IEICE TRANS. INE. & SYST., VOL.E95-D, NO.5 MAY 2012

1475

[PAPER

Implementation and Optimization of Image Processing Algorithms

on Embedded GPU

Nitin SINGHAL, Jin Woo YOO, Ho Yeol CHOI'", Nonmembers, and In Kyu PARK'™, Member

SUMMARY In this paper, we analyze the key factors underlying the
implementation, evaluation, and optimization of image processing and
computer vision algorithms on embedded GPU using OpenGL ES 2.0
shader model. First, we present the characteristics of the embedded GPU
and its inherent advantage when compared to embedded CPU. Addition-
ally, we propose techniques to achieve increased performance with opti-
mized shader design. To show the effectiveness of the proposed techniques,
we employ cartoon-style non-photorealistic rendering (NPR), speeded-up
robust feature (SURF) detection, and stereo matching as our example al-
gorithms. Performance is evaluated in terms of the execution time and
speed-up achieved in comparison with the implementation on embedded
CPU.

key words: embedded GPU, GPGPU, image processing, OpenGL ES 2.0,
NPR, SURF, stereo matching

1. Introduction

The mobile phone continues to revolutionize our everyday
lives. It has transformed from a simple communicator to
a personal multifunction, multimedia device. The modern
mobile phone is also a visual computing powerhouse. It has
a capable CPU, high quality color display, co-processors or
DSPs for image/video encoding and decoding, and sensors
such as camera, gyroscope, and others. In particular, imag-
ing technology has changed significantly over the past few
years. Today, camera phones with 3 ~ 5 mega pixels and
with HD video capture capability are quite common. With
the seemingly un-wavering boom in sales of these multi-
media devices and availability of additional hardware com-
ponents, the opportunity to develop and sell sophisticated
mobile applications is ever more appealing.

However, there still exist many challenges facing ap-
plication developers wishing to target mobile phones. Com-
pared to the PC platform, the mobile phone platform is
limited by (i) power supply; (ii) computational power;
(iii) physical display size; and (iv) input modalities. The
mobile phone is powered by batteries and it is obligatory for
the system to use as little energy as possible. The power con-
sumption is an increasing function of the clock frequency,
and hence it is kept rather low. Although strides are be-
ing made to improve the clock frequency using sophisticated

Manuscript received August 5, 2011.
Manuscript revised December 20, 2011.
"The author is with the Digital Media & Communication R&D
Center, Samsung Electronics Co. Ltd., Suwon 443-742, Korea.
T"The authors are with the School of Information and Commu-
nication Engineering, Inha University, Incheon 402-751, Korea.
a) E-mail: n.singhal @samsung.com
b) E-mail: pik@inha.ac.kr
DOI: 10.1587/transinf. E95.D.1475

power-reduction techniques, the fastest CPU runs at around
1.0 GHz at most. A related problem is the limited amount
of RAM, which is usually only a few megabytes. In addi-
tion, embedded processors lack a floating point unit (FPU).
This makes using integer or fixed-point arithmetic requisite,
which reduces the accuracy significantly.

The embedded graphics processing unit (GPU) has
evolved into an extremely powerful co-processor. Over the
last decade, GPU has evolved into a general-purpose pro-
grammable architecture. It now supports programming en-
vironment that makes it possible to use GPU for a wide
range of non-graphics tasks, including many applications in
image processing and computer vision. Efforts in general
purpose computation on GPU (GPGPU) [1] research have
created a wealth of opportunities for developers to offload
computationally intensive tasks to the GPU. Recently, an
increasing number of mobile phones are equipped with a
GPU. The advent of GPUs with programmable shaders on
mobile phones finds ways to use this co-processor to relieve
the burden from embedded CPU. Modern embedded GPUs
provide programmable vertex and pixel shaders that can be
used to speed-up image processing and computer vision al-
gorithms.

General image processing and computer vision algo-
rithms process large data sets with complex mathematical
and logical operations. These algorithms perform the same
computation on a number of pixels or fragments, a typical
form of data parallelism, which fits perfectly with the GPUs
single instruction multiple date (SIMD) architecture and fa-
cilitates significant acceleration. However, a large number
of image processing algorithms fail to achieve acceleration
due to limitations of GPU architecture. In addition, em-
bedded GPUs have hardware limitation that must be taken
into account. Consequently, it is critical to analyze the algo-
rithms for efficient parallelization on GPUs.

In this paper, we analyze the key factors underlying the
implementation, evaluation, and optimization of image pro-
cessing and computer vision algorithms on embedded GPU
using OpenGL ES 2.0 shading language. First, we present
the characteristics of the embedded GPU and its inherent
advantage in processing image processing and computer vi-
sion algorithms over embedded CPU.

Next, we propose techniques to achieve increased per-
formance with optimized shader design. To show the ef-
fectiveness of the proposed techniques and validate our ap-
proach, we employ cartoon-style non-photorealistic render-
ing (NPR), speeded-up robust feature (SURF) detection, and

Copyright © 2012 The Institute of Electronics, Information and Communication Engineers

1476

stereo matching as our example algorithms. To the best of
our knowledge, this is the first work that uses embedded
GPU for GPGPU research. An early version of this paper
has been presented in a conference [2].

The remainder of this paper is as follows. Section 2 re-
views notable GPGPU related research activities. Section 3
addresses the embedded GPU architecture. In Sect. 4, meth-
ods to characterize embedded GPUs are proposed. Section 5
describes the proposed techniques for performance boost.
Section 6 describes the GPU design and implementation of
the algorithms investigated. Experimental results are shown
in Sect. 7.

2. Related Work

On the PC platform, through the development of elaborate
interfaces such as GLSL [3], CUDA [4], and OpenCL [5],
GPU can be used to process data in a massive parallel way
and deal with computationally intensive tasks. These inter-
faces increase the user programmability and facilitate the
use of GPU for general purpose. An intensive survey on
GPGPU is described in [6].

Image processing has gained considerable attention
among GPGPU researchers. Most image processing op-
erations perform the same computation on a number of
pixels; thus they can exploit the SIMD (single instruc-
tion multiple data) architecture and be effectively imple-
mented on the GPU. Several image processing algorithms
have been implemented on the GPU, including basic oper-
ations, such as the fast Fourier transform, convolution, dif-
ferential equation-based algorithms, video encoding/decod-
ing [7], and pattern recognition and computer vision algo-
rithms.

GPU-based libraries of image processing and computer
vision have been developed in GpuCV [8], MinGPU [9], and
OpenVIDIA [10] projects. OpenVIDIA provides a frame-
work for video input, display, and GPU processing, as well
as implementations of feature detection and tracking, skin
tone tracking, and projective panoramas. GpuCV is de-
signed to provide seamless acceleration with the familiar
OpenCV interfaces. Recently, NVIDIA released an open
source image processing library, known as NPP [11], which
exploits GPU architecture for accelerating common image
processing algorithms. These libraries provide the low level
API support and aid in the development of higher level algo-
rithms. However, they are mainly targeted on the PC plat-
form using interfaces such as CUDA, which are not avail-
able on the newest generation of handheld GPUs.

Similar to our work is that of Park et al.[12]. They
analyzed general multi-core GPU on the PC platform from
an image processing point of view. The main difference be-
tween our work and theirs is that we analyze embedded GPU
which is largely limited in hardware capabilities and very
far from PC graphics cards in terms of the degree of paral-
lelism. Additionally, we propose techniques for optimizing
fragment shader program with the focus on image process-
ing and computer vision algorithms.

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.5 MAY 2012

3. Embedded GPU Architecture

The embedded GPU architecture is built around the need to
access data efficiently and schedule parallel computations.
Extensive use is made of single-instruction multiple-data
(SIMD) parallelism, in which one instruction causes a single
operation to take place on more than one value at the same
time.

The key step in the evolution of graphics hardware
was replacing the fixed-function vertex and fragment oper-
ations with user-specified programs, also known as shaders.
Shaders give developers a huge amount of flexibility to cre-
ate complex visual effects and to offload computationally in-
tensive tasks to the embedded GPU. The shading language
supports complex data types and a rich set of control-flow
constructs.

An OpenGL ES 2.0 compliant embedded GPU is a sin-
gle core (or multi-core) processor, capable of executing mul-
tiple threads concurrently. This processor operates as a co-
processor to the CPU and is designed on a single System-
on-Chip (SoC), popularly known as an Application Proces-
sor (AP). An embedded GPU core executes multiple threads
but all threads run the same set of instruction, operating on
different data.

The SGX 530/540 GPU from Imagination Technolo-
gies [13] has a multithreaded architecture that processes sev-
eral tasks (instructions) in parallel. A single SGX core has
16 threads, 4 of which are active at any time. However,
the multithreading is internal and not visible to the user, in
contrast to GPU on the PC platform. Furthermore, the ver-
tex and fragment (pixel) processing is parallelize, i.e., when
processing pixels for the current frame, the vertices for the
next frame can be processed. The hardware scheduler prop-
erly manages the vertex and pixel instruction processing.
In concept, this is termed as deferred rendering architec-
ture. In most SoC designs using SGX core, the memory
(LPDDR1/LPDDR?2) is shared between the CPU and GPU.
In addition, the GPU has a device virtual address space of
128~256 MB, which depends on the device and the driver
implementation. All the elements required for rendering are
stored in this virtual address space. The SGX series GPUs
are generally clocked at 100~400 MHz and supports 16 bit
and 32 bit floating-point unit.

In general, an embedded GPU is designed as a ded-
icated hardware for fast 3D rendering with lower power
consumption. The key to good graphics performance and
low power consumption is hardware design, which includes
characteristics such as unified shader design, texture com-
pression, and tiling architecture [14]. However, there exist
a few key differences between desktop GPUs and embed-
ded GPUs. Firstly, the interconnection between GPU and
CPU is very narrow in embedded GPUs. This results in
low memory bandwidth and heavier overhead in data trans-
fer between the CPU and GPU. Second, embedded GPUs
are designed for low power consumption, which causes
lower clock speed and fewer shader units with slower speed.

SINGHAL et al.: IMPLEMENTATION AND OPTIMIZATION OF IMAGE PROCESSING ALGORITHMS ON EMBEDDED GPU

Lower clock speed also extends to the speed of video mem-
ory and consequently dedicated graphics memory is often
unavailable. Thirdly, embedded GPUs lack the generality
of programming interfaces. We still have to program the
shaders with the OpenGL Shading Language, which limits
the possibility of efficient parallelization of general-purpose
problems. Finally, embedded GPUs have few (currently less
than four) cores in comparison to many-core (more than
hundreds) desktop GPU, which exhibits significant limita-
tion in handling problems with high computational com-
plexity.

4. TImage Processing on Embedded GPU

In practice, image processing and computer vision algo-
rithms involves intensive floating point and logical opera-
tions. These operations are independently processed using
the SIMD-style multithreaded GPU architecture. Further-
more, image processing algorithms involves large memory
buffers and needs frequent access to them. In this section,
we present characteristics of an embedded GPU, with the
focus on parallel implementation of image processing and
computer vision algorithms.

4.1 Memory Transfer Bandwidth

Textures provide the detail required to present images for
rendering. The time required to transfer image buffer from
CPU to GPU texture and vice versa, is crucial to any parallel
implementation on embedded GPU. In mobile phone appli-
cation processor (SoC), the memory is shared between CPU
and GPU. However, textures have to be properly wrapped
for the graphics core and cannot be accessed directly as the
CPU image array. The memory transfer overhead results in
significant bottleneck for algorithms involving large mem-
ory buffers and low floating point computations. Algorithms
involving high floating point intensity can successfully hide
the memory transfer latency. Figure 1 shows the memory
transfer bandwidth on the mobile phone with POWERVR
SGX 540 GPU (200 MHz) and ARM CORTEX A8 CPU
(1 GHz). For the above CPU/GPU configuration, the mem-
ory bandwidth stands at 220.54 MB/sec (CPU to GPU) and
30.92 MB/sec (GPU to CPU).

4.2 Floating Point Vs. Fixed Point Implementation

Embedded GPU is designed such that more transistors are
allocated to data processing. More specifically, it is well

g ——

°
10 044 091 154 315 369 829 1678 o1

Megabytes (MB) n:';egaby(es (M;;I
(a) (b)
Fig.1 Memory transfer rate. (a) CPU to GPU. (b) GPU to CPU.

Time (ms)
g 3 8
Time (ms)

o B

°

1477

suited to algorithms with high floating point intensity. Fur-
thermore, embedded GPUs outperforms their CPU counter-
parts in floating point operations per second. Embedded
CPUs either lack a floating point unit (FPU) or relies on
software math libraries, which prohibitively slow down the
floating point implementation. Here we compare the ARM
CORTEX A8 CPU with the POWERVR SGX 540 GPU
in terms of the floating/fixed point design. The SGX 540
GPU has fast vectored floats compared to the slow VFP-
Lite hardware acceleration of CORTEX AS8. Furthermore,
ARM’s Neon hardware is not fully optimized for floating
point arithmetic.

Considering the above context, an image processing al-
gorithm that has many floating point operations is likely to
have higher speedup when implemented on embedded GPU.
For example, a 5x5 Gaussian filter, when implemented on
an embedded CPU with floating point design (3074.8 ms)
lags behind the fixed point implementation (207.1 ms) by a
significant proportion. Also, the parallel implementation on
the GPU (48.90) outperforms the CPU fixed point imple-
mentation.

4.3 Shader Instruction Count Vs. Number of Rendering
Cycles

The most important criterion when designing image pro-
cessing algorithms on the mobile GPU is the balance be-
tween fragment shader instruction count and number of ren-
dering cycles.

In mobile devices, the battery life is limited. The appli-
cation processor (SoC), is designed to consume low power.
As a result, the number of instruction slots for a vertex re-
spectively, fragment shader is limited. The vertex shader is
rarely a bottleneck considering GPUs excellent vertex pro-
cessing capabilities. However, the fragment shader with
large number of instructions is likely to become a bottleneck
when applied to a large number of pixels. For general im-
age processing operations, the number of vertices processed
is much lower than the total number of fragments. As a re-
sult, the number of fragment shader instructions determines
the performance achieved. Lower the instruction count, bet-
ter the performance. On the other hand, in a typical parallel
implementation, the problem at hand is partitioned into sub-
problems (rendering cycles) that are executed sequentially.
However, having multiple rendering cycles reduces the par-
allel fraction of the entire problem, which significantly im-
pact the maximum speed-up achieved.

Considering the above context, there is a trade-off be-
tween combining multiple rendering cycles in a single pass
and splitting a single pass into multiple rendering cycles.
Packing multiple rendering cycles into a single fragment
shader increases the instruction count. On the other hand,
increasing the number of rendering cycles reduces the par-
allel fraction.

1478

5. Performance Optimization

The performance of OpenGL ES 2.0 applications differs
from that of OpenGL on desktop operating system. Embed-
ded GPUs are optimized for low memory and power usage,
using techniques different from a typical desktop GPU. De-
signing shaders inefficiently not only results in poor frame
rate, but also significantly reduces the battery life.

In this section, we present techniques to optimize the
shader performance. The techniques are customized for im-
age processing context and address the need for compact
shader code that match the smaller hardware limits of the
embedded GPU.

5.1 Floating Point Precision Control

Precision hints were added to the OpenGL ES shading lan-
guage specification to address the need for compact shader
variables that match the limited hardware capabilities of em-
bedded devices. Shader variables use precision to provide
hints to the compiler on how the variable is used in the ap-
plication. OpenGL ES 2.0 supports three precision modi-
fiers (i) lowp; (ii) mediump; (iii) highp. The highp precision
variable is interpreted as a single precision, 32 bit floating
point value. The mediump precision variable is interpreted
as a half-precision floating point value (16 bit), covering the
range [—65520, 65520]. Lastly, the lowp precision variable
is interpreted with a 10 bit fixed point format, allowing val-
ues in the range [-2.0,2.0) with a precision of 1/256. Gen-
erally, when in doubt, highp precision is used as default.
The lowp precision is useful for representing colors in the
0.0 to 1.0 range. Choosing a lower precision increases the
performance but may introduce artifacts. After reducing the
precision, it is highly recommended to retest the application
to avoid any overflow occurred due to the numerical range
of lower precision modifiers.

5.2 Loop Unrolling

OpenGL ES 2.0 offers full support for flow control opera-
tions such as for and while. However, to process a loop
a shader need more instructions in increment and compar-
ison operations. Eliminating loop by either an optimized
unrolling or vector utilization to perform operations, results
in lower instruction count and helps achieves higher perfor-
mance.

Note that when the loop cannot be unrolled, it is pre-
ferred to have a constant loop count so that dynamic branch-
ing is reduced.

5.3 Branching

Branches are discouraged in shaders, as they can signifi-
cantly degrade the ability to execute operations in parallel
threads. Branching impacts the shader performance depend-
ing on the type of branching variable. Branching on a con-
stant known value achieves the best performance, followed

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.5 MAY 2012

by branching on a uniform variables. Branching on a value
computed inside the shader results in significantly low per-
formance.

5.4 Load Sharing Between Vertex and Fragment Shaders

Many image processing and computer vision algorithms in-
volves convolution operations such as filtering, which re-
quire accessing neighborhood fragments to compute output.
To obtain the color of a particular neighborhood fragment, it
is common to compute the texture coordinate inside the frag-
ment shader. This is commonly known as dynamic texture
read or dependent texture read. A dependent texture read
occur when a fragment shader computes the texture coordi-
nates rather than using the unmodified texture coordinates
passed into the shader. Although OpenGL ES 2.0 shader
language support this, every time a dependent texture read is
encountered, a stall occurs until the texture information has
been retrieved. When there are a small number of texture
reads, the performance degradation from the stall is hidden.
The reason is that the hardware has the ability to schedule
other operations until the texture data has been retrieved. As
the number of dependent texture read increases, the number
of additional operations that can be performed that do not
rely on dependent texture reads decreases, which results in
a significant bottleneck. This is because the hardware runs
out of operations and reaches a idle state, waiting for the
data to be retrieved from external memory.

For image processing operations, the number of ver-
tices processed is much lower than the total number of frag-
ments, which are millions in number. Consequently, opera-
tions per vertex are significantly cheaper than per fragment,
so it is generally recommended to perform calculations per
vertex. In case of filtering, the straightforward way is to pre-
compute neighboring texture coordinates in a vertex shader.
By moving the calculations to the vertex shader and directly
using the vertex shader’s computed texture coordinates, the
fragment shader avoids the dependent texture read.

Output from the vertex shader is represented by vary-
ing modifier, which is first interpolated by the rasterizer and
then fed into the fragment shader. Modern embedded GPU
architecture supports up to 8 varying vectors between ver-
tex and fragment shaders. Each varying vector is a four-
dimensional vector, typically ordered with Xyzw notation.
In case of 2D texture coordinate, Xy components are used
for storing a single coordinate. The flexibility of the hard-
ware allows us to use zw components for storing coordinates
as well. Although packing multiple sets of texture coordi-
nates into a single varying parameter and using a swizzle
command to extract the coordinates causes a dependent tex-
ture read, we can still avoid calculating indices in fragment
shaders.

5.5 Texture Compression

Memory reduction is always performed at the cost of final
rendered image quality. However, there are image process-

SINGHAL et al.: IMPLEMENTATION AND OPTIMIZATION OF IMAGE PROCESSING ALGORITHMS ON EMBEDDED GPU

ing applications such as feature detection, edge detection,
where the input image is processed without considering the
final rendered image quality. Texture compression usually
provides the best balance of memory savings and quality.
OpenGL ES 2.0 supports the POWERVR Texture Compres-
sion (PVRTC) format. There are two levels of PVRTC
compression, which offers a 8:1 and 16:1 compression ratio
over the uncompressed 32-bit texture format. A compressed
PVRTC texture provides a decent level of quality, particu-
larly at the 8:1 (4-bit level) compression ratio. If the tex-
ture cannot be compressed, a lower precision pixel format
such as, RGB565, RGBAS5551, or RGBA4444 can be used.
These lower precision formats uses half the memory of a
texture in RGBA8888 format and help reduces the memory
transfer time to and from the GPU.

5.6 Optimization Example

In this subsection, we employ 5x5 Gaussian blur filter and
evaluate the impact of different optimization techniques dis-
cussed above. Figure 2 shows the basic fragment shader
implementation using for loop. Table 1 shows the speed-
up achieved after each optimization step. Firstly, the for
loops are eliminated by unrolling the loop. The fragment
shader with the unrolled loop outperforms the shader with
the for loop with significant speedup (5x). Next, we opti-
mize the unrolled loop shader using load sharing. As dis-
cussed above, embedded GPU supports up to 16 texture co-
ordinates to be calculated in a vertex shader. In this opti-
mization step, we use 16 texture coordinates from the ver-

uniform sampler2D sTexture;

uniform mediump float width;

uniform mediump float height;

uniform mediump float filter_size;

varying mediump vec2 TexCoord;

const mediump mat3 gaussian55 = mat3(0.1502, 0.0952, 0.0256,
0.0952, 0.0586, 0.0146,
0.0256, 0.0146, 0.0037);

void main()

{

mediump float offsetX = 1.0 / width;
mediump float offsetY = 1.0 / height;
mediump float i, j;
mediump int a_i, a_j;
mediump vec3 g_value = vec3 (0.0, 0.0, 0.0);
mediump vec2 Coord;
for (1 =-2.0 ; i< 3.0; it++)
for ((j =-2.0; j <3.0; j++)
{

a_i = int (abs(i));

a_j = int (abs(j));

Coord = TexCoord + vec2(i % offsetX, j * offsetY);

g_value += texture2D (sTexture, Coord)).rgb * gaussian55[a_il[a_jl;

¥
gl_FragColor = vec4 (g_value, 1.0);
s

Fig.2 5x5 Gaussian blur fragment shader. Unoptimized version.

Table 1 Fragment Shader Optimization. Execution time (ms) for 5x5
Gaussian filter. GPU is POWERVR SGX 540 at 200 MHz. Instruction
count is calculated using PVRUniSCoEditor shader text editing tool [13].

Optimization Instruction Count | Execution Time (ms)
Basic 288 537.63
Loop Unroll 181 105.93
Load Sharing 150 90.25
Precision Control 69 48.90

1479

tex shader and other 9 coordinates are calculated inside the
fragment shader. As shown in Fig. 2, variable gaussian55
and g_value have their numerical range between [-2.0,2.0)
for the entire length of the program. As a result, these two
variables can be assigned a lowp precision modifier to ac-
celerate the computation process. All color read from tex-
ture memory can be assigned lowp precision. Using pre-
cision control lowers the instruction count significantly and
achieve 2x speedup when compared to previous load sharing
optimization.

6. Design and Implementation of Algorithms

In this paper, we select three target algorithms (cartoon-
style NPR, speeded-up feature detector (SURF), and stereo
matching) to implement and analyze on the embedded GPU.
These algorithms include multiple image processing rou-
tines such as Gaussian smoothing, bilateral filtering, color
conversion, edge detection, etc. The implementation on the
embedded GPU is optimized based on the techniques de-
scribed in the previous section.

6.1 Cartoon-Style Non-photorealistic Rendering (NPR)

We present an implementation of the cartoon-style NPR al-
gorithm using vertex and fragment shader units of a pro-
grammable embedded GPU. Given the input image f(x),
this image is convolved by a Bilateral filter kernel. A bilat-
eral filter has a property of edge preserving smoothing [15],
which is defined by

l2=xll

s) e 7

XeN

Glx] = ; (1

[12=xi|

> e_%(7)-w(x, %)

XeN

where x is a pixel location, % are neighboring pixels, N is the
kernel size, and o7, is the geometric spread (low-pass filter-
ing). The range weighting function, w(:), behaves such that
the weight is small for pixels in different regions with large
contrasts. Therefore, there is much less smoothing across
the edge between the regions. A popular choice for w(-) is
given by

[ONGN
wix, ®) = e (F)

2

where o, is the photometric spread in the image range.
Next, the highlighting edges are overlaid to increase lo-
cal contrast and sharpen the resulting cartoon-style image.
Bilateral filtering is applied to the Y (Luminance) channel
only, since it carries the majority of information about the
image. Also, edge artifacts and noise are mostly seen in this
channel.

6.1.1 Implementation on the Embedded GPU

On an embedded GPU such as POWERVR SGX 540, exp2

1480

(base-2 exponential) execute in a single instruction as com-
pared to 4 instructions for exp (base-e exponential). As a
result, we first modify Eq. (1) to utilize to exp2 instead of
exp.

2, h(x, w(x, X) f(x)

XeN

G'[x] = , 3
e @
Xe
w(x, £) = 27 WSO o = _jpere/202, 4)
_1f =
where h(x,X) = e 2(7d) , 1s a pre-computed Gaussian

space function. The above technique is effective for all em-
bedded GPU architectures supporting OpenGL ES 2.0.

The GPU acceleration is implemented in two stages.
The first stage contains two rendering passes. In the first
pass, the fragment shader program converts the input texture
image from RGB to YCbCr color space. In the second pass,
the pixel shader performs bilateral filtering by fetching 24
neighboring pixels, 16 of which are computed in the vertex
shader program and passed to the fragment program using
varying variables. Next, the second pass is iteratively ren-
dered multiple times to produce the desired level of abstrac-
tion. After the first stage, the Sobel edge detection is em-
ployed to highlight edges in the abstracted luminance map.
Finally, the YCbCr values are transformed back to the RGB
color space and are rendered to a 32-bit RGBA texture or
the screen buffer.

6.2 Stereo Matching

In this work, we adopt the belief propagation (BP) algorithm
for depth estimation [16]. There are several BP proposals in
literature. Majority of them focus on CPU implementations,
where the execution time cannot satisfy low latency require-
ments. There are some BP algorithms that have been imple-
mented on GPUs [17], but these implementations use high
end PC GPU and are not targeted at handheld devices.

6.2.1 Implementation on the Embedded GPU

The number of iteration and levels required to obtain a good
quality disparity map are empirically set. The number of
disparity is set at 16. The BP algorithm consists of the fol-
lowing blocks.

(1) RGB to Gray

In the first pass, the fragment shader program converts left
and right images from RGB to gray color domain.

(2) Data cost calculation

Pixel coordinate (i, j) in the left image is compared to (i +
d, j) in the right image. Data cost at depth d is calculated as

val = ||L(i, j) — R(i + d, I,)
C(i, j,d) = (1 = min(val, DATA_K)), (©6)

where, L and R are left and right image, respectively, C is

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.5 MAY 2012

the data cost at depth d, and A and DATA_K are constant
values. A fragment shader is limited by the maximum of 4
output values, each 1 byte in size. To perform the required
operations for 16 disparity values, it requires 4 rendering
passes, each rendering 4 values to a 32-bit RGBA texture.

(3) Message passing module

This module is the core of the algorithm. It reads the initial
data cost and performs the message passing to obtain the
final disparity map. In belief propagation, each pixel (i,j)
outputs 4 different messages to the pixel surrounding it (up,
down, left, and right). In order to calculate each of these
messages, the pixel gets three messages corresponding to
the surrounding pixels. For example, if we want to calculate
the message in “up” direction, the pixel gets messages from
(i,j+1), (i+1,j), (i-1,j) and sum them together with C(i,j). Af-
ter this process, the final value is truncated and normalized.
Algorithm 1 describes the pseudo code for message passing
algorithm.

In the GPU implementation, the message passing mod-
ule is divided into two stages. In the first stage, temporary
messages for each of up, down, left, and right directions, are
obtained by means of the three messages corresponding to
the surrounding pixels and the center data cost. The tem-
porary messages for each direction and 16 disparity values
are rendered to 4 different 32-bit RGBA textures (pass 1 tex-
tures). In the second stage, the temporary messages for each
direction are independently truncated and normalized. For
each direction, the output values for 16 disparity values are
rendered to 4 different 32-bit RGBA textures (pass 2 tex-
tures). These pass 2 textures serve as input to the first stage
in the next iteration.

The above message passing algorithm is executed for
a set number of iterations (0 to ITER-1) and levels (0 to
LEVELS-1). At each level, starting from level 1, the ren-
dered width and height are reduced by half.

Algorithm 1 Message Pass

First loop, with d from O to 15. In the following pseudo code, we calcu-
late the message for up direction

// Pass 1 Textures

msg(i,j,d) = msg(i,j+1,d) + msg(i+1,j,d) + msg(i-1,j,d) + data_cost(i,j,d)
if((msg(i,j,d) - msg(i,j,d-1)) > 1)

msg(i,j,d) = msg(i,j,d-1)

if((msg(i,j,d) - msg(i,j,d-1)) < -1)

msg(i,j,d-1)= msg(i,j,d)

Second loop, with d from O to 15 truncate the message below a value
given by minimum value plus a constant DISC_K:

minimum += DISC_K

if(minimum < msg(i,j,d)

msg(i,j,d) = minimum

value += msg(i,j,d)

Third loop, with d from O to 15 normalizes the final message
value = value / 16
msg(i,j,d) = msg(i,j,d) - value // Pass 2 Textures

SINGHAL et al.: IMPLEMENTATION AND OPTIMIZATION OF IMAGE PROCESSING ALGORITHMS ON EMBEDDED GPU

(4) Output

This module performs the summation of the final messages
and the initial data cost of every pixel. Then, it calculates the
minimum value among 16 disparity values. The minimum
value is scaled to cover the range from 0O to 255.

6.3 Speeded-Up Robust Feature (SURF)

In this work, we have chosen the SURF [18] algorithm be-
cause of its favorable computational characteristics for par-
allel implementation and its state-of-the-art matching per-
formance.

SURF algorithm locates features using an approxi-
mated method in obtaining the determinant of the Hessian.
It replaces the second order Gaussian filters with a box fil-
ter approximation. Box filters can be evaluated extremely
efficiently using the integral image. Given an integral im-
age, the sum over any arbitrary sized 2D region can be com-
puted in just four memory lookups. To achieve scale in-
variance, the filters are computed at a number of different
scales s, and 3 X 3 x 3 local maxima in scale and posi-
tion determine the detected features. In our implementa-
tion, we do not compute orientation for algorithm simplic-
ity. Once the position and the scale have been determined, a
feature descriptor is computed, which is used to match fea-
tures across images. Feature descriptor is built from a set
of Haar responses computed in a 4 X 4 grid of sub-regions
of a square of size 20s around each feature point. Twenty-
five 2D Haar responses (dy, dy) are computed using filters
of size 25 X 25 on a 5 x 5 grid inside each sub-region and
weighted by a Gaussian with oo = 3.3s centered at the in-
terest point. Each sub-region constructs a four-dimensional
vector v = (3}, dy,), dy, . |dxl, 2. |dy|) from these responses.
Combining the vectors v from each sub-region yields a sin-
gle 64-dimensional descriptor.

6.3.1 Implementation on the Embedded GPU

(1) Integral Image Computation

The integral image is used to compute box filter and Haar fil-
ter responses at arbitrary scales. Since it must be computed
over the entire image, it is quite expensive. Embedded GPU
such as POWERVR SGX 540 supports only 32-bit RGBA
texture (four 8-bit outputs). The 31 bits of precision avail-
able in RGBA texture have sufficient accuracy for images
less than 223 pixels in size (about 2048 x 2048). In the frag-
ment shader program, we split the output sum value into
a four component vector of 8-bit precision floats. Integral
image is built using 2D reduction technique. The fragment
shader adds the adjacent pixel values obtained from previ-
ous rendering pass as follows.

priy J) = praGy) + prot =271,)
+pra(i, j—-2"h (7)
+p(i=27" =27,

1481

where p,(i, j) is the sum value in the " rendering iteration
(r = 1) and pg represents the input gray scale image. Fig-
ure 3 shows the reduction scheme for a 8 X 8 image block.
For a 800x480 resolution, this stage requires 10 rendering
passes.

(2) Hessian Determinant

After constructing the integral image, we turn to the evalu-
ation of box filters, which are used to locate interest points.
The layout of the box filters is illustrated in Fig. 4 (a). The
box filter size at different octaves (1 to 4) used in this imple-
mentation is given in Fig. 4 (b). First, we compute the box
filter response for each filter size at the image resolution.
Next, we use the hardware bilinear interpolation to generate
filter responses at different octaves. This process requires
10 rendering passes for 10 different filter size values shown
in Fig 4 (b). In a single rendering pass, the fragment shader
program involves 32 texture lookup. The determinant and
the laplacian values are rendered to RG components of a
32-bit RGBA component.

(3) Non-maximum Suppression (NMS)

Once the Hessian determinant values have been computed,
the local maxima for a triplet of scales, over a given thresh-
old value become interest points. Figure 4 (b) shows the
triplet of scales used for calculating the local maxima. We
perform 3 X 3 x 3 NMS filtering in order to isolate the fea-
tures. The process involves keeping a center value as interest
point if this is the maximum value among 26 neighboring lo-
cations. As shown in Fig. 4 (b), a total of 8 rendering passes
are required, one for each triplet of scales. The rendered
width and height depends on the octave number in which a
particular triplet lies.

(4) Point Table Generation

After NMS filtering, the coordinates of the interest points
are extracted from the image and assembled into a table.
Creating the interest point table using a fragment shader suf-
fers from extra computations in calculating the indices. In

Fig.3 An example of 2D reduction algorithm in a 8x8 region. The sum
of gray value at blue and black pixel locations is rendered to the black pixel
location.

. : - I Octave Filter Size
] L L] First [[9 5 21 27
I -2 1
. - i e I Cis 27 39 5|
I
Third | [27 5| 75 99
Gox Gy Sy Fourth | [51 [99 147 195
(a) (b)

Fig.4 Box filters. (a) Approximation for the second order Gaussian par-
tial derivatives using box filters. (b) Box filter size at different octaves.

1482

this work, feature points are extracted from the NMS filter-
ing output and composed in a point table. The NMS filtering
output is downloaded to CPU buffer from the rendered tex-
ture using glReadPixels(). All threads running on the
GPU are thus synchronized. Feature point locations are ex-
tracted from the downloaded buffer and are put together in a
point table as a two-dimensional texture of size 340x30, as
shown in Fig. 5. Note that we limit the maximum number of
interest points to 300 for a 800x480 resolution image.

(5) Haar Responses

The feature descriptor construction requires computing hun-
dreds of Haar filter responses. This stage is implemented in
5 rendering passes. In the first pass, we extract 20x20 re-
gion around each feature point. This region is divided into a
4x4 grid of sub-regions. For each sub-region twenty-five 2D
Haar responses (d, d) are calculated. In this pass, the frag-
ment shader output (dy, dy, sign(d,), sign(d,)) is rendered to
a 200 x 600, 32-bit RGBA texture.

In the second pass, the Haar response correspond-
ing to each 5x5 region is accumulated to generate
(X dy, 2 ldyl, X2 dy, 2. ldy]). Accumulated output from each
5x5 region is rendered to two adjacent pixels in the output
texture. In the third pass, the values stored in two adjacent
pixels are squared, grouped and rendered to a single pixel
value (RGBA component). Next, the values obtained from
the previous pass are summed over a 4x4 region and ren-
dered to a 10x30, 32-bit RGBA texture. In the final render-

201| 202| 203 | 204 | 205 | 206 | 297 | 298| 299-300

First pixel Second pixel " 3rd ~34th pixel

orientation | laplacian

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.5 MAY 2012

ing pass, the output values obtained in the second rendering
pass are normalized.

7. Experimental Results

In this section, we compare the CPU and GPU implemen-
tations of algorithms described in Sect. 6. Performance is
evaluated in terms of the execution time and the speedup
achieved. The algorithms are implemented on a state-of-
the art smartphone with ARM CORTEX A8 CPU (1 GHz)
and POWERVR SGX 540 GPU (200 MHz). Table 2 shows
the acceleration results for each of the algorithms. In the
following subsections, we evaluate each of three algorithms
separately.

7.1 Cartoon-Style NPR

Figure 6 shows an example of cartoon-style NPR. The num-
ber of bilateral filtering iterations used in our experiment is
two. As depicted in Fig. 6, the size of the bilateral filter de-
cides the level of abstraction in the rendered output. In terms
of the execution time, the GPU implementation achieves a
speedup of 5~6x when compared to the CPU counterpart.
Note that the CPU implementation is a fixed point (integer)
implementation using lookup tables for the exp function.
The bilateral filter fragment shader program involves large
number of dependent texture lookups, which force the GPU
threads architecture to stall the parallel operations and exe-
cute the instructions sequentially. This results in bottleneck
and limits the speedup achieved.

(@) (®)
An example of cartoon-style NPR. (a) The original image at the

Fig. 6

Fig.5 Interest point table. resolution 800x480. (b) 5x5 Bilateral filter result.
Table 2 Execution time comparison in millisecond. CPU is ARM CORTEX A8 running at 1 GHz.
GPU is POWERVR SGX 540 at 200 MHz.
Algorithm Parameters CPU GPU Speed-up
CPU to GPU | GPU to CPU | Kernel Execution

Cartoon-style NPR | 800x480, size = 5x5 | 1545.7 7 46.34 242.7 5.22x
384288, iter =2 4152 4 12.57 578 6.98x
384288, iter = 4 6976 4 12.57 1086 6.32x
Stereo matching 384x288, iter = 8 12161 4 12.57 2083 5.79x
384288, iter = 12 17413 4 12.57 3125 5.54x
384288, iter = 20 27889 4 12.57 5263 5.28x
SURF 800x480 1703 7 63.22 942.5 1.68x

SINGHAL et al.: IMPLEMENTATION AND OPTIMIZATION OF IMAGE PROCESSING ALGORITHMS ON EMBEDDED GPU

Fig.8 Examples of SURF feature detection. (a) Original image (800x480). (b) Detected SURF
features. (c) Original image (800x480). (d) Detected SURF features.

(a) (b) (©)

Fig.7 An example of BP stereo matching. (a) Tsukuba image (left) at
388%244. (b) Ground truth. (c) GPU implementation result with 4 levels
and 15 iterations.

7.2 Stereo Matching

Figure 7 shows the BP stereo matching results with 4 levels
and 15 iterations. In Table 2, the CPU fixed point implemen-
tation is compared to the GPU implementation. The CPU
implementation is done using C programming language and
interfaced (JNI) with the Java layer using Android NDK.
The GPU implementation achieves a speedup factor in the
range of 5~7x. Both the CPU and GPU implementation
heavily suffers from memory bandwidth issue. High mem-
ory access intensity coupled with intensive logical opera-
tions significantly increase the execution time. Additionally,
the GPU implementation is bottlenecked by large number
of rendering passes, which reduces the maximum speedup
achieved. The main reason for large number of rendering
passes is the limited number of output values (4), which can
be rendered in a fragment shader program. For example, cal-
culating data cost for 16 disparity levels costs four rendering
cycles, because of this limitation.

7.3 SURF

Figure 8 shows the GPU implementation results for input
image of resolution 800x480. The GPU implementation in
case of SURF achieves the smallest speedup, when com-
pared to the CPU counterpart. Similar to stereo matching,
the CPU implementation is developed using C programming
language and Android NDK. The lack of support for higher
bit-precision textures (floating point) in SGX 540 is one of
the major reason for low speedup when implemented on the
GPU. The overhead incurred in grouping and splitting the
integral image values into RGBA texture components is one
such bottlenecks. Table 3 shows the breakup of GPU time
for different modules. As shown, the Hessian determinant

Table3 Execution time breakdown in millisecond for SURF algorithm.

Step On CPU | On GPU

(Step 1) Texture Uploading - 7

(Step 2) RGB to Gray, Integral Image 525 292

(Step 3) Hessian Determinant 759

(Step 4) Non-maximum Suppression 159 557

(Step 5) Point Table Creation -

(Step 6) Feature Descriptor Extraction 260 93.5

(Step 6) Texture Downloading - 63.22
Total 1703 1012.72

is the most complex part when implemented on an embed-
ded GPU. This is followed by integral image computation
and feature descriptor extraction modules, respectively. The
Hessian determinant calculation takes the maximum execu-
tion time as it suffer intensively from 32 dependent texture
lookups in a single rendering pass. In addition, designing
GPU implementation for multiple octaves and scales, results
in large number of rendering cycles. This inherently limits
the maximum speedup achieved.

8. Conclusion

In this paper, we explored the implementation, optimiza-
tion, and evaluation of image processing and computer vi-
sion algorithms on the embedded GPU using OpenGL ES
2.0 shading language. In addition to characterizing the em-
bedded GPU, we proposed optimization techniques for effi-
cient shader design. We selected three algorithms namely,
cartoon-style NPR, stereo matching, and SURF. Based
on the proposed optimization techniques, these algorithms
were implemented on an embedded GPU.

Acknowledgement

This research was supported by the Basic Science Re-
search Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Sci-
ence and Technology (2011-0003392). This work was sup-
ported by Samsung Electronics.

1484

References

(1]

(2]

(3]
(4]
[3]

(6]

(71

(8]

[

[10]

[11]
[12]

[13]
[14]

[15]

[16]

[17]

[18]

General Purpose GPU Programming (GPGPU) Website.
http://www.gpgpu.org

N. Singhal, LK. Park, and S. Cho, “Implementation and optimiza-
tion of image processing algorithms on handheld GPU,” Proc. IEEE
International Conference on Image Processing, pp.4481-4484, Sept.
2010.

R.J. Rost, OpenGL Shading Language, Second ed., Addison-Wesley
Professional, 2006.

NVIDIA Corporation, Compute Unified Device Architecture
(CUDA). http://developer.nvidia.com/object/cuda.html

Khronos Group, Open Computing Language.
http://www.khronos.org/opencl/

J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C.
Phillips, “GPU computing,” Proc. IEEE, vol.96, no.5, pp.879-899,
2008.

N.M. Cheung, O.C. Au, M.C. Kung, and P.H.W. Wong, “Highly
parallel rate-distortion optimized intra-mode decision on multicore
graphics processors,” IEEE Trans. Circuits Syst. Video Technol.,
vol.19, no.11, pp.1692-1703, Nov. 2009.

Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, “GpuCV:
An opensource GPU-accelerated framework for image processing
and computer vision,” Proc. ACM International Conference on Mul-
timedia, pp.1089-1092, Oct. 2008.

P. Babenko and M. Shah, “MinGPU: A minimum GPU library for
computer vision,” Real-Time Image Processing, vol.3, no.4, pp.255—
268, Dec. 2008.

J. Fung, S. Mann, and C. Aimone, “OpenVIDIA: Parallel GPU com-
puter vision,” Proc. ACM International Conference on Multimedia,
pp-849-852, Nov. 2005.

NVIDIA NPP Library. http://www.nvidia.com/object/npp.html

LK. Park, N. Singhal, M.H. Lee, S. Cho, and C.W. Kim, “Design and
performance evaluation of image processing algorithms on GPUs,”
IEEE Trans. Parallel Distrib. Syst., vol.22, no.1, pp.91-104, Jan.
2011.

IMAGINATION Technologies, POWERVR SDK.
http://www.imgtec.com

T.A. Moller and J. Strom, “Graphics processing units for handhelds,”
Proc. IEEE, vo0l.96, no.5, pp.779-789, May 2008.

S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “Bilateral filter-
ing: Theory and applications,” Foundation and Trends in Computer
Graphics and Vision, vol.4, no.1, pp.1-73, 2009.

Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nister, “Stereo
matching with color-weighted correlation, hierarchical belief prop-
agation and occlusion handling,” IEEE Trans. Pattern Anal. Mach.
Intell., vol.31, no.3, pp.492-504, March 2009.

Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nistér, “Real-
time global stereo matching using hierarchical belief propagation,”
Proc. British Machine Vision Conference, pp.989-998, Sept. 2006.
H. Bay, A. Ess, T. Tuytelaars, and L.V. Gool, “SURF: Speeded up
robust features,” Comput. Vis. Image Understand., vol.110, no.3,
pp-346-359, June 2008.

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.5 MAY 2012

Nitin Singhal received the M.S. degree
in electrical engineering and computer science
from Seoul National University, Seoul, Korea in
2008 and B.S. degree in Electronics and Com-
munication Engineering from Indian Institute of
Technology (IIT), Guwahati, India in 2006. He
is presently working at Samsung Electronics Co.
Ltd., Suwon, Korea and is affiliated with the
Digital Media and Communication R&D cen-
ter. He is an active member of IEEE. His re-
search interests include computer vision, com-
putational photography, GPU computing, and digital right management.

Jin Woo Yoo received the B.S. degree
in information and communication engineering
from Inha University, Incheon, Korea, in 2010.
Currently he is working toward M.S. degree in
information and communication engineering in
Inha University. His research interests include
computational photography, feature extraction,
and GPGPU for image processing and computer
vision.

Ho Yeol Choi received the B.S. degree in in-
formation and communication engineering from
Inha University, Incheon, Korea, in 2010. Cur-
rently he is working toward M.S. degree in robot
engineering in Inha University. His research in-
terests include multi-view stereo reconstruction,
motion deblurring, and GPGPU for image pro-
cessing and computer vision.

In Kyu Park received the B.S., M.S., and
Ph.D. degrees from Seoul National University in
1995, 1997, and 2001, respectively, all in elec-
trical engineering and computer science. From
September 2001 to March 2004, he was a Mem-
ber of Technical Staff at Samsung Advanced In-
stitute of Technology. Since March 2004, he has
been with the School of Information and Com-
munication Engineering, Inha University, where
he is an associate professor. From January 2007
to February 2008, he was an exchange scholar at
Mitsubishi Electric Research Laboratories (MERL). Dr. Park’s research in-
terests include the joint area of computer graphics and vision, including 3D
shape reconstruction from multiple views, image-based rendering, com-
putational photography, and GPGPU for image processing and computer
vision. He is a member of IEEE and ACM.

