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Stochastic Power Minimization of Real-Time Tasks with
Probabilistic Computations under Discrete Clock Frequencies∗

Hyung Goo PAEK†, Jeong Mo YEO†, Nonmembers, Kyong Hoon KIM††, and Wan Yeon LEE†††a), Members

SUMMARY The proposed scheduling scheme minimizes the mean
power consumption of real-time tasks with probabilistic computation
amounts while meeting their deadlines. Our study formally solves the min-
imization problem under finitely discrete clock frequencies with irregular
power consumptions, whereas state-of-the-arts studies did under infinitely
continuous clock frequencies with regular power consumptions.
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1. Introduction

In dynamic voltage and frequency scaling (DVFS) mecha-
nism [1], processor speed is proportional to supplied clock
frequency and power consumption is approximately propor-
tional to a polynomial function of the clock frequency. Ex-
ploiting the convex relationship between clock frequency
and power consumption, many scheduling schemes have
been suggested to reduce power consumption by decreasing
clock frequency to the lower bound completing the worst-
case (maximum) computation amount exactly at deadlines
of real-time tasks.

A few recent studies [2]–[4] considered varying com-
putation amount, instead of a fixed but the worst-case com-
putation amount. Actual computation amount is smaller
than the worst-case in most cases and uncertain until the
completion. These studies translate the varying computa-
tion amount into a probabilistic computation amount and
minimize the mean power consumption of the probabilis-
tic computation amount. Lower clock frequency with lower
power consumption is assigned to the computation parts
with higher probability, and vice versa. When actual com-
putation amount is smaller than the worst-case computation
amount, this stochastic approach consumes less power than
the conservative approach that assigns a fixed frequency
completing the worst-case computation amount exactly at
the deadline. All these literatures solved the minimization
problem of power consumption of real-time tasks over in-

Manuscript received July 14, 2011.
Manuscript revised October 17, 2011.
†The authors are with Pukyong National University, S. Korea.
††The author is with Gyeongsang National University, S. Korea.
†††The author is with Dongduk Women’s University, S. Korea.
∗This research was supported by Basic Science Research Pro-

gram through the NRF of Korea funded by the Ministry of Edu-
cation, Science and Technology (2009-0064347), and by the MKE
(The Ministry of Knowledge Economy), Korea, under the ITRC
support program supervised by the NIPA (National IT Industry
Promotion Agency) (NIPA-2011-C1090-1131-0007).

a) E-mail: wanlee@dongduk.ac.kr
DOI: 10.1587/transinf.E95.D.1380

finitely continuous frequencies with an enforced formula be-
tween clock frequency and power consumption. However,
in real-life DVFS-enabled processors [1], only a finite set of
discrete frequencies are available and the relationship be-
tween available discrete frequencies and their power con-
sumptions is irregular. Furthermore, most of previous stud-
ies [1]–[3] dealt with the minimization problem only for a
single real-time task.

The proposed novel scheme formally solves the min-
imization problem of multiple real-time tasks over finitely
discrete clock frequencies with irregular power consump-
tions. The scheduling scheme minimizes the mean power
consumption of multiple real-time tasks with probabilistic
computation amounts while meeting their deadlines. The
scheme is designed to operate with a polynomial time com-
plexity.

2. Preliminaries

In the considered processor, M periodic tasks are given. The
mth task is denoted as T m. Each task T m should complete
its computation within its arrival period, which becomes its
deadline Dm. The required computation amount is uncertain
until the completion, but varying computation amount could
be estimated from statistical models of the variation sources,
on-line profiling, or off-line profiling [2]–[4].

Figure 1 shows the statistical models of varying com-
putation amount, where task computation amount is repre-
sented by the number of processor clock cycles required to
complete the task computation. Figure 1 (a) shows a prob-
ability distribution of required cycles, and Fig. 1 (b) shows
the tail cumulative distribution of the probability shown
in Fig. 1 (a). When the probability at the cth cycle is de-
noted as pc, the cumulative probability at the cth cycle is∑c

i=1 pi, and its tail cumulative probability at the cth cycle
is (1 − ∑c

i=1 pi). Henceforth we denote the tail cumulative
probability at the cth cycle of T m as Φm

c = (1 −∑c
i=1 pm

i ). In

Fig. 1 Statistical distributions of varying computation cycles.
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other words, Φm
c is the probability that T m is still running at

the cth progressed cycle. Note that Φm
c1
≥ Φm

c2
for c1 < c2,

because the cumulative distributions of all probability func-
tions are non-decreasing and thus their tail distributions are
non-increasing. The worst-case number of required compu-
tation cycles for T m is denoted as Wm. Tasks have different
Dm, Wm and Φm

c , which are known to the scheduler in ad-
vance.

Available K discrete frequencies are denoted as
F1, · · · , FK in increasing order. The power consumption at
Fi is denoted as Pi. If Fi < F j, then Pi < Pj. There is
no specific relationship between Fi and Pi. The execution
time of each cycle at Fi is 1

Fi
. It is assumed that overhead of

switching the supplied clock frequency is negligible.

3. Proposed Scheme

The instant frequency assigned to the cth cycle of T m is de-
noted as f m

c where f m
c ∈ {F1, · · · , FK}. Its power consump-

tion is denoted as P( f m
c ) where P(F1) = P1, · · · , P(FK) =

PK . Then the problem of minimizing the mean power con-
sumption of a single task T m while meeting its deadline Dm

can be formulated as follows:

Minimize
∑Wm

c=1 P( f m
c ) · Φm

c ,

subject to
∑Wm

c=1
1

f m
c

Dm ≤ 1.
(1)

The extended problem for M tasks can be formulated as fol-
lows:

Minimize
∑M

m=1
∑Wm

c=1 P( f m
c ) · Φm

c ,

subject to
∑M

m=1

∑Wm
c=1

1
f m
c

Dm ≤ 1.
(2)

A derived solution determines f m
c for each m and 1 ≤ c ≤

Wm. We refer to a schedule producing a solution of Eq. (2)
as Optimal Schedule.

3.1 Optimal Schedule of a Single Task

Optimal Schedule has the following properties, proved in
Appendix.

Lemma 1: The power-inefficient frequency Fy such that
Py−Px

Fy−Fx
>

Pz−Py

Fz−Fy
for Fx < Fy < Fz is excluded.

Lemma 2: fc1 ≤ fc2 for 1 ≤ c1 < c2 ≤ W.

By Lemma 1, we hereafter discard the power-inefficient
frequencies that are not in accordance with a convex func-
tion of their power consumptions. After excluding the
power-inefficient frequencies, the indexes of the remain-
ing clock frequencies are renumbered in increasing order of
their frequency values. For example, let’s consider F1, F2,
F3 and F4 are given as inputs. If F2 is the power-insufficient
frequency, then K = 4 is updated with K = 3 and the old
F3 and F4 are renumbered as F2 (= the old F3) and F3 (=
the old F4), respectively. Calculating Pk−Pk−1

Fk−Fk−1
> Pk+1−Pk

Fk+1−Fk
for

1 < k < K can select all power-inefficient frequencies. Then

the power consumptions of the remaining clock frequencies
construct a convex function with the input of their frequency
values, i.e., Pk−Pk−1

Fk−Fk−1
≤ Pk+1−Pk

Fk+1−Fk
for 1 < k < K.

By Lemma 2, we consider only switchings of the as-
signed instant frequency from a lower instant frequency to
a higher instant frequency. Hereafter the switching point
of the assigned instant frequency from Fk−1 to Fk (the in-
dex of the starting cycle to assign Fk) is denoted as πk.
Lemma 2 means that πk ≤ πk+1 in Optimal Schedule. If Fk−1

is switched into Fk+1 instead of Fk, πk+1 = πk. If Fk, · · · , FK

are not used, πk = · · · = πK = (W + 1). Then Eq. (1) can be
reformulated as follows:

Minimize P1 ·∑(π2−1)
c=π1

Φc + P2 ·∑(π3−1)
c=π2

Φc

+ · · · + PK ·∑W
c=πK
Φc,

subject to π2−π1
F1
+
π3−π2

F2
· · · + (W+1)−πK

FK
≤ D

(3)

where π1 = 1 because F1 is the lowest frequency.
If we know the values of all πks, we can directly obtain

Optimal Schedule. Unfortunately, however, the values of
πks depend on the given D. In order to find the values of
πks, we first examine the relationship among the values of
πks and next exploit it to obtain the values of πks associated
with the value of D. The following Theorem 1, proved in
Appendix, verifies the relationship among the values of πks.

Theorem 1: The values of πks in Optimal Schedule obey
the following relationship:

Φπx ·
Px − Px−1

1/Fx−1 − 1/Fx
= Φπy ·

Py − Py−1

1/Fy−1 − 1/Fy

for 2 ≤ x < y ≤ K.

From a fixed value πK , we can calculate deterministic
values of πK−1, · · · , π2 satisfying the relationship in Theo-
rem 1. Exhaustive searching of πK−1, · · · , π2 from πK = 1 to
πK = W enables us to find the exact πks matching D. The
procedure for finding πks works as follows; Initially, it as-
signs πK = 1 and searches for the switching point πk such
that

Φπk = ΦπK · PK−PK−1
1/FK−1−1/FK

· 1/Fk−1−1/Fk

Pk−Pk−1
for K > k > 1.

Because 0 ≤ Φπk ≤ 1 by the definition of Φc, πk such that
Pπk > 1 is set to 1. It calculates the execution time of the
searched schedule and compares it with the given deadline
D. If the execution time of the searched schedule is smaller
than the deadline, it increases the value of πK and again
searches for the switching point πk for K > k > 1. If πK = W
but the execution time is still smaller than the deadline, it
increases the value of πK−1 after fixing πK to (W + 1) and
searches for the remaining point πk for (K − 1) > k > 1.
Similarly, if π j = W but the execution time is still smaller
than the deadline, it increases the value of π j−1 instead of π j

after fixing π j to (W+1). This procedure is repeated until the
execution of the searched schedule is equal to the deadline.

The computational time complexity of the above pro-
cedure is O(K · (log2 W)2) in the average case. If the execu-
tion time when πK = W is smaller than D, the replacement
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of the base value πK with π j such that j < K is repeated
at most (K − 2) times until the execution when π j = W
is larger than D. With a base value of π j, the bisectional
search operation of the remaining point πi satisfying the re-
lationship in Theorem 1 requires O(log2 W) steps for each
i such that j > i > 1. When the base value of π j is se-
lected in a bisectional manner, the selection operation of
the fixed π j is repeated at most O(log2 W) times. Then
O((K − 2) · log2 W +K · log2 W · log2 W) = O(K · (log2 W)2).

3.2 Optimal Schedule of Multiple Tasks

Given Φm
c and Dm, the exhaustive search procedure de-

scribed in Sect. 3.1 can derive the minimum of Eq. (3),
which depends only on the allocated time δm · Dm where
0 < δm ≤ 1 and

∑M
m=1 δ

m ≤ 1. If we can obtain the mini-
mum of Eq. (3) for any allocated time δm · Dm, the result of
Eq. (2) is entirely dominated by the decision of δms. When
Ψm denotes the minimum value derived from Eq. (3) with a
decided δm, Eq. (2) can be reformulated as follows:

Mimimize
M∑

m=1

Ψm subject to
M∑

m=1

δm ≤ 1. (4)

As the allocated time Am = δm · Dm increases, the
power consumption Ψm decreases and the decrement ratio
of power consumption per unit time Ψm

∂Am decreases for each
T m by Lemma 3 in Appendix. In this case, the minimum of
Eq. (4) can be achieved by incrementally allocating an addi-
tional unit time to the task providing the largest decrement
of power consumption with the additional unit time. The
minimum of Eq. (4) occurs when

∑M
m=1

Am

Dm =
∑M

m=1 δ
m = 1.

The following numerical procedure allocates the avail-
able time to M tasks, so as to maximize the total decrements
of power consumptions obtained with the allocated times;
Initially, Wm

FK
is assigned to each Am in order to provide at

least the fastest frequency to all computations. Next, it cal-
culates the power decrement of each task when allocating
the remaining available time evenly to all tasks. If x de-
notes the maximum time simultaneously and additionally
allocatable to each task, then A1+x

D1 + · · ·+ AM+x
DM = 1 and thus

x = 1−∑M
m=1 Am/Dm

∑M
m=1 1/Dm . It calculates the decrement of each T m

between power consumption when assigning time Am and
that when assigning time (Am + x). It selects the task having
the largest power decrement and actually allocates the addi-
tional time x only to the task (i.e., Am ← (Am + x)). This
process is repeated until there is no more time allocatable to
any task (i.e.,

∑M
m=1

Am

Dm =
∑M

m=1 δ
m = 1).

The computational complexity of the above numerical
procedure is O(log M+1

M
(
∑M

m=1 Dm)·∑M
m=1{K·(log2 Wm)2+Wm})

in the average case. The operation to search for the values of
πks with an increased time requires O(K · (log2 Wm)2) steps
for each task, as explained in Sect. 3.1. The operation to
calculate the power decrement obtained with the additional
time requires O(Wm) steps for each task. The operations
to allocate addition time to the task with the largest power

decrement are repeated at most O(log M+1
M

(
∑M

m=1 Dm)) times,

where the total available time is smaller than
∑M

m=1 Dm and
(1 + 1

M )α ≤ ∑M
m=1 Dm.

The proposed scheduling scheme determines f m
c for

each T m at off-line time according to the above numerical
procedure. The scheduler preferentially executes the task T e

with the earliest deadline among multiple tasks, and assigns
the determined frequency f e

c of T e until the completion of
T e.

4. Conclusions

Our study formally solves a problem of minimizing the
mean power consumption of real-time tasks with probabilis-
tic computations under finitely discrete frequencies with ir-
regular power consumptions, whereas state-of-the-arts stud-
ies [4] did under infinitely continuous frequencies with reg-
ular power consumptions. Our solution can be applied
directly to real-life DVFS-enabled processor, whereas the
previous solutions cannot. Performance evaluation on our
scheme is omitted because the previous studies [2]–[4] ver-
ified well that, when actual computation is smaller than the
worst-case computation, the stochastic approach designed
with probabilistic computation saves more power than the
conservative approach designed with the worst-case compu-
tation. The problem of minimizing the mean power con-
sumption of probabilistic computations with overhead of
switching the supplied clock frequency remains for our fur-
ther study.
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Appendix

Lemma 1: The power-inefficient frequency Fy such that
Py−Px

Fy−Fx
>

Pz−Py

Fz−Fy
for Fx < Fy < Fz is excluded in Optimal

Schedule.

proof: Assume that Optimal Schedule uses the frequency
Fy to execute Cy = (Cx + Cz) cycles. We will show that an-
other schedule assigning Fx to Cx cycles and Fz to Cz cycles
consumes less power with the same execution time than the
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assumed Optimal Schedule. When Cx+Cz

Fy
= Cx

Fx
+

Cz

Fz
, the two

schedules have the same execution time. Then Cz · Fx

Fx−Fy
=

Cx · Fz

Fy−Fz
. If Py−Px

Fy−Fx
>

Pz−Py

Fz−Fy
and Cz · Fx

Fx−Fy
= Cx · Fz

Fy−Fz
, then

Cx ·( Px

Fx
− Py

Fy
)−Cz ·( Py

Fy
− Pz

Fz
) = (Px · Cx

Fx
+Pz · Cz

Fz
)−Py · (Cx+Cz)

Fy
< 0.

That is, the power consumption using Fy to execute (Cx+Cz)
cycles, Py · (Cx+Cz)

Fy
, is larger than that using Fx to execute Cx

cycles and Fz to execute Cz cycles, (Px · Cx

Fx
+Pz · Cz

Fz
). Hence

there is no Optimal Schedule using the frequency Fy. �

Lemma 2: In Optimal Schedule, fc1 ≤ fc2 for 1 ≤ c1 <
c2 ≤ W.

proof: Assume that fc1 > fc2 for c1 < c2 in Optimal Sched-
ule. Let Fa = fc1 and Fb = fc2 . Then Fa > Fb. By the def-
inition of Φc in Sect. 2, Φc1 ≥ Φc2 for c1 < c2. If Φc1 ≥ Φc2

and Fa > Fb, another schedule assigning Fb to the cth
1 cycle

and Fa to the cth
2 cycle consumes less power with the same

execution time than the assumed Optimal Schedule assign-
ing Fa to the cth

1 cycle and Fb to the cth
2 cycle. This is a

contradiction on the definition of Optimal Schedule. Hence
fc1 ≤ fc2 in Optimal Schedule. �

Theorem 1: The values of πks in Optimal Schedule obey
the following relationship:

Φπx ·
Px − Px−1

1/Fx−1 − 1/Fx
= Φπy ·

Py − Py−1

1/Fy−1 − 1/Fy

for 2 ≤ x < y ≤ K.

proof: Let us apply the Lagrange Multiplier Method [5] to
Eq. (3) in Sect. 3.1. Because Pk ·∑(πk+1−1)

c=πk
Φc = {(Pk−Pk−1)+

(Pk−1 − Pk−2)+ · · ·+ (P1 − 0)} ·∑(πk+1−1)
c=πk

Φc and (Pk − Pk−1) ·
(
∑(πk+1−1)

c=πk
Φc +

∑(πk+2−1)
c=πk+1

Φc + · · · +∑W
c=πK
Φc) = (Pk − Pk−1) ·∑W

c=πk
Φc,

P1 ·∑(π2−1)
c=π1

Φc + P2 ·∑(π3−1)
c=π2

Φc + · · · + PK ·∑W
c=πK
Φc

= (P1 − 0) ·∑W
c=π1
Φc + (P2 − P1)

·∑W
c=π2
Φc + · · · + (PK − PK−1) ·∑W

c=πK
Φc.

Also

π2−π1
F1
+
π3−π2

F2
· · · + W−πK

FK

= −π1 · 1
F1
+ π2 ·

(
1

F1
− 1

F2

)
+ · · · + πK

·
(

1
FK−1
− 1

FK

)
+W · 1

FK
.

When L(π2, · · · , πK , λ) =
∑K

k=2{(Pk − Pk−1) ·∑W
c=πk
Φc}+ P1 ·∑W

c=π1
+λ · {D − (

∑K
k=2 πk · ( 1

Fk−1
− 1

Fk
) + ( W

FK
− π1

F1
))},

∂L
∂λ
= D −

(∑K
k=2 πk ·

(
1

Fk−1
− 1

Fk

)
+
(

W
FK
− π1

F1

))

= 0,

and

∂L
∂πk
=

(Pk−Pk−1)·∑W
c=πk
Φc

∂πn
− λ ·

(
1

Fk−1
− 1

Fk

)

= 0 for 2 ≤ k ≤ K.

From the above equation
∑W

c=πk
Φc

∂πk
= λ · 1/Fk−1 − 1/Fk

Pk − Pk−1

and from solving the differential formula
∑W

c=πk
Φc

∂πk
= −Φπk .

Because −λ = Φπk · Pk−Pk−1
1/Fk−1−1/Fk

for each 2 ≤ k ≤ K,

Φπx · Px−Px−1
1/Fx−1−1/Fx

= Φπy · Py−Py−1

1/Fy−1−1/Fy

for 2 ≤ x < y ≤ K. �

Lemma 3: The power consumption of Optimal Schedule
constructs a convexly decreasing function with the input of
δ · D.

proof: The switching point πk of Fk increases with increas-
ing δ · D, because δ · D = ∑K

k=2 πk · ( 1
Fk−1
− 1

Fk
) + ( W

FK
− π1

F1
).

Let πa
k and πb

k denote the switching points of Fk when us-
ing the time δ · D and the time (δ · D + Δt) for arbi-
trary Δt > 0, respectively. Then πa

k < π
b
k . Because the

power consumptions of Optimal Schedule with δ · D and
(δ ·D+Δt) are

∑K
k=2{(Pk − Pk−1) ·∑W

c=πa
k
Φc}+ P1 ·∑W

c=π1
and

∑K
k=2{(Pk − Pk−1) · ∑W

c=πb
k
Φc} + P1 · ∑W

c=π1
respectively, the

decrement of power consumption gained with the additional
time Δt is

K∑

k=2

(Pk − Pk−1) ·
πb

k∑

c=πa
k

Φc, (A· 1)

where Δt =
∑K

k=2( 1
Fk−1
− 1

Fk
) · (πb

k − πa
k). Because Φc1 ≥

Φc2 for c1 < c2, the value ratio of
∑πb

n

c=πa
k
Φc to (πb

k − πa
k)

decreases with increasing δ · D for each k. Accordingly,
the value ratio of Eq. (A· 1) to Δt decreases with increasing
δ · D. This means that the power consumption of Optimal
Schedule constructs a convexly decreasing function with the
input of δ · D. �


