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PAPER

A Comparative Study of Rotation Angle Estimation Methods Based
on Complex Moments

Jong-Min LEE†, Student Member and Whoi-Yul KIM†a), Nonmember

SUMMARY Determining the rotation angle between two images is
essential when comparing images that may include rotational variation.
While there are three representative methods that utilize the phases of
Zernike moments (ZMs) to estimate rotation angles, very little work has
been done to compare the performances of these methods. In this paper,
we compare the performances of these three methods and propose a new,
angular radial transform (ART)-based method. Our method extends Re-
vaud et al.’s method [1] and uses the phase of angular radial transform co-
efficients instead of ZMs. We show that our proposed method outperforms
the ZM-based method using the MPEG-7 shape dataset when computation
times are compared or in terms of the root mean square error vs. coverage.
key words: rotation angle, phase, Zernike moment

1. Introduction

In pattern recognition and image analysis, sets of Zernike
moments (ZMs) are widely used as image descriptors to
capture the global features of an image [2]–[13]. ZMs ex-
tend geometric movements using orthogonal Zernike poly-
nomials, rather than the conventional transform kernels that
geometric moments use. A single ZM is a complex num-
ber that encompasses two different values: magnitude and
phase.

In order to compare two images that differ by rotational
angle, an image descriptor should either be invariant to ro-
tation or able to retrieve the rotation angle. Earlier work
using ZMs to describe image patterns most commonly used
the magnitude of the ZM because it is invariant to rotation.
Recently, several studies have used the ZM phase [1], [14],
[15], which is more informative than the magnitude [14]–
[16]. Although phase information is not invariant to rota-
tion, the ZM phase can be used to estimate the rotation an-
gle between two image patterns. To calculate the similarity
between two images using the ZM phase, this rotation angle
must be identified. Apart from comparing two sets of ZM
phases, the rotation angle between two images is also used
to align images in many computer vision tasks.

A conventional method for estimating the rotation an-
gle between two image patterns is to identify the principle
axes, and several methods (i.e., [17] and [18]) that use edge
information have been proposed. ZM-based methods, how-
ever, provide superior performance in terms of accuracy.
Three representative studies have used the ZM phase to esti-
mate the rotation angle between pairs of image patterns [1],

Manuscript received September 30, 2011.
†The authors are with the Hanyang University, Seoul, 133–791,

Korea
a) E-mail: wykim@vision.hanyang.ac.kr

DOI: 10.1587/transinf.E95.D.1485

[15], [19]. The method introduced by Kim and Kim [19] cal-
culates a probability density function of the rotation angle
using the phase differences of coefficients of two set of ZMs
in a discrete angle space. The maximum value of the density
function is an estimate for the rotation angle. Revaud et al.
presented a method that estimates the rotation angle by min-
imizing the distance function of two image patterns [1]. The
distance is defined using the dissimilarity between recon-
structed images using ZMs. Recently, Chen and Sun pro-
posed using a weighted sum of the phase differences in two
sets of ZMs [15]. The two phase differences are calculated
using two coefficients of consecutive repetition parameters
of ZMs.

Although all three methods were proposed for the same
purpose and claimed to have the best performance, very little
work has been done to compare these methods under equiv-
alent conditions. Only a limited performance comparison
between Revaud et al.’s method and, Kim and Kim’s method
was presented in [1]. Therefore, the question of which esti-
mator is the most accurate and robust with respect to noise
remains open.

In this paper, we compare performance in terms of ac-
curacy and noise robustness, and propose a new rotation an-
gle estimation method that uses the phase of coefficients of
angular radial transform (ART) [20]. The proposed method
is an extension of the work of Revaud et al. [1] and is
shown to significantly outperform the three ZM-based meth-
ods. For the performance comparison, we employ root mean
square (RMS) error vs. coverage [15] as criteria. The cov-
erage contains information related to the variation of the es-
timation error. We also compare the computation times of
each method, since computational efficiency is one of most
important properties of an estimation method. The experi-
mental dataset contains a sufficient number and variety of
types of images to facilitate performance comparisons in
terms of both accuracy and noise robustness. In order to
compare the noise robustness, both photometric and geo-
metric noise images are considered in the comparison.

We briefly review the fundamentals of ZM in Sect. 2
and all three methods in Sect. 3. In Sect. 4, the proposed
method is presented with a brief review of the fundamen-
tals of ART. The experimental data and the criteria for our
performance comparison are then presented in Sect. 5. The
results and analysis of the comparisons are given in Sect. 6,
and we conclude the paper in Sect. 7.
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2. Fundamentals of the Zernike Moment

The ZM coefficients represent complex moments calculated
using different orthogonal basis functions. The basis func-
tions are defined on a unit disk in polar coordinates. A ZM
of order n with repetition m is defined as

Znm =
n + 1
π

�

ρ≤1

f (ρ, θ)VZM∗
nm (ρ, θ)ρdρdθ, (1)

where f (ρ, θ) is the input image function, VZM
nm (ρ, θ) is the

complex Zernike basis function, and ∗ denotes the complex
conjugate. The Zernike basis functions are visualized up to
n = 7 in Fig. 1.

The Zernike basis functions are defined as

VZM
nm (ρ, θ) = RZM

nm (ρ) exp( jmθ), |ρ| ≤ 1, (2)

where

RZM
nm (ρ)

=

(n−|m|)/2∑
s=0

(−1)s (n − s)!

s!

(
n + |m|

2
− s

)
!

(
n − |m|

2
− s

)
!

ρn−2s. (3)

In (3), the order n is a non-negative integer and the repetition
m is an integer satisfying n − |m| = (even) and |m| ≤ n.

The difference between two ZM phases of an original
image Znm and a rotated image Zr

nm is given by

Θnm ≡ arg

(
Zr

nm

Znm

)
= mα, 0 < Θnm ≤ 2mπ, (4)

or

Fig. 1 The basis functions of the ZM.

Φnm = (ϕr
nm − ϕnm) mod (2π)

= (mα) mod (2π), 0 < Φnm ≤ 2π, (5)

where ϕ is the phase of the ZM. More specifics about the
fundamentals and the properties of the magnitude and phase
of ZMs are well presented in [9] and [14].

3. Methods for Estimating Rotational Angle Based on
the ZM Phase

3.1 Kim’s and Kim’s Method

In [14], the rotation angle α is defined as

Ωnm = (ϕnm + 2k1π) − (ϕr
nm + 2k2π)

= Φnm + 2knmπ = mα. (6)

here km ∈ {0, 1, 2, . . . ,m − 1}. The estimated rotation angle
contains an error ε generated by the quantization effect of
an image sensor. Hence (5) can be written as

Θnm ≡ arg

(
Zr

nm

Znm

)
= mα + ε, (7)

and the rotation angle for the (n,m) order of the ZM α̂nm is

α̂nm =
Θnm

m
; m � 0. (8)

Since (8) may yield m solutions, a probabilistic model is
used as in (9) to find the α̂ that minimizes the error E[(α −
α̂nm)2], i.e.,

P(α̂) =
∑

n

∑
m

ξnmP(α̂|n,m), 0 ≤ α̂ ≤ 2π (9)

where P(α̂|n,m) is the probability density function of the
rotation angle estimated from the ZM of order (n,m) and
ξnm is the corresponding weighting factor calculated using
the magnitude of the ZM. The unique solution is determined
at the highest peak of the density function.

3.2 Revaud et al.’s Method

Revaud et al. [1] defined the similarity distance between the
original and rotated images by using the difference between
two images reconstructed by ZM as

d2
original,rotated(α) =

∑∑
x2+y2≤1

∣∣∣∣∣∣∣∣
∑∑
(n,m)∈D

Znm · Vnm(x, y)

−
∑∑
(n,m)∈D

Zr
nm · e jmα · Vnm(x, y)

∣∣∣∣∣∣∣∣
2

. (10)

where, D = {(n,m)|0 ≤ n ≤ ∞, |m| ≤ n, |n − m| = even}.
They rewrote (10) into (11) to convert the equation to a

function of the rotation angle.

d2
original,rotated(α) =

∑∑
x2+y2≤1

π

n + 1

[
|Znm|2 + |Zr

nm|2

− 2|ZnmZr
nm| · cos(mα + ϕnm − ϕr

nm)
]
, (11)
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where −180 ≤ α ≤ 180. Then, they roughly searched for a
minimum value of d2

original,rotated (α) to find the rotated angle
α. Equation (12) can be simplified by removing the con-
stant terms and by aggregating cosine terms with the same
frequency:

A1 cos(mα + B1) + A2 cos(mα + B2)

= |λ| cos(mα + |λ|), (12)

where λ is a complex that can be expressed as A1eiB1+A2eiB2 .
Then, (12) can be equivalently expressed as a sum of N
cosines:

fN(φ) =
N∑

m=1

Am cos(mα + Bm), (13)

where Aq ∈ �+ and Bq ∈ [−π, π].
Equally spread 4NN-S points are sampled between

[0, 2π]: {xn = nπ/2NN-S |0 ≤ n < 4NN-S } where NN-S is the
minimum sampling number based on the Nyquist-Shannon
sampling theorem [16]. The rotation angle xminimum is cal-
culated using two consecutive points xn and xn+1 by a non-
iterative gradient descent algorithm described by

xminimum =
xn+1 f ′N(xn) − xn f ′N(xn+1)

f ′N(xn) − f ′N(xn+1)

= xn +
π

2N

f ′N(xn)

f ′N(xn) − f ′N(xn+1)
, (14)

where f ′N(xn) < 0 and f ′N(xn+1) > 0.

3.3 Chen’s and Sun’s Method

Chen and Sun [15] rewrote (6) using the differences between
two ZM phases of consecutive m and m − 1:

α = mα − (m − 1)α

= (Φnm − 2πknm) − (Φn,m−1 + 2πkn,m−1)

= (Φnm − Φn,m−1) mod 2π, m � 0, 0 ≤ α̂ ≤ 2π. (15)

They proposed a method that estimates the rotation an-
gle α iteratively using (15). Their method is shown in (16)
below.

Initialization α̂0 = 0, c0 = 0

For m = 1, 2, · · · ,M
For n = m,m + 2, · · · ,m + 2

⌊N − m
2

⌋
δnm = [(Φnm − (m − 1)α̂m−1)]mod 2π

wnm =
|Znm| + |Zr

nm|
2

End (16)

sm=


 N−m
2 �∑

k=0

wm+2k,m

m
; δm=

1
sm


 N−m
2 �∑

k=0

wm+2k,m

m
δm+2k,m

α̂m=
1

cm−1+sm
(cm−1α̂m−1+smδm); cm=cm−1+sm

End

α̂ = α̂M

The estimated angle α̂ is the weighted sum of the phase dif-
ferences between two ZMs sorted by m.

4. ART and the Proposed Angle Estimation Method

4.1 Angular Radial Transform

ART was proposed by Kim and Kim [20]. ART possesses
additional pattern description capability compared to ZM,
and takes complexities in both radial and angular directions
into account.

Fnp =

∫ 2π

0

∫ 1

0
f (ρ, θ)VART ∗

np (ρ, θ)ρdρdθ, (17)

where, Fnp is an ART coefficient of order n and repetition
p, VART

np (ρ, θ) is the ART basis function that are separable
along the angular and radial directions,

VART
np (ρ, θ) = Am(θ)RART

p (ρ). (18)

In order to achieve rotation invariance of the magni-
tude, an exponential function is used for the angular basis
function,

Ap(θ) =
1

2π
exp( jpθ). (19)

Depending on the types of radial basis functions, two
different transforms, ART-C and ART-S can be defined;
ART with cosine and sine radial basis functions, respec-
tively.

ART-C : RC
n (ρ) =

{
1 n = 0

2 cos(πnρ) n � 0
(20)

ART-S : RS
n (ρ) =

{
1 n = 0

2 sin(πnρ) n � 0
. (21)

The magnitudes of the ART coefficients are rotation in-
variant, similar to ZM. Let the image f r(ρ, θ) be the rotated
image of original image f r(ρ, θ) by α:

f r(ρ, θ) = f (ρ, θ + α) (22)

The ART coefficients of the rotated image are then given by

Fαnp =
1

2π

∫ 2π

0

∫ 1

0
VART ∗

np (ρ, θ) f rρdρdθ

= Fnp exp(− jpα) (23)

In this paper, ART-C is used to generate the basis func-
tions. The real and imaginary parts of ART up to order = 3
and repetition = 8 are shown in Fig. 2.

4.2 A Rotation Angle Estimation Method Based on ART

We extend Revaud et al.’s method using ART. This exten-
sion yields better estimation accuracy and noise robustness
than ZM-based methods. Since the order n and the repeti-
tion p of ART are independent of each other, we can con-
struct a set of ART basis function which can describe the
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Fig. 2 The basis functions of ART.

angular complexity of an image more intensively than the
radial complexity. Therefore, a set of ART coefficients can
describe the angular variation of image patterns more inten-
sively than ZMs [20]. In order to retrieve the rotation angle
using the phase of the ART coefficients, we rewrote Eq. (11)
using ART coefficients instead of ZMs as

d2
original,rotated(α) =

∑∑
x2+y2≤1

π
[
|Fnp|2 + |Fr

np|2

− 2|FnpFr
np| · cos(pα + ϕnp − ϕr

np)
]
, (24)

where p ≥ 1. The coefficients at repetition p = zero do
not have valuable phase information for estimating the ro-
tation angle. Therefore, we exclude those coefficients from
the modified distance function. The π/(n + 1) in (11) repre-
sent the inner product values of the basis functions of ZMs;
in (24) they are replaced with π since

〈
VART

np · VART ∗
np

〉
= π.

The rest of the estimation of the rotation angle α follows the
minimum search scheme of Revaud et al.’s method.

5. Dataset and Comparison Criteria

Rotation angle estimation can be performed on binary or
gray scale images that contain a character, a symbol or a
logo, or a gray image pattern. To compare the performances
of the three methods, we compose three datasets, each con-
taining three types of noise: photometric noise, geomet-
ric noise and deformation noise. All of the images in our
datasets were scaled to 41 × 41.

5.1 Experimental Dataset

The photometric noise dataset and the geometric noise

Fig. 3 Examples of original images from the photometric and geometric
noise datasets.

Fig. 4 Examples of images with geometric noise. The crossing point
of the two lines represents the origin of the unit circle of the ZM basis
functions. The left is the original image and the others are distorted images
(level 5).

dataset consist of binary images and gray-scale images. A
hundred binary images were randomly selected from the
MPEG-7 CE 2 shape dataset and the same number of gray-
scale images were gathered from websites and scaled to
squares. Examples of the images in the two datasets are
shown in Fig. 3.

• Geometric noise: the centers of the images were trans-
lated from −2 to 2 pixels on the x- and y-axis. There-
fore, the distances between the centers of unit disks of
the ZM basis and image patterns varied from 1 pixel
(level 1) to 2

√
2 pixels (level 5). Figure 4 includes ex-

amples of images that contain geometric noise.
• Photometric noise: impulse noise was added to the

binary images at three levels (3%, 6% and 9%), and
Gaussian noise was added to the gray images at three
levels (5 dB, 10 dB and 15 dB in terms of SNR). Fig-
ure 5 includes examples of images that contain photo-
metric noise.

The deformation noise dataset contains 160 images
from the MPEG-7 CE-1 B dataset. The deformation noise
dataset consists of 10 groups; each group has one original
image and 15 deformed images. Examples of the original
and deformed images of the deformation noise dataset are
shown in Fig. 6.

In this comparison, we do not consider the noise due to
partial occlusion since the methods are not designed to be
robust to the distortion caused by partial occlusion.
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Fig. 5 Examples of images with photometric noise.

Fig. 6 Examples of original images from the deformation noise dataset.

5.2 Evaluation Criteria

The mean error alone is inadequate for assessing the accu-
racy of estimations because it does not contain any informa-
tion about how the estimation results vary. Therefore, we
used the RMS error ERMS vs. coverage C as a criterion for
comparison.

The RMS error is defined as (25),

ERMS =

√√√√√ ∑
i

(θi − θ′i )2

Number of pairs
, (25)

where θi and θ′i are the actual and the estimated rotation an-
gles, respectively.

The coverage is the ratio between the number of es-
timated angles with errors that are smaller than a specified
value εt and the total number of image pairs compared,

C =
Number of pairs with ε < εt

Number of total pairs
× 100, (26)

where, ε is |θi − θ′i | and εt is the specified error boundary.
The coverage represents the distribution of errors. A higher
C at a lower ERMS represents better performance.

6. Experimental Results

The maximum order n of ZM is fixed at 12 for the compar-
ison; this is the value proposed in [15] for all three meth-
ods. For the proposed method, the maximum order of ART
is fixed at 3 and the maximum repetition is fixed at 10.
Consequently, Kim and Kim’s method, and Chen and Sun’s
method both use 42 ZMs while Revaud et al.’s method uses
49 ZMs to estimate the rotation angle. The proposed method
uses 40 ART coefficients, which is the smallest among the
four methods.

Since the precision of Kim and Kim’s method is 0.1,
the total number of the histogram bins of (9) of the prob-
ability density function is 360 × 10 × 42 = 151,200. We
performed the rotation angle estimation using each of the
four methods applied to the original (unrotated, noise-free)
image and its variants rotated by intervals of 5◦.

6.1 Performance for the Geometric Noise Dataset

The number of geometric noisy images is 360,000 = (1
(noise-free image) + 24 (geometric noisy images)) × 72 (the
number of angles) × 100 (number of the images) × 2 (binary
and gray images). Table 1 lists the rotation angle estimation
results (ERMS and C) for the four methods for the binary
images and the gray images under geometric noise. ERMS

and C were calculated for three error boundaries: ε < 3◦,
ε < 6◦ and ε < 9◦. Figure 7 shows two graphs of the av-
erage ERMS vs. average C of the four methods for the ge-
ometric noise dataset. The symbols for each line represent
the three boundaries of ERMS . Higher C at a lower ERMS

represents the better performance in the graphs.
All four methods show good performance for noise-

free images. The estimation results for noise-free images
are shown in the first column of Table 1; the C of Kim’s
and Kim’s method is 100% at ε < 3◦, and the Cs of the rest
are also close to 100%. For binary images, the C of Kim’s
and Kim’s method is higher than the proposed method by
1.93% when ε < 9◦ in the binary images, however the ERMS

of the proposed method is 0.106 lower than Kim and Kim’s
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Table 1 Rotation angle estimates for the binary and the gray-scale images under geometric noise
(ERMS (◦), C (%)). 1: Chen and Sun’s method, 2: Revaud et al.’s method, 3: Kim and Kim’s method, 4:
Proposed method.

method. Thus the ratio (|Kim and Kim’s method – the pro-
posed method|/proposed method) of C is 0.019 however the
ratio of ERMS s is 0.128. Therefore, the coverage of the pro-
posed method is slightly lower than Kim and Kim’s method,
which shows the best performance in terms of coverage. Yet
the accuracy of the proposed method is significantly higher
than that of Kim and Kim’s method.

The graphs in Fig. 7 represent the average ERMS vs. the
average C of the four methods calculated from the estima-
tion results for images under the five degrees of geometrical
noise in Table 1. The performance of the four methods is
degraded due to the translation of the location of the image
center.

The proposed method outperforms the other three
methods, as shown in Fig. 7 (a) and (b). In Fig. 7 (b), similar
to the results on noise-free images, the average C of Kim and
Kim’s method is slightly higher than the proposed method
when ε < 9◦, however its average ERMS is significantly more
than that of the proposed method. Further, when compared
to Revaud et al.’s method, the proposed method shows sig-

nificantly better performance due to a superior property of
ART: ART can describe angular variation more thoroughly
than ZMs.

The performance of Chen and Sun’s method is signif-
icantly degraded when images contain any noise since that
method estimates the rotation angle just from the weighted
sum of phase differences, without any consideration for
noise. Since Kim and Kim’s method, Revaud et al.’s method
and the proposed method performed the estimation by find-
ing the minimum distance and the maximum probability,
those three methods are more robust to noise than Chen’s
and Sun’s method.

6.2 Performance Using the Photometric Noise Dataset

The number of photometric noisy images is 43,200 = 3
(photometric noisy images) × 72 (the number of angles) ×
100 (number of images) × 2 (binary and gray image). Ta-
ble 2 lists the rotation angle estimation results (ERMS and C)
for each of the four methods for the binary images and the
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gray images under photometric noise. Figure 8 shows two
graphs of the average ERMS vs. the average C of the four
methods for the photometric noise dataset.

For the photometric noise dataset, the proposed method
yields the best performance, just as for the geometric noise
dataset. The average ERMS of the proposed method is signif-

Fig. 7 Average C vs. Average ERMS graphs for the geometric noise
dataset.

Table 2 Rotation angle estimates for the binary and the gray-scale images under photometric noise
(ERMS (◦), C (%)). 1: Chen and Sun’s method, 2: Revaud et al.’s method, 3: Kim and Kim’s method, 4:
Proposed method.

icantly smaller than that of the other methods; the ERMS of
the proposed method is almost 0.5 times less than the aver-
age ERMS of the other methods. For Kim and Kim’s method,

Fig. 8 Average C vs. Average ERMS graphs for photometric noise
dataset.
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Table 3 Rotation angle estimates for the deformed images (ERMS (◦), C
(%)). 1: Chen and Sun’s method, 2: Revaud et al.’s method, 3: Kim and
Kim’s method, 4: Proposed method.

Fig. 9 Average C vs. Average ERMS graphs for deformation noises
dataset.

observations similar to those made above for the geometric
noise dataset apply; Kim and Kim’s method shows seriously
degraded performance when a binary image contains impact
noise.

6.3 Performance for the Deformation Noise Dataset

The number of deformation noise images is 10,800 = 10
(image groups) × 15 (deformed images) × 72 (number of
angles). Table 3 lists the ERMS and the C of the rotation
angle estimation results of the four methods for the binary
images and the gray images under deformation noise. The
performance of all four methods is significantly degraded
for the deformed image dataset in terms of both ERMS and
C. Figure 9 shows a graph of ERMS vs. C for the deformation
noise dataset.

Since the Cs of the four methods are quite low for
comparing the performance up to ERMS < 9◦, we extend
the error boundaries to ε < 15◦. Because all four methods
yield inaccurate estimation results in most cases, the aver-
age C of the four methods is only 16.08% for the cases when
ε < 15◦. As shown in Fig. 9, until the average ERMS is less
than about 5◦, Chen and Sun’s method shows the best perfor-
mance, closely followed by the proposed method and Kim
and Kim’s method. However, the proposed method yields
the best performance after the average ERMS is larger than
∼ 5◦.

Table 4 ANOVA estimates of the experimental datasets.

Table 5 Computation times of the four methods.

6.4 Statistical Test to Verify Comparison Results

In order to verify the comparison results in this paper, we ap-
plied single factor analysis of variance (ANOVA) to the esti-
mation results for each of the four methods. In the ANOVA
test, the null hypothesis is that the means of the errors of the
four methods are equal and the alternative hypothesis is that
the means of the errors of the four methods are not equal. If
we obtain evidence to reject the null hypothesis in the test,
this indicates that the comparison results in this paper are
valid.

The results of the ANOVA test of estimation results of
experimental datasets are listed in Table 4. The P-value of
0.000 is less than the significance level 0.01, so we can reject
the null hypothesis: the four methods have different accura-
cies at the 0.01 significance level. The F ratio (1011.098) is
also significantly greater than the F critical value (3.782), so
again, we can reject the null hypothesis that the mean errors
of the four methods are all equal. Therefore, we can reject
the null hypothesis and safely conclude that the comparison
results are valid at the 0.01 significance level.

6.5 Computation Time

We measured the computation times of the methods
throughout the experiment in order to compare their compu-
tational efficiencies. The four methods were implemented
in Microsoft Visual Studio 2008 on an Intel Pentium Core2
Quad 2.4 GHz. Code was carefully designed to perform
without redundancy. The average computation times of the
four methods are listed in Table 5.

As listed in Table 5, Chen and Sun’s method performs
in the shortest time followed by the proposed method; the
method is four times faster than the proposed method. The
proposed method and Revaud et al.’s method required simi-
lar amounts of time to perform the estimation. The average
computation time of Kim and Kim’s method is about 136
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times longer than that of the proposed methods because Kim
and Kim’s method calculates the probability density of the
rotation angle at every order and repetition in the discrete
domain.

7. Discussion and Conclusion

In this paper, we presented an experimental comparison of
four rotation angle estimation methods that use phases of
complex moments for estimation; three ZM-based methods:
Kim and Kim’s method, Revaud et al.’s method and Chen
and Sun’s method, and one new ART-based method pro-
posed in this paper. The proposed method is a modifica-
tion of Revaud et al.’s method. The experimental dataset
contains a range of over 410,000 images from simple bi-
nary objects to complex gray patterns. In order to assess
noise robustness, we performed the methods using images
containing three types of noise and compared the estimation
results. For quantitative comparison, we employed RMS er-
ror vs. coverage for the comparison criteria. The graphs of
RMS error vs. coverage enabled objective comparisons be-
tween the performances of the methods. The proposed ART-
based method yielded the best performance in terms of av-
erage RMS error vs. average coverage; the average RMS
error of the proposed method is significantly lower than the
other three methods for the same coverage values in most
cases. In terms of computational time, the proposed method
required less time than Revaud et al.’s method and, Kim’s
and Kim’s method; Chen and Sun’s method took the short-
est computational time but yielded the worst performance in
terms of the average RMS error vs. average coverage. Al-
though the comparison presented here is not exhaustive, the
comparison was performed using over 400,000 images and
we verified the validity of the comparison by an ANOVA
test. Therefore, we conclude that the proposed method is the
best tradeoff between accuracy of estimation and efficiency
of computation.
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