
1676
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.6 JUNE 2012

LETTER

Throttling Capacity Sharing Using Life Time and Reuse Time
Prediction in Private L2 Caches of Chip Multiprocessors∗

Young-Sik EOM†, Jong Wook KWAK††a), Seong Tae JHANG†††, Nonmembers, and Chu Shik JHON†, Member

SUMMARY In Chip Multi-Processors (CMPs), private L2 caches have
potential benefits in future CMPs, e.g. small access latency, performance
isolation, tile-friendly architecture and simple low bandwidth on-chip in-
terconnect. But the major weakness of private cache is the higher cache
miss rate caused by small private cache capacity. To deal with this prob-
lem, private caches can share capacity through spilling replaced blocks to
other private caches. However, indiscriminate spilling can make capacity
problem worse and influence performance negatively. This letter proposes
throttling capacity sharing (TCS) for effective capacity sharing in private
L2 caches. TCS determines whether to spill a replaced block by predict-
ing reuse possibility, based on life time and reuse time. In our performance
evaluation, TCS improves weighted speedup by 48.79%, 6.37% and 5.44%
compared to non-spilling, Cooperative Caching with best spill probability
(CC) and Dynamic Spill-Receive (DSR), respectively.
key words: Chip Multi-Processors, private L2 cache, capacity sharing,
cooperative caching

1. Introduction

Recently, Chip multiprocessor (CMP) is widely used in
server computing, personal computers and even hand held
devices. As in single processors, L2 cache of CMP reduces
off-chip memory accesses which take hundreds of cycles.
There are two kinds of L2 cache design: shared or private
cache. The private L2 cache has potential benefits in future
CMPs, such as small access latency, performance isolation,
tile-friendly architecture and simple low bandwidth on-chip
interconnect. However, the major weakness of private cache
is the high cache miss rate caused by small private cache
capacity.

To deal with this problem, Cooperative Caching
(CC) [2] conducts capacity sharing by sending (spilling) re-
placed blocks to other private L2 caches (peer caches). Pre-
viously spilled blocks in other caches can be read when
the core needs the blocks, through cache-to-cache trans-
fer. In this way, the spilling core utilizes more capacity
beyond private cache capacity. In Dynamic Spill-Receive
(DSR) [7], each cache learns whether it should act as a
“spiller cache” or “receiver cache” in order to minimize

Manuscript received December 15, 2011.
†The authors are with School of EECS, Seoul National Univer-

sity, Korea.
††The author is with the Department of Computer Engineering,

Yeungnam University, Korea.
†††The author is with the Department of Computer Science, The

University of Suwon, Korea.
∗This research was supported by the Yeungnam University re-

search grants in 2010.
a) E-mail: kwak@ynu.ac.kr

DOI: 10.1587/transinf.E95.D.1676

overall cache misses. Spiller cache can exploit the capac-
ity of other cache without the interference of the spilling of
other caches.

However, there are problems in previous proposals.
They spill replaced blocks without considering whether they
will be reused. Spilled blocks consume the capacity of
the cache. That cache replaces blocks more frequently
by spilled blocks and experiences higher miss rate. Be-
sides, spilling consumes interconnection bandwidth as well.
Therefore, if a spilled block is not reused, it makes no con-
tribution to overall performance and it can even make the
performance worse. On the contrary, too passive spilling is
also problematic, which means relinquishing potential hit on
peer cache.

In this letter, for a spilled block to be reused before
eviction from the L2 peer cache which receives the spilled
block, the state of the peer cache should be considered. We
name the period between insertion and replacement of a
spilled block “life time” of the cache. A cache with high
miss-rate replaces lines frequently and thus has short life
time. If a block is spilled to that cache, it moves to LRU
position quickly and is replaced without reuse. But if it is
spilled to a cache with longer life time, it has great potential
to be reused. In addition, the status of a spilled block should
be also considered. We call the period between replacement
and reuse of a block “reuse time”. A block with short reuse
time can be reused even in a short life time peer cache. A
block with long reuse time needs longer life time peer cache
to be reused.

Therefore, for a replaced block to be reused in a peer
cache, both the life time of the peer cache and the reuse time
of the replaced block should be considered together. To pre-
dict the reuse of replaced blocks, we propose a Throttling
Capacity Sharing (TCS) mechanism. When a block is re-
placed from local L2 cache, TCS predicts whether its reuse
time is smaller than the life time of a peer cache, and only
when it satisfies this reuse condition, TCS supposes that, if
the block is spilled to the peer cache, it will be reused before
replacement.

2. Throttling Capacity Sharing

When a block is replaced, to predict whether it is reused in a
peer cache, we need to estimate both the life time of the peer
cache and the reuse time of the replaced bock, and compare
them. TCS spills a replaced block to the peer cache only
when the reuse time of the block is smaller than the life time

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

LETTER
1677

Fig. 1 Life time prediction.

Fig. 2 Reuse time prediction.

of the peer cache. The following shows the details.

2.1 Life Time Prediction

Figure 1 shows how to predict the life time of cache B.
There are one sets of Cache A and Cache B having same
index number. Life time of cache B is the period between
(A) insertion (spilling) and (B) replacement of spilled block.
One step time is the period which it takes a spilled block to
move one step toward LRU position. Whenever a miss oc-
curs in cache B, a spilled block moves one step. Therefore,
one step time can be approximated by the number of inter-
val cycles in collecting statistics over the number of misses
in cache B. Then life time can be defined as the number of
ways multiplied by one step time as follows.

LifeTimeCacheB =
Ways × CyclesInterval

MissesCacheB
(1)

2.2 Reuse Time Prediction

Figure 2 shows how to predict reuse time of a replaced block
in cache A. To predict reuse time, TCS uses a shadow tag
which is the extension of an original tag without data. Each
set in cache A has a correspondent shadow tag. When a
non-spilled block is replaced in the original tag, it is inserted
to MRU position of the shadow tag and other blocks in the
shadow tag move one step toward LRU position. Reuse time
of a replaced block is time between (A) replacement and (B)
reuse. Whenever a miss occurs, the miss address is searched
on shadow tag. If it hits, the distance from MRU position to
hit position is recorded on distance table. If it misses or an

entry is evicted from the shadow tag, infinite value is stored.
The value in distance table is as follows (Eq. (2)).

newValue =
oldValue + distance

2
(2)

One step time is a period it takes a replaced block to
move one step toward LRU position in shadow tag. Since
each replacement makes all blocks in shadow tag move one
step, one step time is the number of interval cycle in collect-
ing statistics over the number of replacement. Therefore,
reuse time can be defined as one step time multiplied by the
distance from distance table as follows.

ReuseTimeReplacedBlock =
Distance × CyclesInterval

ReplacementCacheB
(3)

Only sample sets have shadow tag, not to overwhelm
the cache space with shadow tag. There are 32 sampled sets
distributed to all 1024 sets of L2 cache. Each 32 contiguous
set has one sample set. We borrow the sample set distribu-
tion method from set-dueling [6]. Each shadow tag has 48
entries and each entry has additional 8 bits hashed PC to be
used when accessing the distance table. The distance table
is indexed by hashed PC and hashed miss address generated
by XOR-ing all 8 bit parts. Each tag has 8 bits hashed PC
and 1 bit spill bit to represent whether it is spilled block or
not. This prediction table style is borrowed from [4].

To determine a replaced block to be reused or not, when
it is spilled, TCS does not use life time and reuse time
directly but use the threshold distance value. Using pre-
dicted life time (Eq. (1)) and reuse time (Eq. (3)), we can get
the following reuse condition (Eq. (4)) as a threshold value,
when a replaced block of cache A is spilled to peer cache
B.

DistanceReplacedBlock

≤
(

Ways × ReplacementCacheA

MissesCacheB
= Threshold

)
(4)

2.3 TCS Operation

TCS calculates the threshold for every core at the end of
interval. We use 100,000 cycle interval. During each inter-
val, TCS records the distances of miss addresses when miss
occurs. To calculate the threshold, TCS uses 2 counters in
each core. One is replacement counter to count the number
of non-spilled replacements and the other is miss counter to
count the number of misses. These two counters are used at
the end of interval for calculation of the threshold. There-
fore, the threshold value of core i to core j is as follows
(Eq. (5))

Threshold(i, j) =
Ways × Replacementi

Misses j
(5)

At the end of each interval, TCS calculates all threshold
values and all counters are initialized to 0. In four core sys-
tem, each core has 3 threshold values. When a non-spilled
block is replaced, TCS reads the distance of a miss address

1678
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.6 JUNE 2012

from the distance table. Then, after comparing the distance
to the thresholds of each cache, TCS spills the block to a
cache with bigger threshold than the distance of the block.
When there are other caches satisfying the reuse condition,
the target cache to spill is randomly chosen among them.

3. Performance Evaluation

3.1 System Configuration and Workload

We use a cycle accurate, out of order simulator, CMP-SIM,
using Alpha 21264 (ev6) binary code [1]. The base configu-
ration is a four core CMP with the given parameters, shown
in Table 1. L2 cache is 1 MB per core and it has 10 cycle
local hit latency and 40 cycle peer cache hit latency. Block
size is 64 Bytes and memory access cycle is 300 cycles.

We use SPEC CPU2000 benchmarks. To evaluate our
mechanism, we formed 17 programmed workloads. We
classify these workloads into five categories depending on
how many “Giver” (G) and “Taker” (T) the workload has.
Giver applications are small working set and low utility
applications [5] which can lend their cache space without
significant performance degrade. Taker applications are
high utility applications [5] which benefit from taking more
space. Note that all L2 caches in TCS can both spill re-
placed blocks and receive spilled blocks as opposed to DSR.

Table 1 Parameters of the simulated architecture.

Table 2 Multi-programmed workloads.

Table 2 shows total workloads evaluated in this letter.

3.2 Result and Analysis

We experiment on CC, DSR and TCS. CC has five con-
figurations, each with spill probability of 0% (non-spilling:
base private L2 cache), 25%, 50%, 75% and 100%, respec-
tively. Among them, CC (Best) is the CC which has best
performance in each workload.

Figure 3 shows the reuse ratio to spill of CC (Best),
DSR and TCS, respectively. X-axis corresponds to 14 work-
loads. As shown in Fig. 3, DSR and TCS consistently has
the better ratio than CC (Best) in all categories since in DSR
the only cores which shows the large number of reuse spill
blocks and TCS spills the blocks which are expected to be
reused. On average, CC (Best), DSR and TCS have the
reuse ratios of 65.59%, 85.37% and 93%, respectively.

Figure 4 shows the number of spills of TCS normalized
to those of DSR. This result shows that TCS spills 6% more
than DSR on average. In case of high reuse ratio, the higher
number of spills means the better performance. This is be-
cause the hit rate of non-spilled blocks inserted by cache
misses is low in L2 cache and the higher number of spills
means L2 cache is filled with the more blocks expected to
be hit. Therefore, we can infer that DSR spills too conser-
vatively and relinquishes the potential for L2 hits. On the
other hand, TCS spills more blocks than DSR with the reuse
ratio comparable to DSR and results in the more number of
L2 hits than DSR.

Figure 5 shows the number of total spills of CC (100),
DSR and TCS, normalized to CC (100) in G4T0 category.
In these workloads, the less the number of spills is, the bet-
ter the system performance is. Therefore, CC (Best) is CC
(0%) (non-spilling). DSR and TCS have the reuse ratio of

Fig. 3 The ratio of reuse to spill.

Fig. 4 The number of spills of TCS normalized to DSR.

LETTER
1679

Fig. 5 The number of spills normalized to CC (100).

Fig. 6 Weighted speed up normalized to non-spilling.

10.67% and 10% of CC (100), respectively. This shows that
both TCS and DSR throttle the number of unnecessary spills
effectively.

To measure CMP system performance, we use a
weighted speed-up. The weighted speed-up corresponds to
total system throughput [3]. Figure 6 shows weighted speed
up normalized to private L2 cache (CC (0%), non-spilling).
In most workloads, TCS outperforms CC (Best) and DSR.
This is since TCS reduces the large number of useless spills
and satisfies the capacity demand of each core. In category
G4T0, all methods show comparable performance. Since all
applications in this category are low utility or small work-
ing set applications, spilling rarely influences performance.
DSR gives the comparable performance to CC (Best) in
spite of higher reuse ratio. This is because DSR often makes
a wrong choice of spiller and receiver, and it does not spill
replaced blocks, which are expected to be reused if spilled.
On average, TCS improves weighted speed up by 48.79%,
6.37% and 5.44% over non-spilling, CC (Best) and DSR,
respectively.

TCS does not estimate life time and reuse time directly.
However, we can estimate the relative errors (Eq. (6)) of (1)
life time and (2) reuse time as follows, since threshold value
is based on them.

relativeError =
|Timereal − Timeprediction|

MAX(Timereal,Timeprediction)
× 100

(6)

Figure 7 shows the distribution of relative errors of the
predictions of life time and reuse time for two representative
workloads 10 and 14. The X-axis corresponds to relative
error and the Y-axis corresponds to the probability of rela-
tive error. Reuse time is more difficult to predict than life
time. The error of workload 10 is smaller than that of work-

Fig. 7 The distribution of relative errors of life time and reuse time.

load 14. This result is consistent with the result of weighted
speed up. In workload 10, TCS has 10.63% speed-up over
CC (Best), but 0.34% speed-up in workload 14. If predic-
tion could be more accurate, TCS performance would be
improved more.

4. Conclusion

This letter proposes throttling capacity sharing (TCS) for ef-
fective capacity sharing of private L2 caches. When a block
is replaced from L2 cache, TCS predicts whether its reuse
time is smaller than the life time of a peer cache, and only
when it satisfies reuse condition, TCS spills the replaced
block to the peer cache. We evaluated the performance
improvement of TCS and TCS improves weighted speed
up by 48.79%, 6.37% and 5.44% on average, compared to
non-spilling, CC (Best) and DSR for 17 multi-programmed
workloads.

References

[1] R.S. Baldawa, “CMPSIM: A flexible multiprocessor simulation en-
vironment,” The University of Texas at Dallas, 1450810, 2007.

[2] J. Chang and G.S. Sohi, “Cooperative caching for chip multipro-
cessors,” ISCA ’06: 33rd Int. Symp. on Computer Architecture,
pp.264–276, 2006.

[3] S. Eyerman and L. Eeckhout, “System-level performance metrics
for multiprogram workloads,” IEEE Micro, vol.28, no.3, pp.42–53,
2008.

[4] M. Kharbutli and Y. Solihin, “Counter-based cache replacement and
bypassing algorithms,” IEEE Trans. Comput., vol.57, no.4, pp.433–
447, April 2008.

[5] M. Moreto, F.J. Cazorla, A. Ramirez, and M. Valero, “Explaining
dynamic cache partitioning speed ups,” Computer Architecture Let-
ters, vol.6, no.1, pp.1–4, 2007.

[6] M.K. Qureshi, A. Jaleel, Y.N. Patt, S.C. Steely, Jr., and J. Emer,
“Adaptive insertion policies for high performance caching,” ISCA-
2007, pp.381–391, 2007.

[7] M.K. Qureshi, “Adaptive spill-receive for robust high-performance
caching in CMPs,” HPCA, pp.45–54, 2009.

