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A Tree-Structured Deterministic Small-World Network

Shi-Ze GUO†, Zhe-Ming LU††a), Guang-Yu KANG†, Zhe CHEN†, Nonmembers, and Hao LUO††, Member

SUMMARY Small-world is a common property existing in many real-
life social, technological and biological networks. Small-world networks
distinguish themselves from others by their high clustering coefficient and
short average path length. In the past dozen years, many probabilistic
small-world networks and some deterministic small-world networks have
been proposed utilizing various mechanisms. In this Letter, we propose
a new deterministic small-world network model by first constructing a
binary-tree structure and then adding links between each pair of brother
nodes and links between each grandfather node and its four grandson nodes.
Furthermore, we give the analytic solutions to several topological charac-
teristics, which shows that the proposed model is a small-world network.
key words: deterministic small-world models, tree-structured network, In-
terconnection network, average path length, clustering coefficient

1. Introduction

Small-world properties have been found in a number of real-
life social, technological and biological networks. People
define small-world networks as those having clustering co-
efficients much larger than random networks, and at the
same time their average shortest path length grows propor-
tionally to the logarithm of the number of nodes. In the past
dozen years, many probabilistic models have been proposed
to characterize real-life small-world networks. In 1998,
Watts and Strogatz [1] proposed the pioneering small-world
network named WS model, which promoted a great deal
of research on the characteristics of small-world networks.
One year later, Newman and Watts [2], [3] presented another
intensively studied small-world network named NW model.
These two classical small-world models are both derived
from the same regular ring lattice. However, with a cer-
tain probability, the WS model rewires each link while the
NW model adds links between each pair of unlinked nodes.
Kasturirangan [4] presented a small-world model called R+
T network, which is actually a regular network coupled
with a tree structure. Subsequently, Kleinberg [5] proposed
a generalized WS model based on a two-dimensional lat-
tice. Furthermore, Ozik et al. [6] introduced a simple evolu-
tion model to construct small-world networks based on ge-
ographical attachment preference. The common feature of
the above models lies in that they construct networks in a

Manuscript received November 9, 2011.
Manuscript revised January 9, 2012.
†The authors are with North Electronic Systems Engineering

Corporation, Beijing 100083, China.
††The authors are with School of Aeronautics and Astronautics,

Zhejiang University, Hangzhou 310027, China.
a) E-mail: zheminglu@zju.edu.cn (Corresponding Author)

DOI: 10.1587/transinf.E95.D.1536

probabilistic manner, and thus they cannot provide us with a
vivid and concrete explanation of how networks are formed
link by link.

To calculate topological features analytically, many re-
searchers have turned their steps to constructing scale-free
or small-world networks in some deterministic manners.
Based on graph-theoretic methods, Comellas et al. [7] pre-
sented the first deterministic small-world network. Based on
the famous tower of the Hanoi puzzle, Boettcher et al. [8]
proposed a kind of deterministic small-world networks
named “Hanoi Networks”. However, in above two mod-
els, the number of nodes is fixed during the generation pro-
cess. To obtain growing small-world networks, Zhang et al.
presented a deterministic small-world network generated
by edge iterations [9]. Besides above models, many other
types of deterministic small-world models have been pro-
posed, such as those with specific degree distributions [10],
those based on prime numbers [11], [12] and those based on
Cayley graphs [13]. In this Letter, we aim to derive a deter-
ministic small-world network from the binary tree by adding
some edges in each iteration with a simple mechanism, re-
sulting in a high clustering coefficient.

2. Proposed Deterministic Small-World Network

In most real-life networks, the number of nodes often grows
exponentially with time. Therefore, we adopt a binary tree
whose number of nodes increases exponentially with layer.
However, the clustering coefficient of the binary tree is zero
since there is not any triangles in the tree. To get a high
clustering coefficient, here we propose a generation algo-
rithm by adding some links based on a simple mechanism
at each iteration. Assume the obtained network after t it-
erations is S Wt that has Nt nodes and Et edges, where
t = 0, 1, 2, . . . ,T − 1, and T is the number of iterations per-
formed. Assume each node is labeled with a nature number
increasing with the generation time, then the proposed gen-
eration process can be illustrated as follows:

Step 0. Initialization: Set t = 0, S W0 contains one node
labeled as “1”. Obviously, N0 = 1 and E0 = 0, and the
number of layers is 1.

Step 1. Generation of S W1 from S W0: Two child nodes
labeled as “2” and “3” branch from Node “1”, and an extra
link is constructed between the two child nodes. Thus, N1 =

3 and E1 = 3, and the number of layers is 2.
Step 2. Generation of S Wt+1 from S Wt for t > 0: This

step includes following three substeps.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



LETTER
1537

Fig. 1 The first four iterations of the growth of the proposed network.

Step 2.1. Two new nodes branch from each node in the
last layer of S Wt, resulting in a new layer. In other words,
Node “(Nt+1)/2+ p” is linked to the newly-generated Node
“Nt + 1 + 2p” and Node “Nt + 2p + 1” respectively, p =
0, 1, . . . , (Nt + 1)/2 − 1.

Step 2.2. Construct a link between each pair of full-
brother nodes in the newly-generated layer. In other words,
Node “Nt + 1 + 2p” and Node “Nt + 2p + 1” are linked,
p = 0, 1, . . . , (Nt + 1)/2 − 1.

Step 2.3. For each newly-generated node, we link it to
its grandfather node. In other words, each node in the t-th
layer labeled as “(Nt+1)/4+p” is linked to its four grandson
nodes in the t + 2-th layer labeled as “Nt + 4p + 1”, “Nt +

4p + 2”, “Nt + 4p + 3” and “Nt + 4p + 4” respectively, p =
0, 1, . . . , (Nt + 1)/4 − 1.

Obviously, after above three substeps, we have Nt+1 =

2Nt + 1 and Et+1 = 3Nt + 4Nt−1.
Step 3: If t < T − 1, set t = t + 1 and go to Step 2.

Otherwise, the algorithm is terminated.
Above iterative process is repeated for T −1 times, and

then we can obtain a deterministic network with a high clus-
tering coefficient as shown below. In fact, in the above gen-
eration process, we mimic the family relationship to some
extent, for example, the pair of full-brother nodes branching
from the same father is linked and the grandfather is linked
to its four grandsons. Figure 1 shows the obtained network
after the first four iterations. According to the relationships
Nt+1 = 2Nt + 1 and Et+1 = 3Nt + 4Nt−1 together with the ini-
tial conditions N0 = 1, we can easily prove that Nt = 2t+1−1
and Et = 5 × 2t − 7 (t > 0), thus we can obtain the average
node degree as follows

〈k〉t = 2Et

Nt
=

2(5 · 2t − 7)
2t+1 − 1

= 5

(
1 − 2.8

2t+1 − 1

)
(1)

Since lim
t→∞〈k〉t = 5, we can see that the proposed model is

a sparse network with much fewer links than possible. In
comparison with our model, the average node degree of the
deterministic model presented in [9] approaches 4.

3. Topological Properties

3.1 Degree Distribution

Degree distribution is one of the most important topological
features of a network. The degree of Node i is defined as
the number of connections it has to other nodes, and degree
distribution P(k) is defined as the fraction of nodes in the

network with degree k. According to the iteration algorithm,
for t > 3, we can easily prove that the possible degree values
in the proposed network are 6, 8, 9, 5, 3, which correspond
to the nodes in the first layer, the second layer, the middle
layers, the second last layer and the last layer respectively.
Thus, we can easily obtain

P(k) =
1

2t+1 − 1
δ(k − 6) +

2
2t+1 − 1

δ(k − 8)

+
2t−1 − 4
2t+1 − 1

δ(k − 9) +
2t−1

2t+1 − 1
δ(k − 5)

+
2t

2t+1 − 1
δ(k − 3) (2)

Where δ(k) = 1 for k = 0 and δ(k) = 0 for k � 0. When t →
∞, we can easily obtain the following degree distribution

lim
t→∞ P(k) = 0.25 · δ(k − 9) + 0.25 · δ(k − 5)

+ 0.5 · δ(k − 3) (3)

Therefore, the degree distribution of the proposed network
is discrete and focuses mainly on three degree values, which
is different from most small-world networks [9] that P(k) is
an exponential of a power of degree k.

3.2 Clustering Coefficient and Clustering-Degree Correla-
tion

The clustering coefficient of a network is the average lo-
cal clustering coefficient over all nodes in the network. The
local clustering coefficient of a node in a network quanti-
fies how close its neighbors are to be a clique. For Node i
with degree ki, its local clustering coefficient Ci is defined
as Ci = 2ni/[ki(ki − 1)], where ni is the number of links that
actually exist between its nearest neighbors. Because of the
symmetry of the proposed network, the nodes with the same
degree have the same local clustering coefficient. At Itera-
tion t, there are t + 1 layers. When t > 3, for the nodes in
the first layer, we have ni = ki + 1 = 7. For the nodes in the
second layer, we have ni = ki + 2 = 10. For the nodes in the
t-th layer, we have ni = ki + 1 = 6. And for the nodes in the
t+1-th layer, we have ni = ki = 3. For the remainder middle
layers, we have ni = ki + 3 = 12. Thus, we can easily obtain
the following results.

C(k) =
7

15
· δ(k − 6) +

5
14
· δ(k − 8) +

1
3
· δ(k − 9)

+
3
5
· δ(k − 5) + 1 · δ(k − 3) (4)

Furthermore, since ni ≈ ki, we have Ci = 2ni/[ki(ki − 1)] ≈
2/ki, and thus the clustering-degree correlation can be sim-
ply described as C(k) ∝ k−1. That is to say, there is a nega-
tive correlation between the local clustering coefficient and
the nodal degree, which means that the larger the degree of
the node the lower its clustering coefficient.

Based on Eq. (4) and Eq. (2), for t > 3, the average
clustering coefficient C for the whole network can be calcu-
lated as follows:
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C(t) =
1

2t+1 − 1

2t+1−1∑
i=1

Ci(t)

=
1

2t+1 − 1

[
1 · 7

15
+ 2 · 5

14
+ (2t−1 − 4) · 1

3

+ 2t−1 · 3
5
+ 2t · 1

]

=
11
15
+

61
105 · (2t+1 − 1)

(5)

Since C(t + 1) − C(t) < 0, as the number of iterations t ap-
proaches infinity, C will monotonically decrease to the con-
stant value 11/15 = 0.7333, therefore the clustering coeffi-
cient of the proposed network is very high. In comparison
with our model, the clustering coefficient of the determinis-
tic model in [9] approaches 0.6931.

3.3 Diameter and Average Path Length

The most typical feature of a small-world network is that
its average path length (APL) is short in comparison with its
size. APL is defined as the average distance over all possible
pairs of nodes in a connected network. In general, it is hard
to obtain the analytic solution of APL. In fact, if a network
is with a small maximal distance, then this network is un-
doubtedly with a short APL. We call this maximal distance
diameter, which characterizes the maximum communication
delay in the network. Here, we denote the diameter at Iter-
ation t as D(t). Because of the tree structure, one can easily
see that the diameter always lies between the non-brother
nodes in the last layer. Take the node pair (2t, 2t+1 − 1) for
example, while traveling from Node 2t to Node 2t+1 − 1, the
shortest path includes t edges. Thus, we have the following
simple formula

D(t) = t =
ln(Nt + 1)

ln 2
− 1 (6)

Thus, the diameter D grows logarithmically with the num-
ber of nodes. In comparison with our model, the diameter of
the model in [9] is t + 1. Because the average path length is
smaller than D, thus the APL should increase more slowly.
To show the relationship more clearly, we provide the simu-
lation results in Fig. 2.

Fig. 2 The APL and D versus the logarithm of the number of nodes.

According to the above discussions, we can conclude
that the proposed model is a deterministic small-world net-
work, for it is sparse with a high clustering coefficient and a
short average path length, satisfying the three main required
properties for small-world networks.

4. Conclusions

In this Letter, we have presented a deterministic small-
world model derived from the binary tree. By adding
links between full-brother nodes and adding links between
the grandfather node and its grandson nodes, we get a
high clustering coefficient not less than 0.7333, which re-
sults in a small-world network. We have derived the ana-
lytic solutions for degree distribution, clustering coefficient,
clustering-degree correlation and diameter of the determin-
istic model, and they are all close to those for existing ran-
dom small-world networks. The proposed model provides a
new way to generate a network with specific properties by
modifying an existing network.
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