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A New Shape Description Method Using Angular Radial Transform

Jong-Min LEE†, Student Member and Whoi-Yul KIM†a), Nonmember

SUMMARY Shape is one of the primary low-level image features in
content-based image retrieval. In this paper we propose a new shape de-
scription method that consists of a rotationally invariant angular radial
transform descriptor (IARTD). The IARTD is a feature vector that com-
bines the magnitude and aligned phases of the angular radial transform
(ART) coefficients. A phase correction scheme is employed to produce the
aligned phase so that the IARTD is invariant to rotation. The distance be-
tween two IARTDs is defined by combining differences in the magnitudes
and aligned phases. In an experiment using the MPEG-7 shape dataset,
the proposed method outperforms existing methods; the average BEP of
the proposed method is 57.69%, while the average BEPs of the invari-
ant Zernike moments descriptor and the traditional ART are 41.64% and
36.51%, respectively.
key words: ART, phase, rotation invariance, image retrieval, CBIR

1. Introduction

Due to the tremendous increase in digital images, the de-
velopment of accurate and efficient content-based image re-
trieval (CBIR) systems has become more important. Ef-
ficient image description is one of the key components in
CBIR systems. Since an object’s shape is a critical piece of
information about an image, many researchers have aimed
to develop an efficient shape descriptor [1]–[11]. Shape de-
scriptors can be categorized into two types [8]: contour-
based descriptors including the curvature scale space [5],
generic Fourier descriptor (GFD) [9], and shape context [7];
and region-based descriptors including the Zernike moment
descriptor (ZMD) [6], Legendre moments [10], and angular
radial transform descriptor (ARTD) [11]. Since there is no
general feature that would work best for every kind of im-
age, choosing appropriate features is important in design-
ing an image retrieval system. Contour-based descriptors
such as shape context, which exhibits state-of-the-art perfor-
mance in shape description, are more popular than region-
based descriptors. However, they have several limitations
including the fact that 1) the shape contour is unavailable
in many cases, and 2) shape content is more important than
contour features [12]. These limitations can be overcome by
using region-based methods.

Among the existing region-based shape descriptors,
ZMD has been widely used to describe the shape of a re-
gion because Zernike moments (ZMs) outperform other mo-
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ments, such as geometrical moments, Legendre moments,
and pseudo-Zernike moments, in terms of sensitivity to
noise, redundancy, and reconstruction error [13], [14].

Rotational invariance is a desirable property for im-
age descriptors. Traditional ZMD uses only the magnitudes
of ZMs to achieve rotational invariance [6], [15]. However,
since the phase is more informative than the magnitude in
describing an image, several image description methods that
use ZM phases have been introduced [16]–[18]. The phases
of ZMs are not invariant with rotation, although they carry
important information about an image. Therefore, compar-
ing two images using the phases of two ZMs requires an
additional process to align the rotation angle between the
two images [16], [18]. In order to overcome this drawback,
Li et al. proposed the invariant Zernike moment descriptor
(IZMD) [17], which employs a phase correction scheme to
obtain rotational invariance. The IZMD outperformed ZMD
and GFD in the experiment described in [17].

In this paper we propose a new shape description
method composed of a rotationally invariant angular radial
transform descriptor (IARTD) and its distance function. The
IARTD consists of the magnitude and aligned phase of the
angular radial transform (ART) coefficients. The proposed
method is motivated by the IZMD; however, we not only
expand the phase correction scheme of the IZMD to ART,
but also modify it in order to produce a more compact fea-
ture vector. The distance function of the IARTD is defined
by combining the differences in the magnitudes and phases
to achieve better image retrieval performance compared to
the distance function of the IZMD. As demonstrated in our
experiments, the proposed shape description method out-
performs the IZMD in image retrieval under various image
transformations; moreover, the dimension of the IARTD is
smaller than that of the IZMD.

We will briefly review the fundamentals of ZMs and
ART in Sect. 2, and those of IZMD in Sect. 3. The proposed
shape description method is introduced in Sect. 4. Experi-
mental data and the criteria for performance comparison are
then presented in Sect. 5. The results and analysis of the
comparisons are given in Sect. 6, and we conclude the paper
in Sect. 7.

2. Fundamentals of Zernike Moments and Angular
Radial Transform

The ZMs and ART are complex moments calculated using
different orthogonal basis functions. The basis functions are

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Real parts of Zernike basis functions up to order 7.

defined on a unit disk in polar coordinates.

2.1 Zernike Moment

ZMs of order n with repetition m are defined as

Znm =
n + 1
π

∫ 2π

0

∫ 1

0
f (ρ, θ)VZM∗

nm (ρ, θ)ρdρdθ, (1)

where f (ρ, θ) is the input image function, VZM
nm (ρ, θ) is the

complex Zernike basis function, and * denotes the complex
conjugate. The Zernike basis functions are defined as

VZM
nm (ρ, θ) = RZM

nm (ρ) exp( jmθ), |ρ| ≤ 1, (2)

where

RZM
nm (ρ)

=

(n−|m|)/2∑
s=0

(−1)s (n − s)!

s!

(
n + |m|

2
− s

)
!

(
n − |m|

2
− s

)
!

ρn−2s. (3)

In (3), the order n is a non-negative integer, and the
repetition m is an integer satisfying n−|m| = (even) and |m| ≤
n. The real parts of Zernike basis functions are visualized up
to n = 7 in Fig. 1.

2.2 ART

ART possesses additional pattern description capability that
takes into account complexities in both radial and angular
directions compared to ZMs [11].

Fnp =

∫ 2π

0

∫ 1

0
f (ρ, θ)VART ∗

np (ρ, θ)ρdρdθ, (4)

where Fnp is an ART coefficient of order n and repetition
p. p is a non-negative integer. VART

np (ρ, θ) is the ART basis
function that is separable along the angular and radial direc-
tions as follows:

VART
np (ρ, θ) = Ap(θ)RART

n (ρ). (5)

In order to achieve the rotation invariance of the mag-
nitude, an exponential function is used for the angular basis
function,

Ap(θ) =
1

2π
exp( jpθ). (6)

Fig. 2 Real parts of ART basis functions up to n = 3 and m = 8.

Depending on the types of radial basis functions, two
different transforms can be defined; these are ART with co-
sine (ART-C) and sine (ART-S) radial basis functions.

ART-C : RC
n (ρ) =

{
1 n = 0

2 cos(πnρ) n � 0,
(7)

ART-S : RS
n (ρ) =

{
1 n = 0

2 sin(πnρ) n � 0.
(8)

The real and imaginary parts of ART-C used in this pa-
per are shown in Fig. 2.

In previous research, ART performed better than ZMs
in describing an image [8], [11].

2.3 Phase and Rotation Angle

In order to compare the phases of two sets of ZMs for two
images, the rotation angle between the images should be
considered. The rotation angle α between two images can be
defined using phases of ZMs and ART coefficients, respec-
tively. For ZMs, the phase differences between Znm from an
original image and Zr

nm from a rotated image are given by

Θnm ≡ arg

(
Zr

nm

Znm

)
= mα, 0 < Θnm ≤ 2mπ, (9)

or

Φnm = (ϕr
nm − ϕnm) mod (2π)

= (mα) mod (2π), 0 < Φnm ≤ 2π, (10)

where ϕnm are phases of ZMs. More details of the funda-
mentals and properties of ZMs are presented in [17], [18].
Since ZMs and ART are defined using similar angular basis
functions, α can be defined similarly using phases of ART
coefficients with only trivial modification.

3. Invariant Zernike Moments Descriptor

IZMD was proposed by Li et al. to obtain better image de-
scription capability than traditional ZMD while maintaining
rotational invariance [17]. The scale and translation invari-
ance are obtained by the pre-normalizing image proposed by
Teague [9]. The influence introduced by a rotation can sim-
ply be removed by a phase correction. To construct IZMD
from the ZMs of an image, phases of different orders and
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repetitions are combined to form the complex valued rota-
tion invariant as follows:

Z′nm = Znme− jmϕn0 ,1 ; n0 ∈
{
1, 3, . . . ,

(
2 ×

⌈nmax

2

⌉
− 1

)}
(11)

From (11), the phase correction is derived as

ϕ′nm = ϕnm − mϕn0,1 = ϕ
r
nm − mϕr

n0,1; (12)

ϕr is the phase of ZM calculated from the rotated image, and
ϕ′ is the corrected phase. A more detailed derivation of (12)
can be found in [17]. In order to ensure the phase correction
is robust to noise, n0 is set to 3. Therefore, (12) becomes

ϕ′nm = ϕnm − ϕ3,1 = ϕ
r
nm − ϕr

3,1. (13)

IZMD is a feature vector that consists of magnitudes
and corrected phases of the ZMs, excluding Z′00 and Z′11.
This means that Z′n0, where n ≥ 2 and n = (even), are used
to construct a feature vector. This is inappropriate because
the phases of ZMs do not have valuable information when
repetition m is zero; values of imaginary parts are always
zero. Similarly, the phase of Z′31 is always zero due to the
phase correction.

The distance function of the IZMD is defined using dis-
tances of ZM magnitudes and phases as follows:

DIZMD = wangDang + wmagDmag; wang + wmag = 1,

Dang =
1
N

√√√
N∑

i=1

⎛⎜⎜⎜⎜⎝ (ϕquery
i − ϕstored

i )

π

⎞⎟⎟⎟⎟⎠2

; (14)

0 ≤ (ϕquery
i − ϕstored

i ) ≤ π,

Dmag =
1
N

√√√
N∑

i=1

⎛⎜⎜⎜⎜⎝ (|Zquery
i | − |Zstored

i |)
max(|Zquery

i |, |Zstored
i |)

⎞⎟⎟⎟⎟⎠2

,

where i is the index of components and the superscripts, and
query and stored represent values that were calculated from
a queried image and a stored image, respectively. Li et al.
assumed that the sum of magnitude and phase differences
provides roughly equal contributions to the similarity mea-
sure, and set wang = wmag = 0.5 [17]. As mentioned above,
however, ZMs where m is zero are residual, and Z′3,1 is al-
ways zero while the magnitudes are non-zero. Therefore, a
distance calculated by (14) is affected more by differences
in magnitudes than by differences in phases.

4. Proposed Method

In this section we present the details of the new shape de-
scription method, IARTD, and its distance function. The
overall process of IARTD extraction is shown in Fig. 3.

The proposed shape descriptor IARTD consists of
magnitudes and corrected phases of ART coefficients.
Scale and translation invariances are obtained via the pre-
normalization process proposed by Teague [10]. The main
differences between the IZMD and the IARTD are 1) the

Fig. 3 Extraction of IARTD.

shape feature description (ZMs and ART), 2) the phase cor-
rection scheme, and 3) the distance function. Since ART
was already presented in Sect. 2.2, in the following section
we describe the steps of the new phase correction scheme
and the similarity measurement of the proposed method.

4.1 Phase Correction Scheme

In order to remove the impact of rotation from phases of
ART coefficients, we use the modified phase correction
method of the IZMD. Unlike the repetition m of ZMs, ART
basis functions are defined for every order n and repetition
p since the repetition p of ART is independent of order
n. Therefore, we modified the phase correction scheme of
IZMD as shown in (15).

φ′np = φnp − φn,1 = φ
r
np − φr

n,1, (15)

where φ is the phase of an ART coefficient. In the case of the
IZMD, only one moment phase at n = 3, m = 1 is used as the
anchor value for phase correction. In the proposed method,
the coefficients at p = 1 of each order are used to correct the
phases of ART coefficients of the same order. The proposed
phase correction scheme can reduce the dimension of the
IARTD by as much as (n+ 1)× 2 without loss of descriptive
power. Finally, the IARTD is defined as

F′np = Fnpe− jmϕn,1 . (16)

4.2 Feature Vector Construction

The proposed shape descriptor IARTD is a feature vector
consisting of magnitudes and corrected phases of ART co-
efficients. In order to avoid producing biased distance as in
the IZMD, we define the IARTD as in (17), excluding resid-
ual coefficients that have no valuable phase information.

IARTD = {|F′np|, φ′np}; n ≥ 0, p ≥ 2. (17)

F′n0 and F′n1 are not included in the feature vector since they
provide no valuable phase information; the imaginary part
of F′n0 is always zero, and the phase of F′n0 also always be-
comes zero from the phase correction (15).
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To use ART for an image feature, the maximum or-
der and the maximum repetition should be defined appro-
priately. These two values depend on the actual resolution
of the unit disk. A performance comparison of a number
of different IARTD features is presented in Sect. 6. The ex-
perimental results show that the IARTD, with a maximum
order of up to two and a maximum repetition of up to ten,
can have sufficient shape representation power for the ex-
perimental data.

4.3 Distance Function

The magnitude of a vector represents its length and the
phase represents the direction. In order to obtain good im-
age retrieval results using both the distances of the magni-
tude and the phase, we define the distance of two IARTDs
as in (18).

DIARTD

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
C

∑
n

∑
p≥2

‖F′query
np | − |F′stored

np ‖ × φdiff
np C � 0

0 C = 0
,

(18)

φ
diff
np =

|φ′query
np − φ′stored

np |
π

; 0 ≤ φdiff
np ≤ 1,

φ
diff
np is within the range of [0, π] because it is an angle-

based distance. C is the number of cases in which both
|F′query

np | − |F′stored
np | and φdiff

np are nonzero. According to (18),

the immediate distance |F′query
np | − |F′stored

np | × φdiff
np is small

when both |F′query
np | − |F′stored

np | and φdiff
np are small. On the

other hand, the immediate distance becomes zero when
|F′query

np | − |F′stored
np | or φdiff

np is zero, regardless of whether the
other value is small or large. This may lead to an inappro-
priate distance. Therefore, we do not use the immediate dis-
tances for which values are zero to calculate a distance of
two IARTDs except for when all immediate distances are
zero. In our experiment, we verify that the proposed dis-
tance function outperforms (14) in terms of image retrieval
results for the experimental data.

5. Dataset and Evaluation Criteria

5.1 Experimental Image Dataset

In order to evaluate the image retrieval performance of the
proposed shape descriptor, we used images from the MPEG-
7 CE-1 shape dataset [19] in the experiment. The MPEG-7
shape dataset consists of various images that can be used to
efficiently evaluate the performance of a shape descriptor in
an image retrieval context. The following is a brief introduc-
tion of the dataset. Figure 4 shows some samples of original
images from the CE-1 A1 and A2 datasets.

• Scale test dataset: The CE-1 A1 dataset consists of 70
groups with 420 images. Each group has one original
image and five images with different scales (0.1, 0.2,

Fig. 4 Examples of original images from the CE-1 A1 and A2 datasets.

Fig. 5 Examples from the CE-1 B dataset.

0.25, 2, 3).
• Rotation test dataset: The CE-1 A2 dataset consists of

70 groups with 420 images. Each group has one orig-
inal image and five images with different orientations
(9◦, 36◦, 45◦, 90◦, 150◦).
• Deformation test dataset: The CE-1 B dataset consists

of 70 groups with 1400 images. Each group has one
original image and nineteen arbitrarily deformed im-
ages. Figure 5 shows examples of deformed images in
the CE-1 B dataset.
• Noise test dataset: To evaluate the pixel noise robust-

ness of the shape description methods, we generated
three impulse noise test datasets (B3, B5, and B7) by
adding different degrees of impulse noise to the CE-1 B
dataset in a uniform distribution pattern. Impulse noise
comprises 3% (B3), 5% (B5), and 7% (B7) of the num-
ber of pixels in an image. Figure 6 shows examples of
the three noisy datasets.

5.2 Measurement of Retrieval Performance

We employed Bull’s eye performance (BEP) [19] to com-
pare the image retrieval performance of the shape descrip-
tor. BEP was measured in terms of the number of correct
retrievals among the top 2N retrievals, where N is the num-
ber of shapes that are relevant (or similar) to the query in the
DB. In the experiments, we measured BEP (i.e., the number
of correct retrievals/N) by calculating the percentage of all
images in the DB. We present the average BEP values from
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Fig. 6 Examples of noisy DBs (top row: B3, middle row: B5, bottom
row: B7).

all query results to compare the performance of the shape
descriptors in the next section.

6. Experimental Results

We performed a number of experiments to evaluate the per-
formance of the proposed shape description method and to
compare it with the ARTD and IZMD for the experimen-
tal dataset. The experiment consisted of three parts. We
first identified the optimal parameters for the IARTD. Then
we verified the effectiveness of the proposed phase correc-
tion scheme. In the third part, we compared the image re-
trieval performances of the IARTD with that of the tradi-
tional ARTD and IZMD. The experiments were designed to
measure the robustness of the proposed IARTD and its as-
sociated distance function to scaling, rotation, deformation,
and pixel noise.

We used ten for the maximum order of the IZMD based
on the experimental results reported by Li [16]. Conse-
quently, the dimension of the IZMD was 68. To verify that
the proposed measurement of similarity (18) provides better
image retrieval results than (14), we also performed image
retrieval using IZMD-Eq17; shapes were described by the
IZMD, but (18) was used for the distance function and for
IARTD-Eq14. In addition, shapes were described by the
IARTD, but (14) was used as the distance function. The size
of an input image was normalized to 101 × 101 via the pre-
normalization of all descriptors.

6.1 IARTD with Different Orders and Repetitions

In order to determine the effect of the values of the maxi-
mum order nmax and maximum repetition pmax on the per-
formance of the IARTD, we performed experiments using
the CE-1 B dataset. We first fixed pmax to 10, and then com-
pared the retrieval results of different nmax values ranging
from 1 to 4. The results are shown in Fig. 7.

When the max order was greater than two, the retrieval
performance was not remarkably improved (Fig. 7), which
means the IARTD with a max order of 2 could yield the best
tradeoff between the computation cost and retrieval perfor-
mance. We then performed similar experiments for the max
repetition p with a fixed max order (nmax = 2).

The retrieval performance did not vary as drastically in

Fig. 7 BEP performance of the IARTD on deformed image DB (CE-1
B) for different max order (the pmax is fixed at 10).

Fig. 8 BEP performance of the IARTD on deformed image DB (CE-1
B) for different max repetition (nmax is fixed at 2).

Table 1 BEPs (%) of IARTDs obtained using different phase correction
schemes.

Fig. 8 as in Fig. 7. However, evidence for selecting an ap-
propriate value for pmax was more obvious. When pmax was
greater than 10, the retrieval performance was either not im-
proved (pmax = 11) or even more degraded (pmax = 12).
Therefore, we set nmax = 2 and pmax = 10 for the remaining
experiments based on these results. Consequently, the di-
mension of the IARTD was (((2+1)×10)− (2+1))×2 = 54,
which is smaller than the dimension of the IZMD.

6.2 Image Retrieval Results for Different Phase Correction
Schemes

To verify the efficiency of the proposed phase correction
scheme (15), we compared the image retrieval performances
of the IARTDs obtained using (13) and (15). Table 1 lists
BEP values obtained using these two different phase correc-
tion schemes. The BEPs in the first three rows were obtained
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Fig. 9 BEP performances of five shape description methods for MPEG-7
CE-1 A1, A2, and B DBs.

using (13) with the anchor values in the left-most column,
and the BEPs in the bottom row were obtained using the
proposed phased correction scheme (15). The IARTDs gen-
erated using (13) include the magnitudes and phases of Fn1

in the feature vector.
As listed in Table 1, in most cases the IARTD obtained

from the proposed phase correction scheme performed the
best (Fn1). The highest BEPs in each column are represented
in bold. When (13) was used for phase correction with dif-
ferent anchor values (F01, F11, F21), the highest BEP was
obtained with F01. However, when we calculated the aver-
age BEPs of each anchor value using the six BEPs in Ta-
ble 1, the average BEP of the Fn1 was found to be 57.69%,
which is slightly higher than 56.81% for F01. Therefore, the
proposed phase correction scheme enables more compact
description of a shape without loss of descriptive power.

6.3 Image Retrieval Results on Scale, Rotation, and De-
formation Test Datasets

Figure 9 shows the average BEPs for the image retrieval re-
sults on the scale, rotation, and deformation test datasets.
All the description methods yielded excellent performance
results when handling changes caused by image scaling
and rotation. However, image deformation significantly
degraded the performance of all the description methods.
Among the five image description methods, the proposed
IARTD always performed the best in terms of BEP for the
three datasets. As expected, all four shape description meth-
ods that use phase to describe shape performed better than
the traditional ARTD.

Two observations can be made from the graph in Fig. 9.
First, the IARTD performs better than IZMD-Eq18, while
IARTD-Eq14 performs better than IZMD. Therefore, we
can conclude that the IARTD has better shape descriptive
ability and discriminability than the IZMD, even though
the feature vector dimension of the IARTD is smaller than
that of the IZMD. Second, combined with the distance
function, the IARTD performs better than IARTD-Eq14,
while IZMD-Eq18 performs better than the IZMD. The re-
sults demonstrate that the proposed distance function (18)
provides better image retrieval results than (14). In the
case of the IZMD, IZMD-Eq18 outperforms IZMD due to

Fig. 10 Examples of image retrieval results of the IARTD and IZMD on
deformation test DB (up to rank 12, N = 19).

the biased distance function. The average BEPs over the
three datasets for IARTD, IZMD, and ARTD were 85.70%,
72.61% and 61.56%, respectively.

Figure 10 shows some sample retrieval results from the
deformation test dataset using the IARTD and IZMD. The
displayed results are ranked in ascending order according
to their distances from the query. The upper-left image is
the queried image and the rest are retrieved images. We
obtain more number of images that belong to the group of
the queried image with the IARTD. The BEPs of the IARTD
and IZMD for the queried image were 89.54% and 73.71%,
respectively.

The IARTD outperforms the ARTD and IZMD, but it
also suffers from lower performance compared to the other
types of shape descriptors for CE-1 B, which contains de-
formed images. For example, the average image retrieval
performance of the IARTD was 60.03%, while the shape
context, which provides state-of-the-art performance in im-
age retrieval, yielded 76.51% BEP for the same dataset [7].
We discuss the performance degradation and noise robust-
ness of the IARTD in Sect. 6.4.

6.4 Image Retrieval Results for Noise Test Datasets

In order to evaluate the robustness to noise of the five shape
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Fig. 11 BEP performances of five shape description methods for the
three noise test DBs.

description methods, we also carried out BEP performance
comparisons of the three noise test datasets. Figure 11 illus-
trates the performance comparison of the description meth-
ods under three different degrees of impulse noise.

The IARTD always outperformed other description
methods throughout the experiments. Additionally, there
was a significant difference in performance between the
IARTD-Eq14 and IZMD. The two ZM-based methods,
IZMD and IZMD-Eq18, resulted in significantly degraded
performance for the three noise test datasets. From this ob-
servation, we can conclude that the feature vector of the
IARTD is more robust to noise than that of the IZMD. The
average BEPs of the IARTD, IZMD, and ARTD for the three
noise test datasets were 29.68%, 10.68%, and 11.47%, re-
spectively.

The IARTD yielded better image retrieval performance
than the IZMD and ARTD as evidenced by the experiment
described in Sects. 6.3 and 6.4. However, the performances
of the five shape description methods compared in this paper
were poor for images that contained noise. The performance
degradation of the IARTD and IZMD was caused by phase
correction schemes that tend to fail in aligning the phase
components when images contain noise. Since creating a
binary silhouette of an object from real-world images with
a segmentation algorithm remains a difficult problem in the
field of computer vision and pattern recognition [20], shape
descriptors should be robust to noise to some extent. There-
fore, the noise robustness of IARTD should be improved
prior to its use in real applications. We intend to further
improve the noise robustness of the IARTD in future work.

7. Conclusion

Efficient image description methods are critical for effective
image retrieval. In this paper we proposed a new shape de-
scription method involving a shape descriptor and a distance
function. The proposed shape descriptor, IARTD, consists
of the magnitudes and the corrected phases of ART coeffi-
cients and is invariant to rotation. Due to its phase correction
scheme, the IARTD maintains a neat description without
loss of descriptive power. The distance function is defined
by combining two differences: magnitudes and phases. Ex-
periments on different datasets derived primarily from the

standard MPEG7 CE-1 shape dataset supported the robust-
ness of the proposed shape description method under vari-
ous image transformations and its superior image retrieval
performance compared to that of the traditional ARTD and
IZMD methods. The average BEP for all experimental im-
ages tested using the proposed method was 57.69%, while
the average BEPs of the IZMD and traditional ARTD were
41.65% and 36.51%, respectively.
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[16] J. Revaud, G. Lavoué, and A. Baskurt, “Improving Zernike moments
comparison for optimal similarity and rotation angle retrieval,” IEEE
Trans. Pattern Anal. Mach. Intell., vol.31, no.4, pp.627–637, April
2009.

[17] S. Li, M.-C. Lee, and C.-M. Pun, “Complex Zernike moments fea-
tures for shape-based image retrieval,” IEEE Trans. Syst. Man Cy-
bern, vol.39, no 1, pp.227–237, Jan. 2010.

[18] Z. Chen and S.K. Sun, “A Zernike moment phase-based descriptor
for local image representation and matching,” IEEE Trans. Image
Process., vol.19, no.1, pp.205–219, Jan. 2010.

[19] S. Jeannin and M. Bober, “Description of core experiments
for MPEG-7 motion/shape,” Technical Report ISO/IEC JTC
1/SC29/WG 11/N2690, MPEG-7, Seoul, March 1999.



LEE and KIM: A NEW SHAPE DESCRIPTION METHOD USING ANGULAR RADIAL TRANSFORM
1635

[20] H. Zhang, J.E. Fritts, and S.A. Goldman, “Image segmentation eval-
uation: A survey of unsupervised methods,” Comput. Vis. Image
Understand., vol.110, no.2, pp.260–280, 2008.

Jong-Min Lee received M.S. degrees in
Information and Communication Engineering
from the graduate school of communication &
information at Hanyang University, Seoul, Ko-
rea in 2001. He is now a doctoral candidate in
the Division of Electrical and Computer Engi-
neering at Hanyang University. His research in-
terests include object segmentation, shape rep-
resentation, and pattern recognition.

Whoi-Yul Kim received the Ph.D. de-
gree in Electronics Engineering from Purdue
University, W.L., IN, USA in 1989. From
1989 to 1994, He was with the Erick Johan-
son School of Engineering and Computer Sci-
ence at the University of Texas at Dallas. He
joined Hanyang University in 1994 where he is
now a professor in the Department of Electron-
ics and Computer Engineering. His research in-
terests include visual surveillance, face tracking
and identification, motion analysis, face recog-

nition and MPEG-7 applications, where he contributed to the development
of the MPEG-7 visual descriptors.


