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PAPER

Efficient Generation of Dancing Animation Synchronizing with
Music Based on Meta Motion Graphs

Jianfeng XU†a), Nonmember, Koichi TAKAGI††b), Member, and Shigeyuki SAKAZAWA†c), Senior Member

SUMMARY This paper presents a system for automatic generation of
dancing animation that is synchronized with a piece of music by re-using
motion capture data. Basically, the dancing motion is synthesized accord-
ing to the rhythm and intensity features of music. For this purpose, we pro-
pose a novel meta motion graph structure to embed the necessary features
including both rhythm and intensity, which is constructed on the motion
capture database beforehand. In this paper, we consider two scenarios for
non-streaming music and streaming music, where global search and local
search are required respectively. In the case of the former, once a piece of
music is input, the efficient dynamic programming algorithm can be em-
ployed to globally search a best path in the meta motion graph, where an
objective function is properly designed by measuring the quality of beat
synchronization, intensity matching, and motion smoothness. In the case
of the latter, the input music is stored in a buffer in a streaming mode, then
an efficient search method is presented for a certain amount of music data
(called a segment) in the buffer with the same objective function, result-
ing in a segment-based search approach. For streaming applications, we
define an additional property in the above meta motion graph to deal with
the unpredictable future music, which guarantees that there is some mo-
tion to match the unknown remaining music. A user study with totally 60
subjects demonstrates that our system outperforms the stat-of-the-art tech-
niques in both scenarios. Furthermore, our system improves the synthesis
speed greatly (maximal speedup is more than 500 times), which is essen-
tial for mobile applications. We have implemented our system on com-
mercially available smart phones and confirmed that it works well on these
mobile phones.
key words: motion graph, music synchronization, motion synthesis, opti-
mization, mobile applications

1. Introduction

To enrich the experience of music, automatic generation of
dancing animation is attracting ever greater attention, where
the dancing motion is concatenated to synchronize with the
music by re-using motion capture data [1]–[3]. Basically,
these techniques are inspired by the phenomenon of people
wanting to dance to music. Regarding people’s dancing to
music, one of the features common to both dance and music
is the rhythmic structure [4], [5], thus this feature is com-
monly used in music synchronization systems [1]–[3]. Ob-
viously, rhythmic structure provides the basis for synchro-
nization in the temporal domain. Moreover, the matching
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of intensity between motion and music is considered to be
the next most important feature in Shiratori’s system [3] by
Laban theory [6], which is related to the spatial domain. As
pointed out by Shiratori et al. [3], it is derived from the fact
that people feel quiet and relaxed when listening to relaxing
music such as a ballad, and they feel excited when listening
to intense music such as hard rock music.

From the literature, we restate the following defini-
tions of the basic concepts used in the systems [1]–[3]. Mo-
tion beats, the concept of which is borrowed from the beat
of music and thus reflects the rhythmic structure of danc-
ing motions, are defined as the regular moments when the
movement is changed significantly in direction or magni-
tude [1]. Motion intensity expresses the excitement of mo-
tion [3], which may be expressed as the kinetic energy [7].

In this paper, we also employ the above rhythm and
intensity features as a means to obtain music synchroniza-
tion. Comparing to the conventional methods, we improve
both the quality of generated animation and the speed of
motion synthesis with the goal of mobile applications. The
basic idea is to prepare a special data structure beforehand,
considering the potential of improving the quality of danc-
ing animation and reducing the computation of motion syn-
thesis. For this purpose, we propose a novel meta motion
graph structure to embed the necessary features including
both beat and intensity, which is extended from the concept
of so-called motion graphs [8]–[10]. Therefore, motion syn-
thesis is cast as a searching problem for a path on the graph
that minimizes an objective function, where dynamic pro-
gramming is effective to greatly reduce the computational
cost. At the same time, a proper objective function is impor-
tant in our application. Two straightforward requirements
are that (1) the beat and (2) intensity features in the gener-
ated motion should be synchronized with their correspond-
ing features in music. Moreover, as the third requirement,
(3) the motion should be synthesized in high quality, where
we focus on the motion smoothness in this paper. The above
three requirements are the main objective in our system,
which will be described in Sect. 3.2.

In this paper, we consider two scenarios for stream-
ing music and non-streaming music, where local search and
global search are required respectively. In the case of non-
streaming music, the global optimization is achieved by
the above dynamic programming algorithm. In the case of
streaming music, the local search is mandatory. Basically,
our system synchronizes the motions with music segment
by segment, matching both the beat and intensity features.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers
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Naturally, the longer the segment is, the better the synchro-
nization is. However, the length of a segment is restricted
to the permitted delay, buffer size, and so on. In such a
segment-based searching approach, it is essential to connect
to the motions in the previous segment smoothly and guar-
antee the ability to synchronize with the unknown remain-
ing segments. Our system is carefully designed to deal with
these constraints as shown in Sect. 4.2.

The main contributions of this paper are as follows:

• An efficient system is developed for both non-
streaming applications and streaming applications that
is implemented on mobile phones. A user study with
60 subjects demonstrates that our system outperforms
the state-of-the-art techniques.
• A novel graph-based representation is proposed spe-

cially for music synchronization. Conventional motion
graphs are unsuitable for our task because they only
focus on the kinematics of motion without the neces-
sary features for music synchronization. In this pa-
per, a graph-based representation with meta data for
the above purpose is presented.
• A proper objective function is designed for the three

requirements of beat synchronization, intensity syn-
chronization, and motion quality, which is inspired by
psychologists [11], [12] and professional dancers. With
the objective function, global searching and segment-
based searching approaches are employed for non-
streaming applications and streaming applications re-
spectively.

The remainder of this paper is organized as follows.
In Sect. 2, we briefly survey the related techniques on mu-
sic synchronization. In Sect. 3, we describe the proposed
system of motion synthesis for non-streaming music in de-
tail, which serves as a basis of the next section. In Sect. 4,
we describe the extension for streaming music. In Sect. 5,
we report and discuss our experimental results. Finally, in
Sect. 6, we present the conclusions of this paper.

2. Related Work and Issues to be Solved

While a vast literature is available on the subject of synchro-
nizing video with music [13], [14], we focus on the tech-
niques based on reusing motion capture data [1]–[3] in this
section. In addition, there are several pioneer researches
from audio/music field and robot field. A famous example
is Cindy [15], developed by Goto et al. Basically, Cindy is a
CG agent that dances to music, where six mappings between
specific motions and specific drum-sounds are defined in ad-
vance. Autonomous dancing robots have been developed re-
cently [16], [17], where those techniques focus on the audio
processing, especially the beat induction in real time. For
motions, their papers have not synthesized the motions for
the music. Basically, a sequence of motions is arranged for
the entire music beforehand. It works on relatively simple
motions such as “simple raises, simple steps, arm swings,
and arm and foot taps” in [16] and step motions in [17]. In

our paper, we focus on motion synthesis while directly us-
ing the existing method to detect music beats. Our technique
can automatically obtain the “best” combination of motions
according to the synchronization of both beat and intensity
feature and the motion’s smoothness even on a much more
complex motion database such as break dance. In this sec-
tion, we discuss related work from the viewpoint of mu-
sic synchronization systems, motion graphs techniques, and
searching strategies in motion graphs.

2.1 Music Synchronization Systems

To synchronize human motion with music, Kim et al. [1]
synthesize a new motion from a motion capture database
according to the rhythmic pattern by traversing a movement
transition graph to match the beat of the music†. Similarly,
Alankus et al. [2] also use beat features to search a best path
on their transition graph for music synchronization. Shi-
ratori et al. [3] employ both beat and intensity features in
their system to improve the performance further, where the
input music is divided into segments by the repeating pat-
terns, and then candidate motion segments, the rhythm fea-
tures of which are matched to those of each music segment,
are searched for, and finally the motion is found whose in-
tensity is similar to that of the music segments. From the
viewpoint of features, Shiratori’s system is close to the sys-
tem proposed in this paper. Aiming at mobile applications,
our system improves both the quality of generated animation
and the speed of motion synthesis.

2.2 Motion Graphs

The basic idea for the above music synchronization sys-
tems [1]–[3] is re-use of motion capture data, where graph-
based representations are demonstrated to be a very power-
ful tool. Many related studies have been reported, as briefly
summarized in [18]. In the game industry, these graphs,
called move trees, are originally created manually [19]. Sev-
eral automatic methods are independently proposed to con-
struct motion graphs in SIGGRAPH 2002 [8]–[10]. Basi-
cally, a motion graph is a directed graph structure of possible
connections between motions, turning the set of initial clips
from a list of sequences into a connected graph of move-
ments.

Since then, many variations of motion graphs have
been reported. Gleicher et al. [20] present snap-together
graphs where common poses are used as hubs in the graph.
Safonova and Hodgins [21] create an interpolated motion
graph by combining the standard motion graph and inter-
polation techniques. Zhao et al. [22] further use interpola-
tion of motion segments of the same contact to add addi-
tional data to the database in their well-connected motion
graph. Besides interpolation, continuous constrained opti-
mization is introduced in the optimization-based graph by

†Due to absence of intensity constraints, it depends on external
constraints to synthesize motions such as user’s mouse movements
as demonstrated in [1].
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Ren et al. [23]. Beaudoin et al. [24] cluster similar motions
to get an understandable graph structure referred to as a
motion-motif graph. In summary, these techniques focus on
the kinematics of motion to obtain higher quality graphs.

However, kinematics on its own cannot realize our task
of music synchronization due to the absence of such nec-
essary features as motion beat and intensity. Moreover, in
conventional motion graphs, there may not be any control
over the structure of the graph, leading to the rhythmic struc-
ture of motion being destroyed [1] and the issue of difficult
searching [20]. In this paper, a meta motion graph is con-
structed to obtain a structured graph-based representation
that keeps the rhythmic structure of motion and embeds both
beat and intensity features. Furthermore, we derive a neces-
sary property (called synchronization capacity) of the nodes
for the streaming application, which expresses the ability to
synchronize with music.

2.3 Searching Strategies in Motion Graphs

Through motion graphs, motion synthesis is cast as a search-
ing problem for a path that minimizes an objective func-
tion [25]. The searching strategy highly depends on the ap-
plication purpose. Given user constraints, Kovar et al. [8]
improve the depth-first search to obtain graph walks using
a branch-and-bound strategy and incremental search. Lee
et al. [10] use the greedy best-first search approach and tra-
verse only a fixed number of frames to maintain a constant
rate of motion. Arikan et al. [9] develop a hierarchical, ran-
domized search strategy. They present another method [26]
that uses a dynamic programming approach and coarse-to-
fine refinement to search for the motion sequence. Dynamic
programming, the complexity of which is linear to the path
length, is also adopted by Lee and Lee [27].

However, the original dynamic programming algo-
rithm is unsuitable for streaming applications, where local
search is a must [25]. Local search, as used in [8], evaluates
the properties of only a certain number of nodes ahead when
choosing what node to transit to. This might lead to the hori-
zon problem [25] due to the unpredictable future data. In this
paper, we calculate the synchronization capacity in our meta
motion graphs to alleviate this problem.

3. Proposed System of Motion Synthesis for Non-
streaming Music

In this section, we describe our system for synchronizing
dancing motion with non-streaming music by global search-
ing approach, where the entire piece of music is available
for motion synthesis. Note that the techniques in this sec-
tion also serves as a basis of streaming music, where local
search is mandatory.

As shown in Fig. 1, our system is composed of two
parts. In the first part, which is performed beforehand, we
re-organize the motion capture database into a graph struc-
ture by the motion beat and intensity. In the second part, a
human motion is generated from the graph to synchronize

Fig. 1 System framework of generating a motion that is synchronized
with the input music. Meta motion graphs are constructed beforehand and
a best path is globally searched in the graph to generate a synchronized
motion.

Fig. 2 Construction of meta motion graphs in sub-groups according to
motion genres and motion tempos.

with the input music and then a CG character is rigged for
rendering.

3.1 Construction of Meta Motion Graphs

As described in Sect. 2.2, it is necessary to embed the fea-
tures used in music synchronization in the proposed meta
motion graphs. As shown in Fig. 2, first, we separate the en-
tire database into sub-groups by the motion genres from the
annotations in the database (see [28]), and motion tempos
which are calculated from motion beat extraction. Then, a
meta motion graph is constructed in a sub-group. This tech-
nique ensures that the motions in a graph belong to the same
motion genre and share a range of tempos while limiting the
size of the motion graphs.

Extraction of motion beat & intensity: Before con-
struction of our meta motion graphs, it is necessary to ex-
tract the features including motion beats and intensity from
each motion in the database. A short-term principal com-
ponent analysis (short-term PCA) method, first proposed in
our previous work [29], is adopted to detect the frames at
beat instants (called beat frames) in each motion. We ob-
serve that major movement variance clearly reveals motion
beats, which may be extracted by PCA due to the spatial
correlation in motion. However, conventional global PCA
does not work for complex motion because PCA is a linear
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Fig. 3 Construction of a meta motion graph in a sub-group, where only
beat frames are checked for transition possibility and edge weights are as-
signed for music synchronization.

model while a complex motion is highly non-linear. The
basic idea in short-term PCA is similar to piece-wise lin-
ear approximation to a non-linear problem based on the fact
that motion data are almost linear in the short term due to
the strong temporal coherence. Short-term PCA performs
PCA in a sliding window in joint position space and regards
the peaks and nadirs of the coordinates in the first principal
component as candidates for motion beats, which are further
refined by frequency analysis as [1]. For the detailed proce-
dure, please refer to [29]. After beat extraction, the motion
tempo is regarded as the number of beats in a minute. The
motion intensity can be calculated as the total kinetic en-
ergy between two neighboring beats to express the level of
excitement of motions [7].

Motion graph construction: As shown in Fig. 3, a
meta motion graph MMG is constructed in a sub-group as
{V, E,W(E)} for the set of nodes, edges, and edge weights,
respectively. The node set V includes all of the beat frames
in the sub-group. The edge set E consists of two subsets
including the sets of mono-directional edges E1 and bi-
directional edges E2, and the edge weight set W(E) has two
corresponding subsets, i.e., a measure of motion intensity
W1(E) for E1 and a measure of pose similarity W2(E) for
E2.

Two successive beat frames Fi
B and Fi+1

B are connected
by a mono-directional edge e1(Fi

B, F
i+1
B ) and the motion in-

tensity between the beat frames is assigned as the edge
weight w1(Fi

B, F
i+1
B ), where Fi

B denotes the i-th beat frame in
a motion. For beat frames Fi

B and F j
B with similar poses that

satisfy Eq. (1), they are connected by a bi-directional edge
e2(Fi

B, F
j
B) and the edge weight w2(Fi

B, F
j
B) is calculated as

Eq. (2). Note that we let the bi-directional edge take no time
to jump from one frame to another frame in order to pre-
serve the rhythm structure when transiting by bi-directional
edges among motions.

Fig. 4 Distances between frame pairs in two walking motions. Crosses
denote the beat frame pairs, which locate the peaks and nadirs regularly, in-
ferring that the corresponding poses in different cycles are properly found.

rd ≡ d(ti
B, t

j
B)

d(ti
B − 1, ti

B + 1) + d(t j
B − 1, t j

B + 1)
< T HS (1)

w2(Fi
B, F

j
B) = max (rd,T HR) (2)

d(ti
B, t

j
B) =

M∑
m=1

w(m) ‖ log(q−1
j,mqi,m) ‖2 (3)

where ti
B denotes the frame index of beat frame Fi

B, the
frame distance d(ti

B, t
j
B) is calculated as the weighted differ-

ence of joint orientations [30]†, T HS is a threshold that con-
trols the number of bi-directional edges, T HR is a thresh-
old for penalty of selecting a bi-directional edge (set as 2.0
in our implementation), M is the joint number, w(m) de-
notes the joint weight, and qi,m is the orientation of joint
m in frame Fi

B. Here we compare the frame distance of
two beat frames with those of their neighboring frames to
decide if the beat frames are similar or not. By the meta mo-
tion graphs, we obtain a structured graph-based representa-
tion instead of an unstructured one in the standard motion
graphs [29], where the rhythmic structure is maintained.

Although only the beat frames are compared, most of
the meaningful connections are preserved. For example, in
two walking motions as shown in Fig. 4, the frame distances
express well the periodicity of motions. Even if considering
only the beat frame pairs (see crosses in Fig. 4), the corre-
sponding poses (e.g. hitting ground) in different cycles are
connected as desired. Moreover, the rhythmic structure is
maintained in all the connections. Namely, any path from
the connections will keep the original periodicity. There-
fore, the greatest benefit of meta motion graphs is the ability
to obtain a structured graph-based representation instead of
an unstructured one in the standard motion graphs. This al-
lows the rhythmic structure to be maintained and reduces
the computational cost in both the construction and time-
limited searching stages. This characteristic makes music
synchronization possible.

†Although only pose information is used in Eq. (3), velocity
information is essentially included in Eq. (1). Note that Eq. (3) is
just an example to calculate the the motion/pose similarity, which
works rather well in our system. More advanced definitions and
their comparison are available in [31].
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3.2 Motion Synthesis by Global Searching

Given a piece of music, we firstly extract music beats us-
ing existing techniques such as [32] and music intensity
which may be the sound pressure level between two beat
instants [33]. Then, we select a meta motion graph accord-
ing to the music genre and music tempo. Lastly, a best path
is searched in the graph by dynamic programming beat by
beat.

Objective function design: Now we need to properly
define an objective function for matching the motion with
music. Basically, three requirements should be met in the
generated motion. First, in the temporal domain, beat in-
stants in the generated motion should be synchronized with
those in the music. Because the beat frames are and only
are in the node set V , we can exactly synchronize the beat
instants in any path with those in the music by modifying
the frame rate between two nodes in the path (The ratio of
new frame rate and old frame rate is defined as modifica-
tion strength ms. It is known that a reasonable tolerance ms
(about 15%) gives little influence to motion quality [3]). In
other words, there is no time difference between the corre-
sponding beat instants in the music and the motion. There-
fore, the cost of beat synchronization is controlled to zero,
i.e., the granularity of synchronization is at the beat level.

Second, in the spatial domain, the motion intensity
should be matched to that in the music. Their error is ex-
pressed by the absolute difference between the normalized
values of intensity in the music and the motion. Third, the
generated motion should be as smooth as possible, where
the source of motion artifacts is the motion inconsistence
at bi-directional edges and the temporal modification for
beat synchronization. Note that although temporal mod-
ification of frame rate itself is regarded as no additional
cost, the change of modification strength ms may cause mo-
tion artifacts. Obviously, these changes only happen at bi-
directional edges, where the motion inconsistence exists si-
multaneously. Therefore, a penalty should be paid for se-
lecting a bi-directional edge to avoid any deterioration of the
motion quality, see the term s·w2(Fi

B,F
j
B) in Eq. (4). Mean-

while, if a bi-directional edge is selected, its neighboring 24
frames are blended by SLERP function.

As a result, the objective function of an edge
e(Fi

B,F
j
B), which is a mono-directional edge e1(Fi

B,F
j
B) or

a bi-directional edge e2(Fi
B,F

j
B) with its following mono-

directional edge e1(F j
B,F

j+1
B ), is defined as:

eCost(e(Fi
B, F

j
B), k) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

‖ w1(Fi
B, F

j
B) − I(k) ‖ if e(Fi

B,F
j
B)∈E1

sw2(Fi
B,F

j
B)‖w1(F j

B,F
j+1
B )−I(k)‖ if e(Fi

B,F
j
B)∈E2

∞ others
(4)

s = max (ms, 1/ms) (5)

where w1 denotes the normalized edge weight in the set of
W1, I(k) denotes the normalized music intensity from the

k-th beat to (k + 1)-th beat or the k-th beat interval, s de-
notes the cost from the change of modification strength, w2

denotes the edge weight in the set of W2, which shows the
cost from the motion inconsistence at bi-directional edges
(see Eq. (2)), and ms denotes the ratio of new frame rate and
old frame rate. Note that standard scores are calculated for
the normalization. In addition, since the bi-directional edge
itself takes no time, it is only used with the following mono-
directional edge to match music beat by beat.

Global searching with dynamic programming:
Then, assuming we have K beat intervals in the music, our
objective function is min

∑K
k=1 eCost(e(Fi

B, F
j
B), k), which

can be optimized by dynamic programming as shown in
Eqs. (6)–(8). At least one initial node is required in dynamic
programming. We use the first beat frames of all the motions
in the graph as multiple initial nodes InitS .

P(FvB, 0) =

{
0 i f FvB ∈ InitS
∞ others

(6)

P(FvB, k) = min
Fi

B∈V
{P(Fi

B, k−1)+eCost(e(Fi
B, F

v
B), k)} (7)

T P(K) = min
FvB∈V
{P(FvB,K)} (8)

where P(FvB, k) denotes the cost of a best path for the first
k beat intervals with the last node of FvB, and T P(K) is the
total cost of a best path for the entire music.

Equation (7) shows that the current best path with the
last node of FvB is searched based on the previous best path
whose last node is any node Fi

B. In the standard dynamic
programming, the objective function is the edge weight that
is constant. In our task, the cost function is dynamic, which
is updated with the music intensity for the k-th beat interval
as Eq. (4). Suppose the average indegree is D and the node
number is N in the graph, we only need to compare DNK
times to search the best path, which is linear to the number
of beat intervals K in the music. In the worst case of full
graph, the complexity is O(N2K). However, the constructed
graphs are rather sparse because only beat frames are per-
mitted to connect together.

4. Proposed System of Motion Synthesis for Streaming
Music

In this section, we describe our system for synchronizing
human motion with streaming music by local searching ap-
proach. In such an application, the basic constraint is that
only part of the music data are available for our system at
a time instant to synthesize a dancing animation on-the-fly,
which causes the so called horizon problem [25], and there
is no chance to further modify any of the animation that has
been rendered.

Our system uses a double-buffering scheme as shown
in Fig. 5 (a), where the back buffer receives the streaming
music and feeds an amount of music data (called a segment)
to motion synthesis for music synchronization, and both
the music and motion data are swapped to the front buffer
for continuous rendering at the proper time. As shown in
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Fig. 5 Double-buffering scheme (a) and its time slots (b) of our prototype
system for synchronizing human motion with streaming music.

Fig. 5 (b), motion synthesis is performed for the current seg-
ment while the previous segment is being rendered, which
requires that the processing time should be no longer than
the rendering time of the previous segment. After an initial
delay, our system can generate dancing animation in real
time (In this paper, the term of “real time” means that once
the music gets started, the music and its affiliated graphics
will be continuously played without any interruption.). In
the cases of spare time, a best-effort approach is certain to
improve performance. However, in our implementation, a
fixed-length segment is adopted for simplicity.

4.1 Extended Meta Motion Graphs for Streaming Appli-
cation

As pointed out by Forsyth et al. [25], the horizon problem is
one of the main concerns in local search, which is a charac-
teristic unique to streaming applications. A local search like
“greedy algorithm” has the possibility of falling local min-
imum due to the invisibility of future music, which, in the
worst case, leads to no path in the motion graph being avail-
able for the future music. Therefore, it is helpful to know
how many successors the potentially selected node can be
followed by. For example, the end node (from which no
mono-directional or bi-directional edge exists) has no abil-
ity to connect any more. Fortunately, it is possible to cal-
culate the synchronization ability for the node in the stage
of motion graph construction, referred to as synchronization
capacity. Thus, we can guarantee that a path exists for the
next segment in the stage of motion synthesis by limiting the
last node in the current segment in those nodes the synchro-
nization capacities of which are larger than the threshold.

The procedure of calculating synchronization capacity
is based on the following four facts.

1. If a node u is an end node, its synchronization capacity
C(u) is zero, i.e., C(u) = 0.

2. If a node v only has the successor u and C(u) � ∞, then
C(v) = C(u) + 1.

3. If a node u is in a cycle (see Algorithm 2), its synchro-

nization capacity C(u) is infinite, i.e., C(u) = ∞.
4. If a path exists from node u to v, then C(v) ≥ C(u).

For each node, we first decide if it is an end node or in
a cycle (based on the depth-first search method). Then, we
find those nodes that reach the above nodes and calculate the
synchronization capacity by Fact (2) or (4) iteratively.

Once the synchronization capacity of each node is cal-
culated, the meta motion graphs are extended by adding the
synchronization capacity C(u) as node weight w(u), denoted
as EMMG = {V, E,W(V),W(E)}, where W(V) is the set of
node weights.

Although the calculation of synchronization capacity
seems a kind of generalization of so called “pruning the
dead ends and sinks”, it is not enough to just prune the dead
ends and sinks as Kovar et al. did [8] in our application. In
many dancing genres, the entire motion is composed of sev-
eral kinds of basic movements. Basically, the connections
among different kinds of basic movements are rather weak,
e.g. only mono-directional edges. By pruning the dead ends
and sinks, those weak connections are removed, isolating
the basic movements. In our extended meta motion graph,
we preserve all the nodes to avoid the isolation and removal
of those basic movements while knowing their synchroniza-
tion capacity. Moreover, by keeping all the nodes, it bene-
fits the first and last segments synthesizing better motions,
where music intensity in the intro and ending sections is ob-
served to be usually lower than others.

4.2 Motion Synthesis by Segment-Based Searching

As described before, we search a best path in the extended
meta motion graph EMMG segment by segment with the
constraints from the previous and future segments. At the
first segment, as initialization, our system will select a meta
motion graph that is compatible with the music genre and
covers the music tempo.

For any segment of music data, we first extract music
beats using existing techniques such as [32] and the music
intensity, which is similar to non-streaming music. Then,
a best path for the current segment is searched in the se-
lected graph beat by beat using a method similar to non-
streaming music in Sect. 3.2. However, to seamlessly con-
nect with the previous segment, the last node in the previous
segment is selected as the first node in the current segment.
Moreover, the last node in the current segment is limited to
those nodes with enough synchronization capacity to avoid
the case where there is no path to synchronize with the re-
maining music. Therefore, Eq. (8) is modified as Eq. (9).

T P(K) = min
FvB∈V&C(FvB)≤T HC

{P(FvB,K)} (9)

where P(FvB, k) denotes the cost of a best path for the first k
beat intervals in the segment with the last node of FvB, T P(K)
denotes the cost of a best path for the entire segment of mu-
sic, C(FvB) denotes the synchronization capacity of the node
of FvB, and T HC is the beat number of the remaining music
if known or∞ otherwise. Note that the unit of optimization
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is a segment instead of the entire piece of music as Sect. 3.2.
Therefore, our method is a local searching method from the
viewpoint of the entire piece of music. However, the com-
putational complexity is the same as that in non-streaming
music.

5. Experimental Results and Discussions

In this section, we analyze the performance of our system
for both non-streaming music and streaming music with the
comparison of Shiratori’s system, which uses the same fea-
tures as ours and thus is regarded as the comparison tar-
get. For implementation details of Shiratori’s system [3], the
length of music segments is set as 10 s and the threshold for
candidate motion segments is set as 1.0 according to our pre-
liminary investigation. In Sect. 5.1, the computational cost
is measured on a common PC. In Sect. 5.2, the motion qual-
ity is evaluated and discussed including the beat synchro-
nization, intensity matching, and motion smoothness.

5.1 Computational Cost

As described in Sect. 3.2, the complexity is linear to the
length of music piece in our method while it is exponen-
tial in Shiratori’s method. In this section, we analyze the
computational cost on a PC with a Core2 R© Duo 2.2 GHz
CPU and a 4 GB RAM memory. Two pieces of music are
tested from RWC music database [34] including a slow-
tempo song (Song004) and a fast-tempo song (Song091).
The motions are obtained from CMU MoCap database [28]
including the Break and Indian dances. Table 1 shows the
computing time of motion synthesis by the global search
and Shiratori’s method respectively. It takes less than 10
seconds to generate a 60 s animation in our method for the
Indian dance. In the worst case, it takes 80 seconds to gen-
erate a 60 s animation for Song091 and break dance. The
average speedup is 169.5 times for 30 s contents and 219.2
times for 60 s contents, which shows our method is much
faster than Shiratori’s method [3]. When the music doubles
in length, computing time of our method is averagely 2.05
times and that of Shiratori et al. [3] is averagely 2.61 times,
inferring that the computational cost increases faster in [3]
than ours. Moreover, the computational cost in our method
is predictable given the music length and motion genre (see
the analysis in Sect. 3.2) while the time varies much in [3]
due to the number of candidate motion segments depends on
the music and the motion database.

On the other hand, we test the computing time for dif-
ferent segment lengths in the local search, which is per-
formed on a PC with a Core2 R© Quad 2.83 GHz CPU and
a 3.25 GB RAM memory. As shown in Fig. 6, it takes less
than 1.0 seconds on average to synthesize a 5 s-segment mo-
tion in our method in the worst case, increasing the ini-
tial delay very little. At the same time, it is much shorter
than the rendering time, which is one of the constraints for
streaming applications. In addition, it is observed that the
computational cost is almost linear to the segment length.

Table 1 Comparison of computational cost (seconds) between
Shiratori’s method and our method (global search). The time of the off-
line process is excluded.

Song004 Song091
30 s 60 s 30 s 60 s

Break
Shiratori’s 735 2103 6039 15027

global search 27 56 40 80

Indian
Shiratori’s 284 757 2025 4888

global search 3 7 5 9

Fig. 6 Comparison of average computational cost (milliseconds) for a
segment. Segment length includes 2 s, 3 s, 4 s, 5 s, 10 s, and 30 s (entire
length).

Moreover, we can predict the computational time t for any
segment length L given the average indegree D, node num-
ber N, and the music tempo P in a segment. In the above PC,
we get t = DNP(0.0030L−0.0003) by the linear regression.

Benefiting from the high efficiency of our algorithm,
we have successfully implemented our system on mobile
phones with Android(TM) OS and confirmed that it works
well on au(TM)’s IS03 (Qualcomm Snapdragon QSD8650
1 GHz and 512 MB RAM), IS06 (Qualcomm Snapdragon
QSD8650 1 GHz and 401 MB RAM) and Google(TM)’s
Nexus One (Qualcomm Snapdragon QSD8250 1 GHz and
512 MB RAM).

5.2 Evaluation of Motion Quality

Twelve pieces of music are tested from the above RWC mu-
sic database [34]. The dancing motions are the same as those
in Sect. 5.1. In order to reduce the evaluation time, only a
part (30 seconds) of a song is extracted for the user study
with fade in and fade out operations at cut points, which
makes the shortened songs more natural and the music in-
tensity unevenly distributed. As the target of our appli-
cation is general consumers, a total of 60 non-expert ob-
servers (41 of 60 being females) are asked to evaluate the
results in order to know the evaluation results from real
users, who are equally separated into the following two
groups†. In the first group, we compare the global search-

†For the number of the respondents, because we cannot find
the direct reference for that, we refer to those in video quality eval-
uation [35]. According to the requirement in video quality eval-
uation [35], at least 13 observers are usually required, which is
obeyed in our user study.
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Table 2 Summary of T-tests in two groups.

Q1 Q2 Q3
better same worse better same worse better same worse

Group 1
global search vs. Shiratori 5 6 1 10 2 0 12 0 0
local search vs. Shiratori 6 5 1 6 6 0 10 2 0

Group 2
10 s vs. 5 s 1 11 0 0 12 0 1 11 0
10 s vs. 2 s 1 11 0 1 11 0 4 8 0

ing method and segment-based searching method with Shi-
ratori’s method [3], where the beat and intensity features are
common to all the methods. In the second group, we fo-
cus on the segment-based searching method, testing differ-
ent lengths of the music segment, namely, 2 seconds, 5 sec-
onds, and 10 seconds, as these can be regarded as a reason-
able range in real applications.

In each group, the 30 participants have evaluated the 36
samples by assigning a score for 1 to 5 for the following 3
questions, where “strongly disagree”, “somewhat disagree”,
“neutral”, “somewhat agree”, and “strongly agree”, are de-
noted by the numbers 1 to 5 in that order. Since the respon-
dents are laypersons, some anchoring videos are provided to
tell them the meaning of questions in order to avoid misun-
derstanding. Although the three questions correspond to the
three requirements in our objective function (see Sect. 3.2),
they are perceptively important in our application, thus re-
garded as reasonable in our opinion. Researches [11], [12]
strongly suggest the innate beat perception of human being.
Intensity perception is confirmed in our interview with pro-
fessional dancers. And the smoothness is required to avoid
the motion artifacts from motion synthesis. By randomly
displaying the results, participants do not know which sam-
ple is generated by which method. To ensure a better under-
standing of the questions and the evaluation criteria, some
learning materials are displayed to participants as quality
anchors before the tests.

• Q1 (beat synchronization): The motion beats are syn-
chronized with those of the music.
• Q2 (intensity matching): The strength of the motion is

matched with that of the music.
• Q3 (motion smoothness): The motion is smooth.

Figures 7 and 8 show the mean opinion scores (MOSs,
average scores) [36]) from all the participants for all the 12
samples. At the same time, a t-test is performed as shown
in Table 2, where the confidence interval is set as 95%. In
Group 1, the global search and local search are compared to
Shiratori’s method respectively. As can be seen, the motion
quality by both global search and local search is generally
better or competitive to Shiratori’s method. Especially, the
motion is more smooth in our method. In Group 2, the seg-
ment length of 5 s and 2 s are compared to that of 10 s. Ba-
sically, there is no significant difference between 10 s seg-
ment and 5 s segment in all the three questions. Accord-
ing to our algorithm, there should be no difference for the
beat synchronization (Q1) no matter how long the segment
is†. However, the probability of falling the local minimum
should increase when the segment becomes short, influenc-

Fig. 7 Mean opinion scores (MOSs) of 12 pieces of music from three dif-
ferent methods including Shiratori’s method, global search, and segment-
based search (Group 1).

Fig. 8 Mean opinion scores (MOSs) of 12 pieces of music from segment-
based search with different segment lengths (Group 2).

ing the quality of intensity matching and motion smooth-
ness. For the intensity matching, this effect has not been
observed in our user study. However, we do observe that the
motion smoothness becomes worse in the case of 2 s. Note
that one can change the effect by modifying the weights of
bi-directional edges. Considering the trade-off with the ini-
tial delay, it is recommended that the segment length be set
at about 5 seconds.

†Here we assume the detected beats in both music and motion
are perfectly accurate. However, the error from detection algo-
rithms is unavoidable although we have especially improved the
motion beat detection algorithm [29].
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Table 3 Average of mean opinion scores (MOSs) of 12 samples.

method Q1 Q2 Q3
Shiratori 2.49 2.36 2.00

global search 2.71 2.74 2.84
local search 2.67 2.74 2.78

2 sec. 2.57 2.63 2.66
5 sec. 2.77 2.79 2.78
10 sec. 2.76 2.78 2.79

Although the proposed methods achieve better perfor-
mance than the conventional one, the average scores from
all the methods (See the details in Table 3) are below 3.0,
which implies that other factors affect the evaluation. Ba-
sically, the professional dancers consider not only the low
level features such as beat instants and intensity of the mu-
sic but also the high level features of music, improvisational
performance, and their own style when they dance to the
music. It is very challenging to automatically generate so
highly complex art form, where we have much future work
to do. In addition, there are some factors that are beyond of
the scope of this paper. For example, it is known that the
CG character’s influence is perceptible in animations [37].
In our use study, a very simple model is used with just 3,776
polygons, worsening evaluation scores.

6. Conclusions and Future Work

This paper has proposed a novel scheme for motion synchro-
nization with streaming/non-streaming music using a mo-
tion capture database. Specially designed for this purpose,
a graph-based representation called meta motion graph is
constructed on the database beforehand, where necessary
features, including both beat and intensity, are embedded.
Then, our system can search a best path for music synchro-
nization by global searching and local searching approaches
for non-streaming music and streaming music respectively.
Furthermore, we have implemented our system on commer-
cially available smart phones and confirmed that it works
well on these mobile phones.

Basically, our system can only deal with those songs
within a range of about 15% changes in tempo. We do
not consider the situation where the tempo is dramatically
changed in the case of both streaming and non-streaming
music. However, it is possible to deal with variable-
tempo music in our framework, which may be our future
work. Since we have the technique to detect music beats in
variable-tempo music in real time such as Murata et al. [17],
a straightforward extension for both streaming and non-
streaming music is to use a two-layer graph structure for
different motion graphs that cover a wide range of tempos,
where the motion graph can be switched freely according
to the music tempo. When generating the motions in the
case of non-streaming music, we can still use global search
method. In the case of streaming music, once the tempo
change is detected in music, a delay will happen before tran-
siting to a proper motion graph.

In addition, according to professional dancers, not all

the beat instants are known to be of the same importance in
terms of human perception. In the future, we plan to esti-
mate the importance of beat frames in both music and mo-
tion to make a better match with human perception. Further-
more, it would be preferable to synthesize dancing motion
with a finer granularity unit instead of a segment level in
a streaming application. For instance, only a short slice of
music is increasingly added. However, in such a case, it is
necessary to determine the current motion not only by the
refreshed music but also by the previous data. Logically, the
determination unit is longer than the refreshed unit for better
performance, where the Markov model may be used. This
is also a part of our future work.

It should be mentioned that our system is based on low
level features. A future research direction is toward realis-
tic and well-organized choreographing as done by a skilled
choreographer, which requires necessary high level features
and rules. Although it is straightforward to adopt additional
features in the set of edge weights, it is rather difficult to ob-
tain the high level features unless manual operation is per-
formed due to the so called semantic gap.
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