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PAPER

Automated Adaptor Generation for Behavioral Mismatching
Services Based on Pushdown Model Checking∗

Hsin-Hung LIN†a), Toshiaki AOKI†b), Nonmembers, and Takuya KATAYAMA†c), Member

SUMMARY In this paper, we introduce an approach of service adap-
tation for behavior mismatching services using pushdown model checking.
This approach uses pushdown systems as model of adaptors so that cap-
turing non-regular behavior in service interactions is possible. Also, the
use of pushdown model checking integrates adaptation and verification.
This guarantees that an adaptor generated by our approach not only solves
behavior mismatches but also satisfies usual verification properties if spec-
ified. Unlike conventional approaches, we do not count on specifications
of adaptor contracts but take only information from behavior interfaces of
services and perform fully automated adaptor generation. Three require-
ments relating to behavior mismatches, unbounded messages, and branch-
ings are retrieved from behavior interfaces and used to build LTL proper-
ties for pushdown model checking. Properties for unbounded messages,
i.e., messages sent and received arbitrary multiple times, are especially ad-
dressed since it characterizes non-regular behavior in service composition.
This paper also shows some experimental results from a prototype tool and
provides directions for building BPEL adaptors from behavior interface of
generated adaptor. The results show that our approach does solve behav-
ior mismatches and successfully capture non-regular behavior in service
composition under the scale of real service applications.
key words: service adaptation, behavior mismatch, pushdown model
checking, unbounded messages

1. Introduction

Service composition has been recognized as one of the ma-
jor issues in service oriented computing (SOC). The basic
idea of SOC is to reuse services already developed, espe-
cially by other providers. Since existing services are already
implemented and tested, reusing them with valid composi-
tion should save time and costs in developing new appli-
cations. However, direct composition of services is nearly
impossible because of incompatibilities/mismatches of in-
terfaces. To perform service composition while mismatches
exist, service adaptation [2] provides a promising solution
to compose mismatching services. Service adaptation in-
troduces a mediate service called adaptor which coordinates
interactions of services. In an adapted system of services,
all interactions among services are through the adaptor so
that mismatches can be avoid without modifying given ser-
vices, which provides a non-intrusive way for service com-
position. Therefore, Services to be composed are treated
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as black boxes so that the purpose of service reuse can be
achieved.

Existing approaches for service adaptation are, to our
best knowledge, generally based on a conventional frame-
work of software adaptation [3]. The framework is designed
to use behavior interfaces and adaptation contracts to per-
form automated adaptor generation. More specifically, be-
havior interfaces requires specifications of behavior inter-
faces of services represented in labeled transition system
(LTS), while adaptation contracts require specifications of
mappings of messages to be interacted and the ordering (i.e.,
expected interactions coordinated by an adaptor) of these
mappings represented in LTS. However, given some ser-
vices that need adaptation, behavior of the adaptor as well
as the system behavior may be non-regular and can not be
represented in LTS, even if mapping of messages is correctly
specified.

In order to tackle non-regular behavior in adaptors, we
introduce an approach that uses pushdown automata model
for representing behavior of adaptors. The pushdown au-
tomata model makes computations with non-regular behav-
ior possible while not being theoretically too complicated.
This is reasonable under the view point of software engi-
neering and we still treat services as finite state machines
so that our approach is applicable to the systems in conven-
tional framework. Furthermore, our approach uses model
checking technique [4] to perform mismatch detection and
adaptor generation. The basic idea is to generate Linear
Time Logic (LTL) properties corresponding to requirements
for a system to be adapted. Thus, adaptation is integrated
with verification, i.e. properties related to adaptation and
verification can be put together and model checked at the
same time. This means a generated adaptor by our approach
not only solves behavior mismatches but also guarantees
properties such as safety and liveness if specified.

Besides non-regular behavior, our approach also at-
tempts to deal with issues in designing adaptor contracts.
In the conventional framework, adaptor contracts include
two parts: mapping of transition labels in behavior inter-
faces, and the execution of interactions corresponding to
these mappings. In the former part, mappings are sugges-
tions for solving signature mismatches while the later part is
the behavior of an adaptor designed by developers. Gener-
ally, both parts have to be specified before performing adap-
tor generation and it counts on developers to see through
behavior interfaces of services to design proper message
mappings and behavior of an adaptor. Since determining
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mappings of transition labels usually needs extra informa-
tion other than behavior interfaces that need additional tech-
niques such as context aware technology, we assume that
necessary mappings are already given and leave this part re-
maining manually specified. On the other hand, executions
of interactions can be obtained by analyzing behavior inter-
faces of services and therefore directly be used to generate
adaptors. Some tools have already been developed to inter-
actively support designing adaptor contacts [5], [6] as LTS.

Unlike these tools, our approach does not generate
adaptor contracts but directly generates adaptors from prop-
erties obtained from behavior interfaces of services. The
properties are automatically retrieved so that fully auto-
mated adaptor generation without adaptor contracts is possi-
ble. This feature makes our approach especially suitable for
adaptation of mobile services being dynamically found and
composed. More specifically, by analyzing behavior inter-
faces of services, we may determine and generate properties
for behavior mismatch, unbounded messages, and branch-
ings which reflects requirements implicitly described in be-
havior interfaces. The first property is the key of solving
behavior mismatch and the rest are information about ac-
complishment of functionalities of services. Among these
properties, we are especially interested in unbounded mes-
sages since this property characterizes non-regular behavior
that we are focusing in this approach.

The rest of this paper is organized in the following
structure: Section 2 discusses related work and addresses
the position of this paper; Section 3 demonstrates our ap-
proach using a motivational example to explain core ideas;
Section 4 describes formal definitions of web services and
adaptors; Section 5 demonstrates the detail of adaptor gener-
ation which is the major part of this paper; Section 6 shows
a prototype tool and introduces directions of implement-
ing BPEL adaptors. Section 7 shows some experimental
results using a prototype tool and gives some discussions;
Finally, Sect. 8 summarizes contributions of this paper and
gives some future directions.

2. Related Work

As a hot topic in component-based software engineering
(CBSE), many approaches are proposed for software adap-
tation. Most approaches, including ours, focused on solu-
tions for behavior mismatches between abstract behavior in-
terfaces. Brogi et al. proposed a model-based approach [3]
which uses Labeled Transition Systems (LTSs) for model-
ing and calculation of software adaptation. According to
our survey, this approach has defined a conventional frame-
work for software adaptation using two basic elements: be-
havior interfaces and adaptation contracts which are both
modeled by LTS. Some work, though using different ap-
proaches on computation, is based on this framework. Tivil
et al. [8] proposed a computation technique which directly
constructs partial behavior of adaptor from corresponding
software components, This technique gives more compu-
tational efficiency to adaptor generation while incapable of

solving reordering mismatches. This technique can also in-
tegrate LTL model checking by directly composition with
Büchi automata transformed from specified LTL properties.
Mateescu et al. [7] used process algebra for modeling be-
havior, LOTOS for specification of protocols, and CADP
toolbox for automated on-the-fly adaptor generation.

Recently, approaches for service adaptation became
popular and techniques of software adaptation mentioned
above were extended or modified for service composition.
Cubo et al. applied the approach of [3] to WF/.NET frame-
work and added verifications in their approach [9]. Ma-
teescu et al. also extended their work in [7] to service
adaptation using the model of Symbolic Transition Systems
(STSs) [2]. Some other work used their own definitions for
adaptation. Nezhad et al. [10] defined their own interfaces
including sets of XML data and introduced an algorithm for
solving interface mismatches. Mitra et al. [11] used I/O au-
tomata with history to support the multiple uses of same
messages in service composition. Compare to above work,
our approach attempts to capture non-regular behavior in
service composition and uses pushdown automata model for
representing adaptors. The use of model checking tech-
nique integrates adaptation and verification so that gener-
ated adaptor is guaranteed to satisfy both behavior mismatch
free and safety/liveness properties if specified. Our previous
work [12] proposed the first version of our approach that
uses Büchi automata model for behavior interfaces of ser-
vices. The work proposed a property called behavior mis-
match free defined from acceptance condition of Büchi au-
tomata. To our best knowledge, this work was the first time
generation of non-regular behavioral adaptor is tackled.

Another topic in service adaptation is automated gen-
eration of adaptation contracts. For web services, it be-
comes a problem that adaptation contracts have to be manu-
ally specified in the conventional framework proposed in [3]
while there are mobile services that demand being selected
and composed dynamically. Some research about adapta-
tion also tackles this topic in various ways. J.A. Martı́n and
E. Pimental [13] proposed an expert system based approach
which combines exploring rules and A∗ graph search algo-
rithm. Their approach automatically generates adaptation
contracts (mainly mappings of labels) having the best score.
Other work provides semi-automated way to guide design
of adaptation contracts. Nezhad et al. [10] introduced an
interactive way for users to specify adaptation contracts re-
lated to behavior mismatches on reordering. Cámara et al.
developed an integrated tool ITACA [5] to support composi-
tion of BPEL services which provides interactive graphical
user interface to guide the design of adaptor contracts. Com-
pare to above work, our approach does not generate adapta-
tion contracts but directly generates an adaptor rely on only
information from behavior interfaces of services. Assum-
ing signature mismatches are solved and mappings of labels
are specified, our approach provides fully automated adaptor
generation. This is proposed in our recent work [1]. Further-
more, we especially address property for unbounded mes-
sages which characterize non-regular behavior of adaptors.
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Though the use of model checking technique is similar to
exploring graph structures of behavior interfaces, we argue
that the use of model checking brings more advantages since
model checking techniques are improved rapidly as well as
the feature of performing both service adaptation and verifi-
cations at the same time.

3. Approach

In this section, we first use a motivational example to
demonstrate core ideas of adaptor generation, then give an
overview of our approach.

3.1 Motivational Example

A motivational example “Fresh Market Update Service” is
shown in Fig. 1 †. In this example, three services are given
their behavior interfaces †† for composition. For each tran-
sition, a label prefixed with “!” represents a message emis-
sion event and the prefix of “?” represents an event of mes-
sage reception. Since synchronization is common in design-
ing web services even the implementation is based on asyn-
chronous communication, we assume synchronous compo-
sition between services in our approach. For more details,
every transition is supposed to be synchronized with another
transition in a different service having the label of same mes-
sage name but opposite prefix symbol. It is easy to notice
that among the three services there is an behavior mismatch
caused by ordering of messages: message Start is designed
to be received by Investor before it receives Data while
the ordering of the two messages being sent is first Data
then Start. A proper adaptor may be designed to have be-
havior like (?R !R ?D)n ?E !E ?S !S !Dn ?C !C ?A !A), n >
1, where capital letters are abbreviations of message names.
An adaptor is supposed to synchronize with services and
therefore no direct interaction between services under co-
ordination of an adaptor. Thus, transitions of the adaptor
with labels prefixed with “?” and “!” represent recep-
tion and delivery of corresponding messages in adaptor and
are supposed to be synchronized with corresponding tran-
sitions (i.e., same message names with opposite prefixes)
in services. Note that in this example, the behavior of the
three services implies that numbers of message RawData
and Data being sent and received are the same and results
in non-regular behavior of the adaptor.

3.2 Core Ideas

We may call the adaptor with non-regular behavior men-
tioned in Sect. 3.1 the expected adaptor and then discuss the
core ideas of generating such an adaptor in our approach.

Pushdown System Model: In our approach, an adap-
tor should satisfy the following concerns: (1) an adaptor
does not generate any message by itself; (2) an adaptor only
receives messages sent from services; (3) an adaptor only
sends previously received messages; (4) an adaptor is ex-
pected to send all received messages eventually. By choos-

Fig. 1 Fresh Market Update Service.

ing pushdown automata model for behavior of adaptors, (3)
and (4) can be perfectly satisfied. Therefore, functionali-
ties of given services are guaranteed as long as the stack of
the adaptor is empty finally at the end of execution. This
is, not possible for finite state machines without extra con-
ditions/specifications. Furthermore, for our approach, the
general pushdown automata model is not necessary and a
simplified pushdown systems model is introduced in Sect. 4.

Unbounded Messages: In the behavior of expected
adaptor, the numbers of messages RawData and Data be-
ing sent/received are required to be the same arbitrary na-
ture number n. Though it is the structures of behavior in-
terfaces that decide the equality in numbers of messages,
an adaptor to be generated is still demanded to reflect the
characteristic of arbitrary number n in its behavior. This
characteristic is essential to non-regular behavior in ser-
vice interactions and is representable under the use of push-
down systems model in our approach while the conven-
tional framework using LTS model does not consider or sup-
port this characteristic. We may call the messages being
sent/received arbitrary multiple times unbounded messages
and define the set of unbounded messages as AUB = {a | a ∈
A ∧ ∀σ,∃σ′,Occ(σ′, a) > Occ(σ, a)} where σ and σ′ are
accepting traces of the system behavior and Occ(σ, a) rep-
resents the number of occurrence of message a in σ.

Service as One Session Process: Services in our ap-
proach are required to be defined as one-session processes.
This means behavior of a service has a start and an end state
and these two states should be different. Generally, this
requirement naturally fits definition languages of services
such as BPEL [15]. Though services are basically running
continuously and services defined in automata models such
as LTS are usually have one same state representing both
start and end states, this causes a problem in dealing with
unbounded messages: unwanted traces may also be included
in the generated adaptor depending on behavior interfaces of
given services. The cause of this problem is that some ser-
vices may start another session (or run of execution) before

†Original version is proposed by X. Fu et al. [14] to show a
case that LTL model checking is undecidable.
††LTS or any finite state machine model is fine.
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all messages are consumed so that these unconsumed mes-
sages may be consumed in later sessions. However, since
a session is usually considered a period that functionalities
are expected to be accomplished, it is preferred that mes-
sages sent in a session are consumed in the same session.
These demands an implicit requirement that all given ser-
vices accomplish their common functionalities when they
all reaches their end states. This requirement also means
that all services should reach their end states before going
to next round of execution and is not possible to be repre-
sented by only temporal properties. Therefore, we define a
constrained behavior model of services called Interface Au-
tomata for Web Services (IA4WS) in Sect. 4 in order to re-
veal this implicit requirement.

3.3 Overview of the Approach

Generally, our approach takes behavior interfaces of ser-
vices as the input and the output is behavior interface of an
adaptor if direct composition of given services does not sat-
isfy designated properties. Behavior interfaces of services
are represented by Interface Automata [16] and adaptors are
represented by pushdown systems [17]. Our approach has
the following steps to perform service adaptation:

Compatibility Check: Our approach focuses on be-
havior mismatches therefore we assume signature mis-
matches are solved † before applying our approach. This as-
sumption is defined as compatibility of given services which
means that any message delivered from a service is received
by another service.

Detection of Behavior Mismatch: If given services
pass the compatibility check, detection of behavior mis-
matches is performed to check if behavior mismatches ex-
ist. First, the system behavior is computed by synchronous
composition [18] of services, which is also an interface au-
tomaton. Then the property of behavior mismatch free for
the system behavior is built as a linear temporal logic (LTL)
formula [18]. This property says that all execution traces of
the system behavior must eventually visit the final state, i.e.,
deadlock free for the system. With the property and the cor-
responding labeling function, we can apply model checking
for this property. Practically, behavior interfaces of services
are implemented in Promela with one synchronous mes-
sage queue for communication. Then SPIN [18] can do both
synchronous composition and model checking for us. Two
cases of results are expected: (1) a counterexample which
means behavior mismatches exist; (2) the system behavior
passes the property so that we do not need an adaptor. For
(2), the approach ends here; for (1), we proceed to adaptor
generation. Since this part is intuitive and can be easily im-
plemented in Promela model for SPIN, we skip the details
in this paper.

Adaptor Generation: In our approach, adaptor gener-
ation is called coordinator guided adaptor generation. We
first need a special adaptor called coordinator which is ready
to receive and send any message if there is a corresponding
service ready for sending or receiving the message. The syn-

chronous composition of given services with coordinator,
which is also a pushdown system, then captures all possible
interleaved interactions of given services. Here we prepare
three properties: property of behavior mismatch free, fair-
ness property of looped transitions, and fairness property
of branching transitions. The first property represents con-
dition of deadlock free for the coordinator involved system
behavior. The second and the third properties represent im-
plicit requirements of unbounded messages and branching.
Then pushdown model checking [17] is performed to check
the negation of these properties. Thus, a returned counterex-
ample is an execution trace that satisfies these properties and
an adaptor is generated from this counterexample. Details
about this step will be given in Sect. 5.

4. Formal Definitions of Services and Adaptors

This section gives the definition of models for behavior in-
terfaces of services and adaptors.

4.1 Service

In our approach, services and adaptors are represented by
different models: Interface Automata for Web Services
(IA4WS) and Interface Pushdown Systems (IPS). IA4WS,
defined in Def. 1, is an automaton model modified from In-
terface Automata (IA) which is defined using the notion of
input, output and internal alphabets for the purpose of com-
posing two general software components represented in IA.
Since we are focusing on service adaptation, we add con-
straints as well as extensions to IA to fit the purpose of ser-
vice adaptation in our approach. An IA4WS is constrained
by adding the following conditions on an IA: (1) there is
only one initial state and one final state; (2) no transition
goes from the final state and to the initial state. The purpose
of the two conditions is already mentioned in Sect. 3.2 as the
core idea of services as one session process. Alphabets in an
IA4WS are abstractions of messages being sent or received,
or indicating internal actions.

Definition 1 (IA4WS): An interface automaton for web
service is defined as P = (Q, q0, AI , AO, AH ,Δ, q f ), where

Q: finite set of states.
q0 ∈ Q: initial state.
AI : finite set of input alphabets.
AO: finite set of output alphabets.
AH: finite set of internal alphabets.
Δ ⊆ Q × A × Q: set of transition relations,

where A = AI ∪ AO ∪ AH

qf ∈ Qi: final state.

An IA4WS has to satisfy the following conditions:

q0 � q f

�t ∈ Δ, t = (q, a, q′), q, q′ ∈ Q, q = q f ∨ q′ = q0

†Practically, we can introduce special services that plays the
role of mapping labels in adaptor contracts.
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∀a ∈ A. ∃t ∈ Δ, t = (q, a, q′), q, q′ ∈ Q

Given a set of services represented in IA4WSs for our
approach to perform service adaptation, it is required in our
approach that these services meet the requirement of com-
patibility. Compatibility defined in Def. 2 means that every
message sent by one service is always received by another
service. This constructs a closed system of services and we
call services that satisfy compatibility are composable ser-
vices. It should be noticed that the compatibility defined in
IA is only for two components to be composed in a open
system.

Definition 2 (Compatibility): A set of interface automata
for web services Pi = (Qi, q0

i , A
I
i , A

O
i , A

H
i ,Δi, q

f
i ) ,i ∈ [1, n],

are composable if

AI
i ∩ AO

i = ∅, AI
i ∩ AI

j = ∅, i � j,
AO

i ∩ AO
i = ∅, i � j,

⋃
i AI

i =
⋃

i AO
i ,

⋃
i AH

i ∩
⋃

i AI
i = ∅.

4.2 Adaptor

We use IPS defined in Def. 3 as model of adaptors. Gener-
ally, an IPS is a pushdown system [17] enhanced with nota-
tions of input and output alphabets in order to be composed
with services represented in IA4WSs. Note that in a transi-
tion rule (p, a, γ) ↪→ (p′,w), w does not represent the con-
tents of the stack but only the word that replaces the head
symbol of stack γ after transition is fired. Transitions of
an IPS are restricted in three kinds: push, pop and internal.
Push transitions represent message reception and pop tran-
sitions represent message delivery. Internal transitions does
not related to message exchange with services. The defini-
tion of IPS is shown in Def. 3.

Definition 3 (Interface Pushdown System): An interface
pushdown system is defined as tuples: S = (Q, q0,Γ,
z,T, F), where

Q: finite set of states.
q0: initial state.
Γ: finite set of stack symbols.
z: stack start symbol representing bottom of stack. z ∈
Γ.
T ⊆ (Q × Γ) × (Q × Γ∗): set of transition relations.
F: finite set of final states.
T is restricted to the following three patterns:

< p, γ >↪→< p′, aγ >: push transition,
< p, a >↪→< p′, ε >: pop transition,
< p, γ >↪→< p′, γ >: internal transition,
where a, γ ∈ Γ, a � z.

In our approach, an adaptor is defined as an IPS with
further constraints: (1) alphabets of an adaptor are the union
of alphabets of given service; (2) all states in an adaptor are
considered final states and stack emptiness is used to define

the acceptance condition. The definition of adaptor is shown
in Def. 4.

Definition 4 (Adaptor): Given a set of composable IA4WS:
Pi = (Qi, q0

i , A
I
i , A

O
i , A

H
i ,Δi, q

f
i ), i ∈ [1, n]. An adaptor for

Pi, i ∈ [1, n] is an IPS: D = (QD, q0
D,Γ, z,TD, FD), where

ΓD = AD ∪ {z}, AD =
⋃

i AI
i =
⋃

i AO
i , and FD = QD.

5. Adaptor Generation

This section gives technical details of adaptor generation
called coordinator guided adaptor generation.

5.1 Coordinator Guided Adaptor Generation

As mentioned in Sect. 3.3, the adaptor generation in our ap-
proach is called coordinator guided adaptor generation that
uses coordinator, a special adaptor to compose with given
service and then perform pushdown model checking for the
negation of required properties. The overview of adaptor
generation in our approach is shown in Fig. 2. The detail of
each step will be described below.

5.2 Coordinator

Coordinator has to be capable of receiving any message if
the message is ready to be sent by a service, and sending
any message that is in the stack head when there is a service
ready to receive the message. We say that the behavior of
the coordinator is over-behavioral and may imagine an one
state IPS that has only self transitions pushing and popping
all messages of services. Therefore, the behavior of the co-
ordinator should cover all possible communications for co-
ordinating given services, including both matching and mis-
matching behavior. In our approach, we build a coordinator
for given services following the definition in Def. 5.

Fig. 2 Overview of adaptor generation.
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Definition 5 (Coordinator): Given a set of composable
IA4WS Pi = (Qi, q0

i , A
I
i , A

O
i , A

H
i ,Δi, q

f
i ), i ∈ [1, n]. A co-

ordinator is an IPS C = (QC , q0
C ,Γ, z,TC , FC), where

QC = {q0
C} is the finite set of states has only the initial

state q0
C;

AC =
⋃

i AI
i =
⋃

i AO
i is the finite set of alphabets;

Γ = AC ∪ {z} ∪ {ε} is the finite set of stack symbols;
z is the stack start symbol representing bottom of stack;
FC = QC is the finite set of final states.
TC = (QC × AC × Γ) × (QC × Γ∗) is the set of transition
relations defined as follows:

(q0
C , γ) ↪→ (q0

C , aγ) is a push transition,
(q0

C , a) ↪→ (q0
C , ε) is a pop transition,

where a ∈ AC , γ ∈ Γ is the head symbol of stack.

5.3 Synchronous Composition with Coordinator

The system behavior under coordination of coordinator is
computed by adapted synchronous composition defined in
Def. 6. In the adapted synchronous composition, synchro-
nization of sending and receiving transitions is between ser-
vices and coordinator. As shown in Fig. 3, the resulted tran-
sitions are synchronized in two cases: output transitions in
services are synchronized with push transitions in coordi-
nator; input transitions in services are synchronized with
pop transitions in coordinator. For internal transitions in ser-
vices, coordinator remains same state and same stack con-
tent. Since coordinator is an IPS, the synchronous compo-
sition gives an IPS with only internal transitions. Therefore,
we may omit the input and output transitions and treat the
system behavior as a pushdown system.

Definition 6 (Adapted Synchronous Composition): Given
a set of composable IA4WS: Pi= (Qi, q0

i , A
I
i , A

O
i , A

H
i ,Δi, q

f
i ),

i ∈ [1, n], with an adaptor D = (QD, q0
D,Γ, z,TD, FD). The

adapted synchronous composition is an interface pushdown
system ΠD

i = (Q, q0,Γ, z,T ′, F), where

Q = Q1 × . . . × Qi × . . . × Qn × QD: finite set of states.
q0 = (q0

1, q
0
2, . . . , q

0
n, q

0
D): initial state.

T ′ ⊆ (Q × Γ) × (Q × Γ∗): set of transition relations
defined in Fig. 3.
F = {(q f

1 , . . . , q
f
i , . . . , q

f
n )} × FD: finite set of final

states.

5.4 Property of Behavior Mismatch Free

The purpose of the property of behavior mismatch free is to
define a LTL property representing the condition of dead-
lock free. According to the system behavior from adapted
synchronous composition with coordinator, the property of
behavior mismatch free is defined as in Def. 7 that all traces
have to finally visit the final state of the system behavior
along with the condition that the stack is empty. Note that
since all given services have only one final state which goes

Fig. 3 Definition of transition relations in Def. 6.

to no other state and all states are final states in an adaptor,
practically the system behavior can be treated as having only
one final state which is the conjunction of properties that all
services are in their final states.

Definition 7 (Adapted Behavior Mismatch Free): Given an
IPS S = (Q, q0,Γ, z,T, F) which is the composition of a
set of composable web services and their adaptor, the prop-
erty of behavior mismatch free is written in a LTL for-
mula ♦paccept. paccept is an atomic proposition and a la-
beling function for state s and stack head γ is defined as
L((s, γ)) : {paccept | s ∈ F ∧ γ = z}, where z is the start
symbol of stack.

5.5 Fairness Property of Looped Transitions

Recall that the core idea of unbounded messages is men-
tioned in Sect. 3.2 with an incomplete formal definition,
Though it is quite intuitive to give a complete formal def-
inition starting from accepting runs of IPS, it goes beyond
the scope of pushdown model checking for LTL properties
to directly count number of occurrences and find out un-
bounded messages. Thus, we prefer building LTL properties
for this requirement indirectly and skip the complete for-
mal definitions of unbounded messages in this paper. Since
a pushdown system (i.e., model of system behavior after
adapted synchronous composition) has only finite number
of states, A trace that has some messages occur arbitrary
multiple times is therefore caused by loops. Therefore, lo-
cating unbounded messages can be considered the same task
of finding out loops in behavior interfaces of services. Here
we introduce the idea of locating strongly connected com-
ponents (SCCs) by the Tarjan’s algorithm [19]. Because all
members of a SCC are able to reach each other through tran-
sitions among them, it is intuitive that loops are constructed
from transition within every SCC of given services. We call
these transitions looped transitions and the algorithm of lo-
cating them is shown in Algorithm 1. In this algorithm, the
sub process is modified from Tarjan’s algorithm by adding
the part of building the set of looped transitions when a SCC
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is found (line 16 to 18). Therefore, from the set of looped
transitions, a fairness property for these transitions is gen-
erated. This property demands all looped transitions to be
executed at least once so that loops are guaranteed in all ac-
cepting traces. Note that in the set of looped transitions, ev-
ery input transition should have corresponding output tran-
sition(s) and vice versa. Looped transitions that do not have
corresponding transitions exist should be deleted from the
set. Finally, set of unbounded messages can be further deter-
mined by gathered messages in labels of looped transitions.

Algorithm 1: Locating Loop Involved Transitions

Input: an IA4WS P = (Q, q0, AI , AO, AH ,Δ, q f )
Output: set of loop involved transitions: Δloop

1 Procedure SCC(q)
2 begin
3 Lowlink(q) := Number(q) := index := index + 1;
4 push stack(D, q);
5 foreach (q, a, q′) ∈ Δ do
6 if Number(q′) is not defined then
7 SCC(q’);
8 Lowlink(q) := min(Lowlink(q), Lowlink(q′));
9 else if Number(q′) < Number(q) then

10 if on stack(D, q’) then
11 Lowlink(q) :=

min(Lowlink(q),Number(q′));

12 if Lowlink(q) = Number(q) then
13 while q′ = top stack(D), Number(q′) ≥ Number(q)

do
14 pop stack(D);
15 Qscc ←− Qscc ∪ {q′};
16 foreach δ = (q, a, q′) ∈ Δ, a ∈ AI ∪ AO do
17 if q, q′ ∈ Qscc then
18 Δloop ←− Δloop ∪ {δ};
19 Qscc ←− ∅;

20 Δloop ←− ∅; Qscc ←− ∅;
21 empty stack(D);
22 index := 0;
23 foreach q ∈ Q − {q0, q f } do
24 if Number(q) is not defined then
25 SCC(q);

26 return Δloop

5.6 Fairness Property of Branching Transitions

Though branchings in behavior interfaces of services are
common, a counterexample generated by pushdown model
checking in our approach can only go through one of ex-
ecution traces of given services. Thus, if an adaptor for a
specific branching is desired, fairness properties for corre-
sponding transitions have to be specified to guarantee the
generated counterexample goes through the desired branch-
ing. Furthermore, when there is a need of an adaptor
that goes through exclusive branchings, fairness properties

for exclusive branchings should be specified and pushdown
model checking has to be performed several times to get all
counterexamples for these exclusive branchings. Adaptors
generated from these counterexamples are then composed
to get an adaptor that supports exclusive branchings. Unfor-
tunately, this process is quite tedious and has a complicate
problem of grouping transitions corresponding to exclusive
branchings.

To solve this problem, our approach provides an-
other feature that generates an adaptor supporting exclu-
sive branchings by performing pushdown model checking
once. Recall the core idea of services as one session pro-
cess mentioned in Sect. 3.2, the composition of services with
coordinator is also an one session process and we may con-
nect its final state with initial state by an epsilon transition
(q f , z) ↪→ (q0, z) which only allows the composed service to
start over when all services have all reached their final states.
Thus, we can generate fairness properties for all branchings
without worrying about grouping transitions and get a coun-
terexample that goes through all exclusive branchings with
an execution trace crossing multiple sessions. To locate cor-
responding transitions for branchings in a service, an intu-
itive and easy way is to find states having two or more transi-
tions goes out. We call these outgoing transitions branching
transitions. Automated search can be performed to locate all
branching transitions and generated corresponding fairness
properties. In our approach, fairness property of branching
transitions is optional and can be manually specified or au-
tomatically generated by locating all branching transitions
in behavior of services.

5.7 Pushdown Model Checking

This part performs pushdown model checking using
MOPED [20] model checker which accepts pushdown sys-
tem as input model. The checking target is the system be-
havior from adapted synchronous composition of services
with coordinator. The property is the conjunction of be-
havior mismatch free and fairness of looped and branch-
ing transitions. Unlike usual model checking that returns a
counterexample which violates specified property, here we
perform model checking for the negation of the property so
that a counterexample is an accepting execution trace that
satisfies the property. The counterexample is then used to
generate an adaptor.

5.8 Adaptor Generation

Algorithm 2 shows the algorithm for generating an adaptor
from the counterexample obtained from pushdown model
checking above. The input of the algorithm is a finite se-
quence of configurations which are pairs of states and stack
contents. In this algorithm, we take adjacent two configu-
rations and do the following actions: (1) put the two states
into the set of states of the adaptor (line 8); (2) compare the
two stack contents for building a transition connecting the
two states (line 9 to 14). For the latter, since an adaptor only
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has push, pop, and internal transitions, adjacent stack con-
tents are differed by 1 or equal in length. If length of wi is
longer than of wi+1 by 1, the transition connecting si and si+1

is a pop transition. If length of wi is shorter than of wi+1 by
1, the transition connecting si and si+1 is a push transition.
If length of wi is equal to wi+1, the transition connecting si

and si+1 is an internal transition. Internal transition are actu-
ally corresponding to internal actions of given services that
make no communication. If si and si+1 are final and initial
states respectively (line 13), the internal transition has to be
neglected since this is a temporary internal transition added
for dealing with branchings. Also, our algorithm generates
internal transitions bidirectional (line 14) for the possibility
of indetermination of internal transitions in given services.
The generated adaptor is then ready to guide the system of
services to avoid behavior mismatches and to meet the re-
quirements on unbounded messages and branchings.

Algorithm 2: Counterexample to adaptor
Input: A set of composable IA4WS:

Pi = (Qi, q0
i , A

I
i , A

O
i , A

H
i ,Δi, q

f
i ), i ∈ [1, n]; Configurations

ci = (si,wi), i ∈ [0,m]; Loop start index k.
Output: Adaptor D = (QD, q0

D,ΓD, z, TD, FD)

1 QD ←− {sk}; q0
D ←− s0; T ←− ∅;

2 ΓD :=
⋃

i AO
i ∪ {z} ∪ {ε};

3 foreach ci = (si,wi), i ∈ [0,m] do
4 if i = m then
5 (s′i ,w

′
i ) = (sk ,wk)

6 else
7 (s′i ,w

′
i ) = (si+1,wi+1)

8 QD ←− QD ∪ {si};
9 if |wi | − |w′i | = 1 then

10 TD ←− TD ∪ {(si,wi(0)) ↪→ (s′i , ε)};
11 if |wi | − |w′i | = −1 then
12 TD ←− TD ∪ {(si,wi(0)) ↪→ (s′i ,w

′
i (0)wi(0))};

13 if |wi | − |w′i | = 0 ∧ s′i � q0
D then

14 TD ←− TD ∪ {(si,wi(0)) ↪→ (s′i ,w
′
i (0)), (s′i ,w

′
i (0)) ↪→

(si,wi(0))};
15 FD ←− QD;
16 return D = (QD, q0

D,ΓD, z, TD, FD)

6. Tool and Adaptor Implementation

This section demonstrates a prototype tool of our approach
and discusses about implementing generated adaptor as
BPEL processes. The issue of ordering of messages is also
addressed here.

Prototype Tool: We have implemented a prototype
tool to support the automation of service adaptation in our
approach. This tool contains several programs developed in
C without graphical user interface. The execution is coop-
erated with SPIN and MOPED model checkers and can be
automated by script. The tool can read behavior interfaces of
services defined in an input file and do the following tasks:

1. Perform compatibility check.

2. Output the Promela model along with the LTL formula
of behavior mismatch free for SPIN.

3. Locate looped transitions in all services.
4. Compute adapted synchronous composition of ser-

vices with coordinator and output the pushdown sys-
tem model for MOPED.

5. Output the LTL formula of property of behavior mis-
match free and fairness property of looped and branch-
ing transitions for MOPED.

6. After a counterexample is generated by MOPED, read
the counterexample and generate an IPS, i.e. the adap-
tor of given services.

The input file specifies behavior interfaces of services
by specifying the following information: a) initial state;
b) final state; c) transitions having labels with prefix of
“!” or “?” or no prefix. The task of compatibility check
not only checks compatibility but also checks conditions
about constraints for initial and final states of given ser-
vices. The Promela model is for detection of behavior mis-
matches by SPIN and the pushdown system model is for
MOPED to generate a counterexample for adaptor genera-
tion. As mentioned before in Sect. 3.3, the Promela model
is coded as a system of distributed services communicat-
ing synchronously with each other. Note that since MOPED
only accepts a pushdown system model as input, our tool
has to compute the adapted synchronous composition and
to output the composition as one pushdown system. If
MOPED generates a counterexample, the tool then reads
the counterexample and generates behavior interface of the
adaptor of given services as a pushdown system.

It should be addressed that since MOPED does not pro-
vide functionality of labeling transitions †, we have to make
a little change in the pushdown system to define the fairness
property of looped and branching transitions. For a push
transition rule, for example s1 <a> --> s2 <b a> which
pushes a symbol b, the transition is modified as two tran-
sitions: s1 <a> --> s2 <push b a> and s2 <push b>
--> s2 <b>. Similarly, for a pop transition, for example
s1 <a> --> s2 <> which pops a symbol a, the transition
is modified as two transitions: s1 <a> --> s1 <pop a>
and s1 <pop a> --> s2 <>. The two symbols push b
and pop a are then specified as atomic propositions in the
fairness property.

BPEL implementation: The adaptor generated by our
approach can be further implemented as BPEL processes.
Since an adaptor is represented as a pushdown system, the
implementation should have both finite state machine part
and stack part. It is difficult to implement both parts in a
BPEL process but much easier to implement as two BPEL
processes. Therefore, the states and transitions of send-
ing/receiving messages are implemented in one BPEL pro-
cess. The stack and stack operations (i.e., push and pop) are
implemented in another BPEL process. Here we may call
the two BPEL processes BPEL-adaptor and BPEL-stack for

†In MOPED, properties to be checked can only be described
by connecting state and stack symbols with logical connectors
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convenience. Though our tool does not yet support the au-
tomated generation of BPEL-adaptor and BPEL-stack, we
have confirmed and succeeded in manual implementation
with following directions using Netbeans IDE [22].

(1) Building BPEL-adaptor: This BPEL process cap-
tures the finite state machine part of adaptor. Note that
BPEL is a description language for workflow so that all
states are implemented as activities while transitions are im-
plemented as service actions (invoke/receive). The activity
after a receive action should push the received message into
the stack by call the push action of the BPEL-stack process.
The activity before an invoke action should prepare the mes-
sage to be sent by calling the pop action of the BPEL-stack
process. When building a BPEL process, all messages re-
quire corresponding port types for sending and receiving de-
fined in WSDL [21]. Messages can be implemented as data
types such as integer, string, or composite data type depend-
ing on signatures of given services.

(2) Building BPEL-stack: This BPEL process per-
forms functionalities of a standard stack. The stack content
can be defined as an array of user-defined message type and
its property MaxOccurs has to be set to unbounded. Thus,
the push action receives a message and add it into the array
with increasing the length of array by one in the next ac-
tivity. The implementation of pop transition is similar but
length of array is decreased by one.

Ordering of Messages: Since our approach uses push-
down system model, the use of stack makes the ordering of
messages in the style of last-in-first-out (LIFO). Thus, mes-
sages sent multiple times such as unbounded messages have
reversed ordering when being received. This might be un-
realistic since services usually communicate in the style of
first-in-first-out (FIFO), such as video on demand services
providing streaming data. However, here we would like to
point out that the ordering of unbounded messages in our
approach can be maintained in implementation. For exam-
ple, we can implement an adaptor with extra operations that
adjust the ordering of unbounded messages in the stack to
original ordering. We may also use another way of imple-
mentation such as building queues so that each queue corre-
sponds to a specific messages and only store this message.
As long as the implemented adaptor follows the behavior of
the adaptor generated by our approach, it is irrelevant re-
verse or not the ordering of messages multiply sent in the
implementation. Thus, we say that our approach can sup-
port both LIFO and FIFO communications practically.

7. Experiments and Discussions

This section demonstrates an experiment on an extended
version of the motivational example and discusses with the
results.

7.1 Experiments

In this experiment, we use the prototype tool to solve the
motivational example shown in Fig. 1. To show the general-

Fig. 4 Modified motivational example.

Fig. 5 Mapping services for message mapping.

ity of our approach, the example is modified as shown in
Fig. 4 which has exclusive branchings and signature mis-
matches. In order to apply our approach, signature mis-
matches have to be solved by specifying mappings of mes-
sages. Figure 5 shows two mappings of messages repre-
sented as two special services. Note that the two services
are manually designed according to signature mismatches
observed from Fig. 4. The service in the left merges infor-
mation of trading order Trade and preferred price Quote
from Investor into Transac to send to Online Stock Bro-
ker. The service in the right takes transaction result Record
from Online Stock Broker and sends out Log to Investor. It
also tells Research Department there is nothing to analysis
by sending NoRawData. We call these two services map-
ping services. Mapping services are not necessary to meet
the constraint of IA4WS: an IA4WS must have different ini-
tial and final states. Furthermore, this example has two ex-
clusive branchings that Investor can decide either request-
ing analyzed data from Research Department or ask Online
Stock Broker to make a transaction.

Now we have five services including two mapping ser-
vices and are ready to apply our approach. First, the be-
havior interfaces of the five services are encoded in an input
file for the prototype tool. Following the steps described in
Sect. 6, our tool checks compatibility of the services includ-
ing mapping services. The signature mismatches are sup-
posed to be solved by providing the two mapping services so
the compatibility check should be passed. Then a Promela
model is generated to perform detection of behavior mis-
matches by SPIN. The Promela model describes the five
distributing services as finite state machines communicating
synchronously, then SPIN reads the model and checks the
reachability to the final state (i.e. property of behavior mis-
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Fig. 6 Example: generated adaptor.

match free) of the system. As described in Sect. 3.1, there
are behavior mismatches and the check fails. Therefore we
proceed to adaptor generation.

According behavior interfaces of the five services, our
tool generates a coordinator for the system and computes
the adapted synchronous composition. A pushdown sys-
tem is generated and output as the input of MOPED model
checker. Note that as described in Sect. 6, the pushdown sys-
tem is modified to support fairness property for transitions.
MOPED then checks the system with properties of behavior
mismatch free, unbounded messages, and branchings, then
successfully returns a counterexample. The counterexample
is then read by our tool and an adaptor is generated as shown
in Fig. 6.

Compare to the expected adaptor in Sect. 3.1, the gen-
erated adaptor has a branching that has the following behav-
ior: ?R !R ?D (?R !R ?D)n−1 ?R !R ?E ?S !S ?D !D !E !Dn

?C !C ?A !A, n > 1. It is easy to confirm that in this be-
havior, all messages received by the adaptor are finally sent,
which satisfies the basic requirement of an adaptor. Also,
the part related to unbounded messages, which emphasized
by n and n − 1, is successfully captured in the behavior. It
should be noticed that the behavior of the generated adap-
tor reflects the structures of behavior interfaces of the three
services. Therefore, messages RawData and Data are not
all packed in one group but separated just as correspond-
ing transitions in the behavior interfaces. Also, the other
branching of making a transaction is also correctly gener-
ated. Thus, we may conclude that our approach success-
fully generated an adaptor for the three services not only on
the requirement of unbounded messages but also on the re-
quirement of exclusive branchings as well as signature mis-
matches with mapping services provided.

The structure shown in Fig. 7 demonstrates the adapted
services coordinated by the adaptor cooperating with map-
ping services. Note that the adaptation part includes the
adaptor and mapping services. We have followed the di-
rections of building a BPEL adaptor in Sect. 6 and built two

Fig. 7 Example: BPEL adaptor.

BPEL processes: BPEL-adaptor and BPEL-stack, which are
partly shown in Fig. 8 (a) and Fig. 8 (b). We also imple-
mented the five services as BPEL processes and constructed
a composite application shown in Fig. 8 (c). The tests in Net-
beans IDE were successful. The result shows that for given
service protocols such as BPEL processes abstracted into fi-
nite state machines, our approach is capable of performing
adaptor generation and finally implement a BPEL adaptor.

7.2 Discussions

The example shown in Fig. 4 extended from the motivational
example shown in Fig. 1 is a basic ordering behavioral mis-
matching problem with unbounded messages. Though the
conventional approach [3] is able to solve ordering behav-
ioral mismatches, the use of LTS for representing adaptor
contracts can not express unbounded messages. On the other
hand, our approach uses pushdown system model in both
expressing behavior interface of adaptor and computation.
With the help of the stack, we are able to solve ordering be-
havioral mismatches with unbounded messages and the later
are essential in dealing with non-regular behavior in service
composition. Pushdown automata model is considered intu-
itive in software engineering and our approach that directly
uses pushdown systems model in representing behavior in-
terfaces is therefore applicable in service development.

In the experiment in Sect. 7.1, our approach also per-
formed automated adaptor generation with mapping ser-
vices provided. This is only partly done in previous work [5]
in an interactive way. Our basic idea is to figure out prop-
erties relating to structures of behavior interfaces then apply
pushdown model checking to perform reachability search in
the system. It is easy to imagine that to perform a thor-
ough search on behavior interfaces of services, we need to
define start and end points, then go through and check ev-
ery transition. Thus, as described in Sect. 3.2, we use three
kinds of properties: behavior mismatch free, unbounded
messages, and branchings. These properties are concern-
ing about structures of behavior interfaces in the following
three aspects: start/end of service functionalities (behavior
mismatch free), loops (unbounded messages), and branch-
ings. Since model checking algorithms is designed to per-
form through search in a path, we only need to make sure
every paths are going to be checked. Thus, we conclude
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(a) Example: BPEL-adaptor process (b) Example: BPEL-stack process (c) Example: assemble and test

Fig. 8 Example: BPEL processes.

that fairness properties of looping and branching transitions
guarantee all paths are exhaustively searched.

Furthermore, our approach provides some advantages
in service oriented computing. Since automated adaptor
generation in our approach is based on model checking,
adaptation and verification are put together. When an adap-
tor is generated by our approach, the verification purpose,
for example, safety check, is also fulfilled if properties for
verification are specified. This saves much cost since pro-
cesses of design/computation and verification are usually
separated. The two processes may be even done using differ-
ent models and two times or more efforts are needed. The
characteristic of automated adaptor generation also makes
binding services dynamically more easier. With support of
our approach, developers only need to select services to be
composed and specify necessary mappings. These two tasks
can be further automated with support of other technologies
such as semantic webs or context aware techniques. Further-
more, the use of pushdown model checking provides the-
oretical support of verifying pushdown system with stack
having infinite length. This is much more better than using
bounded model checking that sets the upper bound of the
stack length since the upper bound may be set very large for
generality and therefore causes state exploration.

To show the applicability to real applications, BPEL
adaptor composed of two BPEL processes is built in the ex-
periment following the directions described in Sect. 6. The
behavior of BPEL adaptor is considered same as the behav-
ior interface represented in pushdown system generated by
our approach. This proofs the effectiveness of our approach
on real service development. Furthermore, in service ori-
ented computing, the inner behavior of a service is usually
treated as a black box and only the revealed behavior inter-
face is taken into computation. We argue that in the exper-
iment, the size of states of behavior interfaces involved is
close to real applications. The extended motivational exam-
ple demonstrated in the experiment can be considered also a
demonstration of adaptation on real applications.

8. Conclusion and Future Work

In this paper, we have proposed an approach for service
adaptation. With only specifications of behavior interfaces

of services and necessary messages mappings for signature
mismatches, our approach automatically generates adap-
tors that supports non-regular behavior in service compo-
sition. The use of pushdown systems successfully captures
the essences of adaptors that sent messages are guaranteed
being received. The requirement of unbounded messages
is especially addressed to characterize the non-regular be-
havior in service interactions and adaptors generated by our
approach is promised to reflect this requirement. We argue
that these can not be guaranteed or even concerned in con-
ventional framework where adaptors are represented by fi-
nite state machines.

Furthermore, applying model checking technique
makes service adaptation integrated with verifications so
that an adaptor is verified at the same time being gener-
ated. This saves much time and cost than doing adaptation
and verification separately. Finally, our experimental results
showed that our approach is feasible to be applied on real-
world web services like BPEL processes. Our approach also
has generality of dealing with exclusive branchings and sig-
nature mismatches while mapping services are provided in
advance.

For future directions, we are working on fulfilling the
ability of the prototype tool with automated generation of
BPEL adaptors to conduct more real-world experiments, es-
pecially with large-scale systems. We also plan to extend
our approach on time constraints to tackle real-time issues
on service adaptation.
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