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SUMMARY  For personalized search, a user must provide her personal
information. However, this sometimes includes the user’s sensitive infor-
mation about individuals such as health condition and private lifestyle. It is
not sufficient just to protect the communication channel between user and
service provider. Unfortunately, the collected personal data can potentially
be misused for the service providers’ commercial advantage (e.g. for ad-
vertising methods to target potential consumers). Our aim here is to protect
user privacy by filtering out the sensitive information exposed from a user’s
query input at the system level. We propose a framework by introducing the
concept of query generalizer. Query generalizer is a middleware that takes
a query for personalized search, modifies the query to hide user’s sensitive
personal information adaptively depending on the user’s privacy policy, and
then forwards the modified query to the service provider. Our experimen-
tal results show that the best-performing query generalization method is
capable of achieving a low traffic overhead within a reasonable range of
user privacy. The increased traffic overhead varied from 1.0 to 3.3 times
compared to the original query.

key words: privacy, personalized search, privacy-enhancing query, query
generalizer

1. Introduction

With explosive growth in number of information sources,
personalization is becoming a key requirement for users.
It seems quite profitable for service providers so that they
can selectively offer services or products to the end-users
who are more interested and involved in them. For example,
Amazon recommends some personalized products for a user
based on the user’s purchase history [1].

Intuitively, for personalization, a user must expose her
specific information. However, this sometimes includes the
user’s sensitive information such as education attainment,
gender, lifestyle and preferences or be clue to infer them. In
particular, among users who seek electronic medical infor-
mation, personal privacy was ranked as their most important
concern [2]. Therefore personalized services cannot be pop-
ularly deployed without considering privacy concerns.

In this paper, we particularly examine how a privacy-
enhancing personalized search can be designed and how ef-
fective it can be in mitigating the possible privacy threats.
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Unfortunately, service providers can sometimes misuse the
user data for their commercial advantages. For instance,
popular social network services such as Facebook and MyS-
pace have intentionally exposed users’ personal data to in-
crease the number of their subscriber members [3]. Thus we
cannot assume that the service provides are trustworthy. Pri-
vacy concerns about identifying a querier from search query
have recently been discussed in detail by Dolin [4].

A possible approach is to use anonymous communi-
cation such as Tor network [5] to hide who wants to ask a
query. At the first glance, it seems enough to provide a rea-
sonable anonymity since the querier cannot be linked with
the real user. In practice, however, the use of only anony-
mous communication is not sufficient; an adversary can in-
fer the identity of the querier from her partial information
exposed in the query. This attack can be achieved by link-
ing the partial information, called quasi-identifier [6], to the
auxiliary information collected from other channels such as
the Web or public records. For example, Sweeney showed
that 87% (216 million of 248 million) of the population in
the United States can be uniquely identified based only on
ZIP code, gender and date of birth with the voter registration
list, which is publicly available [7]. This result was recently
updated by Golle. He showed that 63% of the population in
the United States can be uniquely identified [8].

For this problem, the current mainstream research
trend is to publish anonymized datasets through randomized
or cryptographic techniques [9]-[11] to add noises to data
records to achieve the privacy goals such as k-anonymity
so that a record cannot be distinguished from at least k — 1
other records. Although this approach was studied inten-
sively in the context of public data releases, there are three
significant limitations. First, the performance cost of the
anonymization process may be very huge, especially for
large and sparse databases. Second, the expensive update
cost is also required to maintain anonymized datasets even if
only a few records are newly inserted, deleted, or modified.
Third, much more critical drawback is that it can drastically
reduce the quality of the released datasets since anonymiza-
tion is typically enforced through generalization [12].

It is in this spirit that we propose a framework that
minimizes the data anonymization overheads at the time
of database release. Instead of putting all the burden of
anonymization on the preprocessing step before the release
of database, this cost is spread to each query processing
step: we introduce the concept of query generalizer to add
random noises at the time of query processing. The main
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idea here is to generalize users’ queries including quasi-
identifiers simply so that an adversary cannot obtain the
querier’s sensitive information from the queries; when a
user tries to access a service with her personal informa-
tion, a query generalizer should disallow this query since
it may include highly sensitive information. Instead, her
query is modified by removing some sensitive information
selectively and the modified query is delivered to the service
provider. Our framework makes this process transparent to
the end-user. This paper contributes in the following areas:

1. We propose the architecture of our privacy preserving
system using query generalizer. We discuss the pros
and cons of two possible deployments for our frame-
work and recommend three-tier architecture where
query generalizer is independently deployed on the
trusted third party. We explain why three-tier architec-
ture is more proper for the proposed framework (read
Sect. 3).

2. We discuss how to design the simple and efficient query
generalization algorithm to modify the user’s query
which mitigates the exposure of private user informa-
tion. We consider four reasonable schemes: Brute-
Force, Best-Fit, Worst-Fit and Random-Fit strategies
(read Sect. 4) and experimentally evaluate the proposed
query generalization algorithms with real datasets.
Simulation results show these schemes generally pro-
vide a low traffic overhead within a reasonable range of
user privacy. We recommend the Worst-Fit strategy; it
can provide privacy-preserving queries with the traffic
overhead comparable to that of the original query (read
Sect. 5).

2. Threat Model

We assume that an untrusted service provider has unlimited
computational power (i.e. the information theoretic notion
of security). After observing the query from a user with-
out any computational restriction, the service provider can
try to identify the user’s personal information uniquely by
combining the query with auxiliary information (also called
external knowledge, background knowledge, or side infor-
mation) that the service provider gleans from other chan-
nels such as the web, public records, or domain knowledge.
Here our goal is to secure users’ private information from
compromised service providers.

Formally, auxiliary information can be modeled as
database with its standard notation. A domain is a finite
set of mutually exclusive and exhaustive values. Let 7 be a
tuple consisting of m attributes, a; be an attribute of ¢ and D;
be a domain of a; for i € [1,m]. An attribute a; is a map-
ping from a set of tuples to a domain D; and t.a; represents
the mapped value in a domain D;. For example, in Table 1,
(“$100k™, “$50k™, “Asian”, “Male”, “Barnstable”) is a tuple
t. [Loan], [Income], [Race], [Gender], and [County]
are attributes of the tuple. The attribute a4, [Gender], is a
mapping to a domain D4 = {“Female”, “Male”} and t.ay is
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Table1  An example of auxiliary information.
Loan Income Race Gender County
$100k $50k Asian Male Barnstable

$20k $20k White Male Dukes

$20k $40k Black | Female Essex
$20k $40k Black | Female Dukes
$20k $20k Black Male Hampden
$40k $30k ‘White Male Hampshire
$10k $20k Asian Male Essex
$20k $100k White | Female Norfolk
$100k $500k White Male Bristol
$10k $20k White Male Suffolk
$40k $30k Asian | Female Norfolk
$20k $100k Black | Female Essex

“Male”.

In the view of the adversary with the auxiliary informa-
tion, we define a query Q from a user as an ordered list of
m attribute values, (vy,vs,- -+ ,Uy), for v; € D; U {x} where =
means “don’t care” value and m is the number of attributes in
the auxiliary information. The inclusion of * is used to rep-
resent the attributes that are not used in a query. For exam-
ple, the real query “Find jobs for pregnant black women with
the $20k amount of loan.” can be formally interpreted as
0 = ([Loan] = “$20k”, [Income] = *, [Race] = “Black”,
[Gender] = “Female”, [County] = *) with Table 1. We
note that in the view of the adversary, the information about
“pregnancy’ is ignored since it is not included in this auxil-
iary information. The information about “loan”, “race” and
“gender” is only used for guessing attacks although the in-
formation about “pregnancy” is exposed.

We now turn to a measure to quantify how secure a
personal query Q is against guessing attacks. This measure
can be defined with entropy. We consider the value of the
target attribute to be a random variable X drawn from a fi-
nite distribution P = {py, p2,- -+ , p,} which is known to the
adversary and probability p; = P(X = x;) for each possible
answer x; for i € [1, n].

The Shannon entropy is a traditional estimator of mea-
suring the information of X as follows (here, log is to the
base 2):

H(X) == pilogp; (1)
i=1

Probably, this measure is generally good to show the
amount of information leaked. However, it is not enough
depending on what the adversary is able to do. When the ad-
versary has an oracle which can confirm or refute her guess,
a better metric is the average number of guesses required to
guess the secret. The adversary’s goal is to find the secret
using as few guesses as possible. In practice, many popular
web services provide functionalities (oracle) to answer ad-
versaries’ personal questions [13]. Under this threat model,
supposing that the adversary knows the distribution for X,
the best strategy is obviously to start by guessing the most
likely X and proceed in decreasing order of likelihood until
the secret is determined. This entropy is known well as the
guessing entropy introduced by Massey [14]. The guessing
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entropy is simply the expected number of trials needed to
correctly guess the value of a random variable X using the
best strategy. It can be calculated as follows: Given N tu-
ples corresponding to a query Q, the entropy G to guess the
value of an attribute a is formally defined as follows:

GO =Y pii

i=1

2)

where p; is defined as |x;|/N for all n distinct domain values
{x1,x2,---,x,} of the attribute a that appear in the tuples
corresponding to the query Q and |x;| denotes the number of
the attribute value x; appeared in the corresponding tuples.
Without loss of generality, we assume that the probabilities
are arranged as a monotonically decreasing distribution with
pPL=Zp22=: 2 Py
For example, given a query Q = ([Loan] = “$20k”,
[Income] = %, [Race] = “Black”, [Gender] = “Female”,
[County] = *), we found 3 tuples (i.e. the 3rd, 4th, and
12th) corresponding to the query Q in Table 1. Suppose that
the adversary’s goal is to guess the querier’s income infor-
mation. There are two possible values for the [Income]
attribute: $40k (3rd and 4th) and $100k (12th). Thus the
guessing entropy for the query Q and the [Income] can be
computed as follows:
2 1 4
G(Q, [Income]) = 3 1+ 3 2= 3
In other words, the expected number of trials to guess
the querier’s the value of [Income] corresponding to the

query Q is 4/3.

3)

3. The Proposed Architecture

Conventional personalization services are generally based
on standard client-server architecture: “user” and “service
provider”. A user sends a query including her personal
information to a service provider and the service provider
answers customized search results for the user using her
personal information. We extend this to a framework for
privacy-enhancing personalized search by introducing two

-~
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(b) Three-Tier Architecture

Two different deployments. The gray components represent newly added roles (client, query
generalizer) and a database (auxiliary information).

functional components: Query Generalizer and Client.

The query generalizer’s role is to generate a privacy-
preserving query Q from the original query Q by removing
some highly sensitive personal information depending on
the privacy requirement of the user, and then forwards the
modified query 0 to a service provider so that the service
provider cannot guess the user’s private information from
the auxiliary information and the captured query inputs. In
practice, a user’s original query Q is likely to be generated
without serious privacy consideration. Therefore we need
to filter out some highly sensitive private information in the
original query Q at the system level. A secure channel is
necessarily required to securely deliver the original query Q
from the user to the query generalizer against an adversary.

The query generalizer can access the auxiliary infor-
mation (or statistics of the information) to estimate the
amount of information included in queries. The service
provider performs the search service with the modified
query é and answers them to the query generalizer. Af-
ter receiving the query response, the query generalizer se-
lectively retrieves the exact search results for the original
query Q from the query response for Q and then relays them
to the user. Thus the search results in our framework are ex-
actly the same as the search results for the original query Q
since @ is a generalization of Q. In practice, query general-
izer can be deployed as a physical entity together with other
functional components or an independent physical entity.

Client serves as a proxy between a user and query gen-
eralizer. This role is generally integrated with other client-
side technology (e.g. web browser) and may also include a
user interface component. The primary purpose of client is
to simply relay the user’s search query to query generalizer
instead of the service provider that the user originally wishes
to interact with.

We here discuss the pros and cons of two possible de-
ployments with query generalizer and client (see Fig. 1).
Figure 1 (a) shows a deployment of two-tier architecture.
Since most existing search services are based on a standard
client-server architecture, two-tier architecture can be ba-
sically integrated into a general server-client architecture.
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The query generalizer can be implemented as a thin-client
software (e.g. a Web browser plug-in). This approach could
provide a highly secure personalized search service without
the assumption of secure channels between users and guery
generalizer. However, it has several drawbacks. First, it is
not acceptable for a client to compute the entropy values in
real time to generate a privacy-preserving query when there
are too many tuples in the auxiliary information. This is
because the computation overhead of entropy values is pro-
portional to the number of tuples. Therefore we need to
consider how to efficiently calculate entropy values. Sec-
ond, it is not trivial to maintain the auxiliary information at
the client since its size is often too huge and updated too
much. Third, the communication cost is greatly increased
between a client and a server compared to the original query
for scenarios that require a strong privacy.

Alternatively, we recommend a deployment of three-
tier architecture (see Fig. 1(b)). This approach can solve
the problems of two-tier architecture. The physical en-
tity of “Trusted Middleware” allows personalized search
environment without any concerns about the performance
of query generalizer. 1In practice, secure channels be-
tween “User System” and “Trusted Middleware” can be eas-
ily established without extra efforts since Secure Sockets
Layer/Transport Layer Security (SSL/TLS)[15] is already
available and supported by mainstream web browsers (e.g.
Internet Explorer, Safari, Firefox, Opera and Chrome).

Who’s in charge of managing “Trusted Middleware”
for three-tier architecture? Surely, the first candidate is a
government agency. The government can support a regu-
lated infrastructure to collect the auxiliary information and
to guarantee the interoperability of all transactions pro-
cessed for search services. There were already practical dis-
cussions [16], [17] to support three-tier architecture with a
trusted government agency to oversee private matters. In
this case, however, many users may resist using the pro-
posed system due to the concern about government surveil-
lance. In fact, a number of governments have been tempted
to intervene in the technical aspects of security design, usu-
ally with effects that damage industry and lead government
agencies to lose face. So we suggest that the proper role
of government is to collect and to disseminate auxiliary
information and/or its dependable statistics rather than to
manage the technical mechanism directly. Under such cir-
cumstances, several (non-profit) standard bodies or orga-
nizations such as Tor Project (http://www.torproject.org/)
can support free software and open infrastructure to provide
truthful query generalization services.

In the next sections, we present how the user’s original
query is adaptively modified by using query generalizer and
evaluate the performance of the presented algorithms.

4. Adaptive Query Generalization
The query generalization process is based on computation of

the privacy level of a user query. Given a user’s query, query
generalizer checks whether the query achieves the user’s de-
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sired privacy level. Otherwise, the query generalizer adap-
tively updates by removing some sensitive attribute values
from the query. This process is repeated until the general-
ized query satisfies the user’s privacy requirement.

We assume that a user u’s privacy requirement is for-
mally defined as a tuple (a, G,;,) where G,,;, indicates the
required minimum guessing entropy to limit the informa-
tion about the attribute a, which can be obtained from her
query. With this definition, we also define that a query Q
is privacy-preserving for an attribute a, if the guessing en-
tropy G(Q, a) from the query Q is greater than or equal to
Gin that a user requires. This implies that given the query
Q the adversary must try to guess the user u’s private value
for a more than G,,;, times on average. In order to provide
privacy-preserving queries, the query Q is modified to the
query 0 by removing some private information included in
Q until G(@, a) > Gy, if the guessing entropy G(Q,a) is
less than G,;,.

Surely, it is important to choose which attributes being
removed to generalize a query since the fraffic overhead of
the query response is changed depending on how the query
is modified. How can the query generalizer generalize the
query Q with a little sacrifice of traffic overhead? Since the
query generalizer cannot gain the exact information about
the data maintained by the service provider, an appropriate
strategy to minimize the traffic overhead may depend on the
guessing entropy of the query. Probably, there exists a corre-
lation between guessing entropy and traffic overhead; under
the assumption of uniform distribution, the traffic overhead
becomes larger as the guessing entropy increases.

So we now focus on finding the query to minimize the
guessing entropy of the query while staying over G,,;,,. This
optimization problem, however, is also not trivial. The ob-
jective of this problem is to find a query Q = (v1, 02, -+ , Up)
and v; € D; U {x} with an attribute a to be protected and
the minimum guessing entropy G,,;,, such that the computed
guessing entropy G(Q, a) is at least G,,;, while it is mini-
mized. For any attribute a, this problem can be formulated
as follows:

minimize f(xy, X2, , Xp)
subject to f(xl’ X2, 00, xm) > Gmin (4)
where f(x1,x2, ++ ,%,) = G((1,02," " ,Um),a) such that

v; = v; if x; = 1; otherwise, v; = *.

Since f is a nonlinear objective function, this problem
can be expressed as a Binary Integer Programming problem
with a nonlinear objective function f(xy, x,- - , x;,), which
is a well-known NP-hard problem [18]. This means that the
query generalizer must use heuristics to find the attribute
values being removed. Given a query Q = (v1,02,** ,Up)
and the guessing entropy constraint G,,;,, we consider the
following four reasonable strategies to construct 0:

1. Brute-Force: This strategy examines all possible com-
binations of v; and = for each attribute in O and select
a combination Q whose entropy G(Q,a) is the mini-
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mum where G(Q a) > Gyin. If more than two combi-
nations have an identical entropy value, one of them is
randomly selected.

2. Best-Fit: This strategy starts with a candidate query
O that is the same as the original query Q. Then it
iteratively updates %) by substituting v; with * at a time
to minimize the G(@, a) locally where v; # = fori €
[1,m] until G(Q, @) > Guin-

3. Worst-Fit: This strategy starts with a candidate query
Q that is the same as the original query Q. Then it
iteratively updates 0 by substituting v; with = at a time
to maximize the G(Q a) locally where v; # = fori €
[1,m] until G(Q, @) > Goin-

4. Random-Fit: This strategy starts with a candidate
query Q that is the same as the original query Q. Then
it iteratively updates @ by substituting v; with = at a
time where v; is randomly selected and v; # = for
i € [1,m] until G(Q, @) > Gpin.

These strategies can be processed at the query gen-
eralizer with the auxiliary information. The efficiency of
the strategies can be represented with the time complexity.
Basically, the computation of each strategy consists of two
steps: (1) selection of candidate attributes and (2) computa-
tion of guessing entropy with the selected attributes.

In the step (2), the attribute values are sorted in decreas-
ing order of their frequencies in order to compute guessing
entropy. That is, the step (2) requires O(n log n) time where
n is the number of distinct domain values in the target at-
tribute a. The time complexity of this step is common to all
strategies.

Unlike the step (2), the efficiency of the step (1) is
greatly varied between the strategies: In the Brute-Force
strategy, all 2" possible combinations of m attributes always
have to be considered as candidate attribute sets. Thus the
total running time of Brute-Force is O(2™ - nlogn).

The Best-Fit and Worst-Fit strategies are greedy algo-
rithms which select an attribute to be removed as the “best”
choice at each iteration until the modified query Q satisfies
the privacy requirement G,,;,. The “best” choice can be se-
lected in O(m) at each iteration. The number of iterations in
these strategies is the same as the number of attributes re-
moved from the original query; that is, the time complexity
of these strategies is output-sensitive. Let r be the number of
removed attribute values after generating Q Thus the total
running time of the Best-Fit and Worst-Fit is O(rm - nlog n).
In the worst case, r is at most m — 1. In practical situations,
however, m is too large compared to the required privacy re-
quirement G, So r is much smaller than O(m). The Best-
Fit and Worst-Fit strategies are faster in such situations.

The time complexity of the Random-Fit can be ana-
lyzed in the same manner except that the “best” choice is
selected in O(1) at each iteration. In other words, the time
complexity of the Random-Fit strategy is O(r - nlogn). In
Sect. 5, we will discuss what strategies are recommendable
through the experiments on real datasets.
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5. Simulation

We evaluate our framework by measuring the traffic over-
head between a query generalizer and a service provider.
The traffic overhead is measured in terms of the number
of records included in a query response from the service
provider to the query generalizer, i.e. the number of tuples
in service provider’s database corresponding to a query. We
note that the size of query inputs can be ignored since it is
relatively too small compared to the size of a query response
in practice.

We used the Home Mortgage Disclosure Act (HMDA)
Loan Application Register Data in year 2007 from U.S. cen-
sus bureau (http://www.census.gov/) for both of an auxil-
iary information and a service provider’s database. From
the database, we selected 66,270 people who were denied
the loan at least once and live in Massachusetts, United
States. Among attributes in the database, we selected 6
attributes - ‘[Loan Amount] (Numeric values categorized
by 236 groups)’, ‘[Income] (Numeric values categorized
by 206 groups)’, ‘[Denial Reason] (9 categorizations in-
cluding “Debt to income ratio”, “Employment history”,
“Credit history”, etc)’, ‘[County] (14 counties in Mas-
sachusetts)’, ‘[Race] (7 categorizations including “Amer-
ican Indian” or “Alaskan Native”, “Asian” or “Pacific Is-
lander”, “Black”, etc)’, and ‘[Gender] (4 categorizations
including “Male”, “Female” and two others for information
not provided by applicant)’.

From this database, a user’s query is simulated with
randomly selected attribute values in the given domain in-
cluding the “don’t care” value. In order to prevent genera-
tion of queries with too many “don’t care” values, a random
query is carefully generated by selecting either a domain
value with the probability 2/3 or the “don’t care” value with
the probability 1/3 for an attribute in the query. For each
target attribute test, its corresponding value is omitted. With
100 random queries, we evaluated the performance of the
proposed framework. We assume that a service provider’s
database is identical to the public auxiliary information to
maximize the effect of the auxiliary information although
they are generally different in real-world systems.

For each query, we tested the four strategies discussed
in Sect. 4. Figure 2 demonstrates the average traffic over-
heads of these strategies for selected six target attributes,
respectively. For comparison, we also plotted the original
query (the dashed line in Fig. 2) as an absolute lower bound.
Note that the units of the G,,;, values have been adjusted to
compare the outcomes effectively.

For each target attribute, the results have similar trends
and some reasonable G,,;, values can be determined. For
example, for a = [Income] (see Fig.?2 (b)), while the slope
increases rapidly when G,,;, > 4.5, our framework incurs
a slight increase in traffic overhead when G,,;, < 4.5. It
means that our framework can achieve a reasonable user
privacy without a huge loss of traffic bandwidth in some
privacy levels (G, < 4.5).
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Fig.2  Traffic overhead.
Table 2  Traffic overhead ratio of Worst-Fit and Original.
Loan Amount Income Denial Reason Race Gender County
Entropy Ratio Entropy Ratio Entropy Ratio Entropy Ratio Entropy Ratio Entropy Ratio

1 1.0000 1.0 1.0000 1.0 1.0000 1.00 1.0000 1.00 1.0000 1.00 1.0000
3 1.0286 L5 1.0199 1.2 1.0056 1.05 1.0811 1.05 1.0082 1.25 1.0040
5 1.0460 2.0 1.0397 1.4 1.0480 1.10 1.1477 1.10 1.0100 1.50 1.0081
7 1.0739 2.5 1.0404 1.6 1.0501 1.15 1.1501 1.15 1.0726 1.75 1.0164
9 1.1020 3.0 1.0540 1.8 1.2978 1.20 1.1502 1.20 1.0728 2.00 1.0644
11 1.2032 35 1.0776 2.0 1.3400 1.25 1.5614 1.25 1.0886 2.25 1.1092
13 1.2949 4.0 1.1839 2.2 1.4195 1.30 1.5668 1.30 1.1035 2.50 1.1112
15 1.3957 4.5 1.2763 24 1.4619 1.35 2.2858 1.35 1.2875 2.75 1.1252
17 2.6448 5.0 1.8444 2.6 1.5629 1.40 2.3662 1.40 1.5578 3.00 1.2455
19 3.3003 55 1.9672 2.8 2.5791 1.45 2.6099 1.45 1.7649 3.25 1.2658

Overall, the Worst-Fit heuristic showed the best per-
formance. Worst-Fit provides privacy-preserving queries
without a significant increase in the fraffic overhead com-
pared to the original query (see Table 2). For example,
the traffic overhead of Worst-Fit is greater than roughly 1.4
times than that of the original query even if G,;, = 15
for [Loan Amount]. Considering the recent growth in net-
working technology, it is not a big penalty. In the dataset
used, the size of a record is 9bytes composed of 6 at-
tributes (Loan Amount:Integer, Income:Integer, Denial Rea-
son:Byte, County:Integer, Race:Byte, Gender:Byte). We as-
sume that the size of integer type is 2bytes. Under this
setting, the average response size using Worst-Fit is about
17.6k only (~ 22009) even if G, = 15.

Unlike our expectations, Brute-Force, which requires
exponential time in the number of attributes of the query,
did not outperform the other heuristics. If the given values
of the targeted attribute are uniformly distributed, the traffic
overhead should be minimized when the query is provided

with the minimally allowed entropy as we anticipated. How-
ever, our dataset rarely shows the uniform distribution. As
an example, we plot the histogram of [Loan Amount] val-
ues (see Fig. 3 (a)), and the histogram shows that the distri-
bution is skewed to the left. In order to quantitatively inves-
tigate the correlation between guessing entropy and traffic
overhead, we also calculated the Pearson correlation coeffi-
cient. We plotted the guessing entropy for [Loan Amount]
and the corresponding traffic overhead of the queries (see
Fig. 3 (b)), and then observed a low correlation (0.369) un-
like the ideal uniform distribution. Hence, we can imagine
that the Brute-Force heuristic can sometimes generate unde-
sirable results (e.g. particularly when G,,;, > 20).

In practice, Brute-Force tends to select a modified
query with a large number of corresponding tuples in aux-
iliary information to reduce the probabilities p; for i =
1,--- ,n of Eq.(2) in Sect.2. Unfortunately, this tendency
may incur exceptionally high network costs even though its
calculated entropy is low. We found that a few exceptional
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Fig.3  Two observations from [Loan Amount]. (a) Histogram of [Loan
Amount] values. We can see that the observed values are not uniformly
distributed in practice. (b) The scatter plot depicting the correlation be-
tween guessing entropy for [Loan Amount] (x-axis) and traffic overhead
(y-axis). For the 5,000 randomly generated queries, the corresponding
guessing entropy and traffic overhead values are plotted. The Pearson cor-
relation coefficient (0.369) indicates that there exists a weak positive corre-
lation between guessing entropy and traffic overhead.

cases are encountered in our simulation. For example, when
Guin = 1.35 for a = [Gender], the generalized query with
the smallest entropy always consists of [Race] = “White”
alone if the user’s query contains the attribute value, [Race]
= “White”. However, this specific attribute value dominates
65.1% of the overall records in the database. Thus these
queries incur huge costs. This is the reason why a fluctua-
tion is observed in Brute-Force at G,,,;, = 1.35 in Fig. 2 (e).

These results indicate that strategies to minimize guess-
ing entropy alone are not enough to effectively reduce the
traffic overhead for the queries when the distribution is
skewed. We can see that Random-Fit sometimes provides
comparable performance to Brute-Force. This is because
Random-Fit is not forced to follow the Brute-Force’s behav-
ior to minimize the entropy of selected queries and then can
avoid the exceptional cases which require significant addi-
tional network traffic.

In general, Worst-Fit tends to reduce not only the
guessing entropy but also the number of the removed at-
tributes from the original query. This property seems helpful
in reducing the traffic overhead. Random-Fit also shows a
similar trend. On the contrary, Best-Fit tends to increase the
number of removed attributes and then shows disappointed
results. Considering that the time complexity of Worst-Fit is
O(rm - nlogn) (m: the number of attributes in the query, n:
the number of distinct domain values in the target attribute,
r: the number of removed attributes from the original query)
and the outstanding performance in the entire privacy level
G nin, we strongly recommend using Worst-Fit.

6. A Privacy Control Way for End-Users

As we mentioned in Sect. 4, it seems difficult for users to
set the required entropy value themselves in practice since
the purpose of entropy estimation is not generally intuitive.
Therefore we suggest a reasonable method to help users
control their privacy settings. Instead of setting G, di-
rectly, a user can define /, derived from the concept of /-
diversity [19] where (a, /) indicates that an adversary, trying
to determine the user u’s specific value for a, can only nar-
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row down the possible values to a set containing at least /
distinguishable sensitive attribute values. Query generalizer
internally translates (a, [) into (a, (/ + 1)/2) under the guess-
ing entropy model. For example, if a user wants high diver-
sity of @ = [Loan Amount] in Fig.2(a) with [ = 25 (i.e.
in order to find loan amount of the user, an adversary must
choose one out of more than 25 values), the query general-
izer sets G, = (I1+1)/2 = 13. I[leorem 6.1 states that the
size of the attribute value set for Q is always at least / when
(I + 1)/2 is used as the required minimum guessing entropy
to generate Q

Theorem 6.1: When the query Q is modified into the
query @ with the guessing entropy value, which is greater
than or equal to (/ + 1)/2, the size of the attribute value set
for Qis at least /.

Proof Let l§ and G@ be the size and the guessing en-

tropy of the possible attribute values for @, respectively. In
other words, there are / 0 possible values {xj, -, xla} where
pi = P(X = x;) is the probability for each possible value x;
fori e [1, la]. Assume that l@ is strictly less than . Since
the uniform distribution has the maximum entropy, the fol-
lowing inequality is derived.

2 lG+1 1+1
- i< 2
GQ—E pi-i< 5 < >

This inequality contradicts since the guessing entropy
value of the query Q is greater than or equal to (I+1)/2. |}

7. Related Work

For privacy protection on public datasets, Samarati and
Sweeney introduced the concept of “k-anonymity” [12],
[20]. In this model, privacy is guaranteed by ensuring that
any record in a released dataset be indistinguishable with re-
spect to a set of attributes, called quasi-identifier [6] from at
least k — 1 other records in the dataset; thereby the risk of
re-identification is kept under 1/k. Many techniques [21]-
[24] have been proposed to achieve k-anonymity require-
ment. Optimal k-anonymity problems were proved to be
NP-hard for k > 3[25]. Machanavajjhala et al. introduced
the model of “/-diversity” [19] where every group of in-
distinguishable records contains at least / distinct sensitive
attribute values; thereby the risk of attribute disclosure is
kept under 1/I. There are also many approaches [9]-[11] to
publish anonymized datasets through randomized or crypto-
graphic techniques for privacy preserving data mining.
Query restriction is a classical approach which re-
stricts queries that may result in inference [26]. In this ap-
proach, queries are restricted by various criteria such as the
size of query result[26], the overlap amongst successive
queries [26], and partitions [27]. However, these techniques
are significantly different from ours. While these techniques
have tried to control the query results against a “malicious
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querier”, our technique is designed to minimize the chances
to expose quasi-identifiers from the query inputs against a
“malicious party with public datasets”.

In information retrieval, the notion of private informa-
tion retrieval (PIR) was introduced by Chor et al. [28]. PIR
provides a strong privacy theoretically but it also incurs sig-
nificant communication and computational overheads based
on cryptographic operations. We note that their threat mod-
els are different from ours. These studies focused on hiding
which records are retrieved by a user, while our goal is to
protect users’ private attribute values from their queries.

There were some investigations on location pri-
vacy [29]-[32]. For location query, the users’ query input
(i.e. the user’s location) is blurred into a cloaked region de-
pending on the privacy level. However, their anonymization
techniques can be applied for location data only.

Yabo et al. [33] proposed a method that users can con-
trol the degree of the personalized service by avoiding the
construction of a highly private user profile. Imada et
al. [34] also proposed a method to control users’ personal
data by measuring the entropy from the gathered user data.
However, these approaches are different from ours. We fo-
cus on how to construct a user’s query inputs depending on
the trade-off between user privacy and service utility; not the
roles of functional components.

8. Conclusion

We proposed a framework based on the concept of query
generalizer which effectively controls highly private infor-
mation from users’ queries. We discussed the pros and cons
of two possible deployments of the framework and recom-
mend three-tier architecture due to its practicality.

For efficient implementation of query generalizer we
presented four schemes, the Brute-Force, Best-Fit, Worst-
Fit and Random-Fit. Through the simulation on real datasets
we compared and evaluated them. The Worst-Fit heuris-
tic generally provides the best results. With this heuristic,
query generalizer can satisfy user’s privacy requirement to
protect sensitive user information from being easily guessed
without a significant increase in the traffic overhead. The
increased overhead varied from 1.0 to 3.3 times compared
to the original. We do emphasize however that these are
initial implementations of a new framework idea; and we
expect that our framework will adapt easily to other privacy
models or query generalization schemes.

The computational overhead of entropy may greatly in-
crease with the amount of auxiliary information. Therefore
we need to consider how to efficiently calculate entropy val-
ues. We suggest two practical ideas: approximation using
sampling of tuples and the use of pre-computation for fre-
quently asked queries. We consider extending our work to
reducing the computation overhead for future work.

We could also extend this work to a real application
such as the personalized healthcare information infrastruc-
ture [35] considered to be built by Japanese government to
improve the disease prevention, and the quality and effi-
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ciency of health care. This service is built with highly ro-
bust privacy requirements in order for users to take control
over their own health information privately. More specifi-
cally, this work could readily be adopted to protect sensitive
information about patients by controlling the level of detail
of their medical data in the transactions.
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