p2]R[p1, p2], [pO]R[pO].
We show that R satisfies Condition (i) of branch-
ing bisimilarity. If [pI]R[pI] and [pI][NCB

T P , α〉[p1, p2]
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Fig. 5 An acyclic WS WF-net NWS
T P .

Fig. 6 An acyclic WS WF-net NWS
PT .

then [pI][NWS
T P , α〉[p3] and [p1, p2]R[p3] hold. If

[pI]R[pI] and [pI][NCB
T P , β〉[p1, p2] then [pI][NWS

T P , β〉[p3]
and [p1, p2]R[p3] hold. If [p1, p2]R[p3] and [p1, p2][NCB

T P ,γ〉
[pO] then [p3][NWS

T P , τ〉[p1, p2], [p1, p2]R[p1, p2], [p1, p2]
[NWS

T P , γ〉[pO], and [pO]R[pO] hold. We show that R

satisfies Condition (ii) of branching bisimilarity. If
[pI]R[pI] and [pI][NWS

T P , α〉[p3] then [pI][NCB
T P , α〉[p1, p2]

and [p1, p2]R[p3] hold. If [pI]R[pI] and [pI][NWS
T P , β〉[p3]

then [pI][NCB
T P , β〉[p1, p2] and [p1, p2]R[p3] hold. If

[p1, p2]R[p3] and [p3][NWS
T P , τ〉[p1, p2] then [p1,p2]R[p1,p2]

holds. If [p1, p2]R[p1, p2] and [p1, p2][NWS
T P , γ〉[pO] then

[p1, p2][NCB
T P , γ〉[pO] and [pO]R[pO] hold. R obviously sat-

isfies Condition (iii) of branching bisimilarity. Therefore
(NCB

T P , [pI]) ∼b (NWS
T P , [pI]) holds. And we can know from

the structure of NWS
T P that NWS

T P satisfies Constraint (ii) of
the refactoring problem, i.e. every external action is unique.
Thus if NX is NCB

T P then this property holds.
Next let us consider a general case, i.e. NX is

(((NCB
T P⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO. Assume that NY is

(((NWS
T P ⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO. The net is acyclic WS

because place refinement of a place in an acyclic WS WF-
net with an acyclic WS WF-net yields an acyclic WS WF-
net. Since (NCB

T P , [pI]) ∼b (NWS
T P , [pI]) and LI , L1, L2, LO are

acyclic WS WF-nets, ((((NCB
T P⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO,

[pI]) ∼b ((((NWS
T P ⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO, [pI]) holds.

And we can know from the net structure that every external
action is unique. Thus if NX is (((NCB

T P⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO

LO then this property holds.
Case (ii): Let us first consider a special case, i.e. NX is

NCB
PT . Assume that NY is the WF-net NWS

PT shown in Fig. 6.
NWS

PT is obviously acyclic WS. Assume the following rela-
tion R between R(NCB

PT , [pI]) and R(NWS
PT , [pI]): [pI]R[pI],

[p1, p2]R[p1, p2], [p1, p2]R[p3], [pO]R[pO]. We can prove
(NCB

PT , [pI]) ∼b (NWS
PT , [pI]) in a similar way as Case (i). And

we can know from the net structure that every external ac-
tion is unique. Thus if NX is NCB

PT then this property holds.
Next let us consider a general case, i.e. NX

is (((NCB
PT ⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO. Assume that NY

Fig. 7 An answer of the acyclic EFC WF-net refactoring problem for N1.

is (((NWS
PT ⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO. We can prove

((((NCB
PT ⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO, [pI]) ∼b ((((NWS

PT ⊗pI LI)
⊗p1 L1)⊗p2 L2)⊗pO LO, [pI]) holds in a similar way as
Case (i). And we can know from the net structure
that every external action is unique. Thus if NX is
(((NCB

PT ⊗pI LI)⊗p1 L1)⊗p2 L2)⊗pO LO then this property holds.
Q.E.D.

This property implies that we can solve the refactoring
problem if a given acyclic EFC WF-net is CB.

Let us consider the computation complexity of check-
ing the sufficient condition. We give an algorithm for check-
ing whether a given acyclic EFC but non-WS WF-net is CB.
� Decision of Cross-Brigdedness�
Input: Acyclic EFC but non-WS WF-net N (=(P,T, A, �))
Output: Is N CB?

1◦ Find cross structures in N. If two or more cross struc-
tures are found, output no and stop.

2◦ For each pair (p1, p2) ∈ P×P, if any path from pI to
p2 includes p1, and any path from p1 to pO includes
p2, then let N′ be a WF-net obtained by connecting
all paths from p1 to p2, apply � Decision of Well-
Structuredness� of Ref. [3] to N′. If the result is yes,
reduce the part corresponding to N′ in N to a place.

3◦ If the resultant net is isomorphic with NWS
T P or NWS

PT then
output yes and stop. Otherwise output no and stop.

Since� Decision of Well-Structuredness� is a poly-
nomial time algorithm,�Decision of Cross-Brigdedness�
can run in polynomial time obviously. Thus the above suffi-
cient condition can be checked in polynomial time.

Let us consider the net N1 shown in Fig. 1. We can
transform N1 to a net which is isomorphic to NCB

PT . This
implies that N1 is CB. We can know from the sufficient
condition that we can solve the refactoring problem for N1.
Figure 7 shows an answer of the problem.

4. Conclusion

In this paper, we have first given the formal definition of
acyclic EFC WF-net refactoring problem. Next we have
given a necessary condition and a sufficient condition for
solving the problem. Then we have shown that those con-
ditions can be checked in polynomial time. Finally we have
illustrated that an instance of the problem can be solved with
those conditions. Those conditions are only the first step to
the refactoring problem. As the next step, we plan to inves-
tigate refactoring for the more general case. To promote this
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plan, we first investigate decidability of the decision prob-
lem, EFC-WF-REFACTORING, related to the refactoring
problem. If the problem is decidable then we would give
a refactoring method for refactorable acyclic EFC WF-nets.
Otherwise, we would look for a larger subclass of acyclic
EFC refactorable to acyclic WS, and then give a refactor-
ing method for the subclass. The method is intuitively to
remove structures not allowed in acyclic WS WF-nets from
a given EFC WF-net, guaranteeing branching bisimilarity.
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