IEICE TRANS. INE. & SYST., VOL.E95-D, NO.7 JULY 2012

1959

[PAPER

Predicate Argument Structure Analysis for Use Case Description

Modeling

Hironori TAKEUCHI"-""®, Member, Taiga NAKAMURA ', Nonmember, and Takahira YAMAGUCHI', Member

SUMMARY In a large software system development project, many
documents are prepared and updated frequently. In such a situation, sup-
port is needed for looking through these documents easily to identify in-
consistencies and to maintain traceability. In this research, we focus on
the requirements documents such as use cases and consider how to create
models from the use case descriptions in unformatted text. In the model
construction, we propose a few semantic constraints based on the features
of the use cases and use them for a predicate argument structure analy-
sis to assign semantic labels to actors and actions. With this approach,
we show that we can assign semantic labels without enhancing any exist-
ing general lexical resources such as case frame dictionaries and design
a less language-dependent model construction architecture. By using the
constructed model, we consider a system for quality analysis of the use
cases and automated test case generation to keep the traceability between
document sets. We evaluated the reuse of the existing use cases and gener-
ated test case steps automatically with the proposed prototype system from
real-world use cases in the development of a system using a packaged ap-
plication. Based on the evaluation, we show how to construct models with
high precision from English and Japanese use case data. Also, we could
generate good test cases for about 90% of the real use cases through the
manual improvement of the descriptions based on the feedback from the
quality analysis system.

key words: use case, modeling, predicate argument structure, semantic
constraint

1. Introduction

In a large software system development project, many doc-
uments are prepared and updated frequently. In such a sit-
uation, it is needed to support for quickly looking through
these documents easily to identify inconsistencies. For ex-
ample, by collecting actors in the artifacts describing a spe-
cific behavior, we can find which actors should be consid-
ered in the specific behavior. However, it sometimes hap-
pens that nouns representing actors are not mentioned prop-
erly in some descriptions and different verbs the represent-
ing same behavior are used. To get information from docu-
ments effectively, we have to identify actors and actions and
assign semantic information to them in advance.

In some projects, test planning starts in the requirement
phases. In such projects, the test cases are created from the
requirements documents in the early phases. Through this,
we can estimate in advance the resources needed for testing

Manuscript received November 15, 2011.
Manuscript revised March 8, 2012.
"'The authors are with IBM Research - Tokyo, Tokyo, 135—
8511 Japan.
"The authors are with Keio University, Yokohama-shi, 223—
8522 Japan.
a) E-mail: hironori @jp.ibm.com
DOI: 10.1587/transinf.E95.D.1959

and execute the tests effectively. However, the requirements
documents may be updated frequently and we have to up-
date the corresponding test cases to retain their traceability
when the requirements are changed to keep the traceability
between requirements and tests. Maintaining the traceabil-
ity between documents manually is difficult and can cause
critical problems in the later phases.

In this situation, one should consider extracting infor-
mation from the texts in the requirements documents and
using that information for the software system development.
In this research, we focus on the requirements documents
such as use cases and consider ways to extract information
from the use case descriptions in a free text format and how
to use the extracted information. We consider a system to
construct models from the use case descriptions by analyz-
ing the predicate argument structures extracted from depen-
dency analysis of use case descriptions. In the modeling,
we extract actors and actions and assign semantic labels to
them. Semantic labels represent the roles of actors and the
types of actions in use case descriptions.

We propose a model construction method that works
for the free-text use case descriptions and is less language-
dependent. Case frame dictionaries have been used to as-
sign the semantic information in the nouns and verbs in the
sentences. Usually, in the case frame dictionaries, “Agent”
is assigned for a case with the subject role for the specific
verbs, but we have to assign more specific semantics such as
“SYSTEM” or “USER” for constructing models. Also we
have to assign semantic labels to actions by considering each
actor’s semantic labels. In the use case description model-
ing, we found that we cannot apply the existing case frame
resources. We therefore introduced language-independent
semantic constraints based on the features of the use case
and used them for the predicate argument structure analysis
to assign semantic labels to actors and actions.

As a result, we found that we can accurately construct
the model from the descriptions and can easily apply the
proposed model construction approach to other languages.
Also, we consider an application using the use case descrip-
tion models. In this research, we consider a requirements
analysis system that suggests to a user how to improve the
descriptions through the model-based requirements analy-
sis and automatically generates test cases from the use case
descriptions.

Organization of this paper: We start by mentioning re-
lated work in Sect.2 and describing the models of the use
case descriptions in Sect.3. In Sect.4 we show that it is

Copyright © 2012 The Institute of Electronics, Information and Communication Engineers

1960

difficult to apply the conventional approaches for this mod-
eling and propose a method based on semantic constraints.
In Sect.5, we describe our application using the use case
description model. In Sect. 6, we evaluate how correctly the
model can be constructed from the use case descriptions and
how effectively we can use the model in the software devel-
opment process. After a discussion in Sect. 7, we conclude
the paper in Sect. 8.

2. Related Work

There have been some research projects where text analytic
technologies were applied to the text of requirement docu-
ments. In [1], [2], the text analytics technologies were used
to detect ambiguous expressions in the requirements docu-
ments. In system or software development, it is necessary
to have the same understanding about the important con-
cepts in the target domains. To define the list of terms in
an early phase, extracting domain-specific keywords auto-
matically from the requirements documents was considered
in [3],[4]. [5]-[7] considered ways to construct domain
knowledge from the information extracted from the texts as
an ontology describing the relationships among entities, and
this knowledge was used to identify inconsistencies in the
requirements documents.

In this research, we studied how to construct a model
from the scenarios described in the free-text use case de-
scriptions. The related research work, [8] considered how
to generate exceptional scenarios from a normal scenario
by constructing models from the requirements. In [8], the
requirements descriptions are considered to be written in a
specific language and not in free-form text. From the free
text use case descriptions, constructing a model was stud-
ied in [9]. One of the benefits of using models constructed
from the texts is that language-independent analysis can be
applied. However, in the previous research, the model con-
struction part was strongly language-dependent and cannot
easily be used with other languages.

3. Use Case Description Model

Ever since they were introduced by Jacobson in [10], use
cases have enjoyed popularity among business analysts
(BA) and requirement analysts (RA). BAs and RAs like use
cases because of their modularity, simplicity and user cen-
tric approach. In practice, mostly due to the need of BAs
and RAs to interact continuously with their customers, use
case descriptions are written in natural language.

Though it is easy to write use case descriptions based
on the communications with the customers, it is important
that the use case descriptions should be interpreted in similar
ways by both developers and users, however simple the de-
scriptions appear to be. To avoid misunderstandings about
use case descriptions, some guidelines are described in [11].

In this research, we studied how to construct a model
from the use case descriptions to automate some parts of the
use case analysis and to support the experts in their work.

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.7 JULY 2012

For the model, we use the Use Case Description (UCD)
Model shown in Fig.1. In a UCD model, each use case
description is represented as an Application Model. An Ap-
plication Model consists of a Domain Model and a Use Case
Model. The Domain Model describes the actors appearing
in the use case. For each actor, a semantic label “SYS-
TEM” or “USER” will be assigned. The Use Case Model
describes the sequences of sentences that contain actions be-
tween users and the system. Each action consists of the initi-
ating actor and an action verb with an action type represent-
ing the semantics of the action, such as “INPUT”, “CRE-
ATE”, “UPDATE” or “OUTPUT”, etc. In this research, we
focus on the main flows in use cases. In many projects,
use cases are described in the project-specific structures and
the flows for exceptions are described in the separated sec-
tions in use case documents. In such cases, we can apply
our method to the descriptions in the section of exceptional
flows.

Figure 2 shows an example of a use case description us-
ing the UCD model. Note that in this example, “PRO_USR”,
“PRO_ADM”, and “PRO_SYS” are the actor names. In a
project, many project-specific terms representing actors are
sometimes defined and it is important to properly understand
the semantic types of such actor names. In our research, we
will assign the semantic labels for such project-specific ac-
tor names.

Initating Actor |31 .
-role : ParameterRole
L Action
Receiving Actor |2

-type : ActionType
-isActive : boolean

Application Model

1

1

Domain Model Use Case Model ! k
]
U B

.

K " 1 X
Actor Business Item Condition l Exception
-expr :Expression ‘

Fig.1 Use case description model.

. PRO_USR clicks the start button.

PRO_SYS displays the item list.

PRO_USR writes the item name in the field.

PRO_SYS creates the table in the DB.

PRO_SYS displays the list of orders that are related to the item name.
PRO_USR selects the order.

PRO_ADM approves the order by the button.

. PRO_SYS write the order name to the file.

Application Model @

Domain Model

PNoorwN o

Use Case Model

Actions in the basic path
1. click (INPUT)
- INITIATOR: PRO_USR
- ARGUMENT: start button
2. display (OUTPUT)
- INITIATOR: PRO_SYS
- ARGUMENT: item list
3. write (INPUT)
- INITIATOR: PRO_USR
- ARGUMENT: item name
4. create (CREATE)
- INITIATOR: PRO_SYS
- ARGUMENT: table

Actor (type)
PRO_USR (USER)
PRO_ADM (USER)
PRO_SYS (SYSTEM)

5. display (OUTPUT)
- INITIATOR: PRO_SYS
- ARGUMENT: list
6. select (INPUT)
- INITIATOR: PRO_USR
- ARGUMENT: order
7. approve (UPDATE)
- INITIATOR: PRO_ADM
- ARGUMENT: order
8. write (OUTPUT)
- INITIATOR: PRO_SYS
- ARGUMENT: order name

Fig.2 Example of a use case description using the UCD model.

TAKEUCHI et al.: PREDICATE ARGUMENT STRUCTURE ANALYSIS FOR USE CASE DESCRIPTION MODELING

4. Use Case Description Model Construction
4.1 Model Construction Overview

In this research, as a precondition, we assume the input is
natural language texts describing the use case. Since our ap-
proach depends on the outputs of underlying linguistic ana-
lyzers, such as a morphological analyzer and a dependency
parser, erroneous inputs to these analyzers often result in an
incorrect result. For the same reason, while our approach
does not explicitly restrict how the use cases should be writ-
ten, the level of complexity and rigidity of the description
affects the accuracy of these analyzers. Here are the steps
for constructing a model:

1. Lexical and dependency information extraction

2. Anaphora resolution and clause identification

3. Extraction of predicate argument structures from the
main clauses.

4. Assign semantic information for the verb and the sub-
ject in the extracted predicate argument structure.

Steps 1, 2, and 3 are language-dependent, but there are
widely used public analyzers available for most prominent
languages. By using the UIMA framework [12] with which
linguistic analysis engines can be used as plug-ins, we can
easily switch the analysis engines when the language of the
data is changed. We can therefore get the predicate argu-
ment structures in several major languages by using off-
the-shelf lexical processors. By constructing an anaphora
resolver and a clause detector for each language, we can
extract predicate argument structures from the use case de-
scriptions. The predicate argument structure is the lexical
information about the arguments of a verbal predicate with
their syntactic properties. Figure 3 shows a predicate argu-
ment structure extracted through Step 1, 2 and 3.

In Step 4, we have to assign semantic labels to the verbs
and the noun phrases, each of whose grammatical role is
a subject from each extracted predicate argument structure.
We describe the details of this step in the next subsections.

4.2 Model Construction from Predicate Argument Struc-
tures Using Case Frame Resources

One approach for assigning domain-specific semantic labels
is to use a dictionary. This approach is simple and practical.
For example, by defining “user” and “administrator” in the

PRO_SYS writes the order name to the file.

prepositional phrase

PRO_SYS ‘ ‘ the / order / name ‘ ‘ to / the / file

Fig.3 Example of an extracted predicate argument structure.

1961

dictionary we can extract the compound nouns whose head
word is one of the registered words. As a result, we can as-
sign the semantic label “USER” to compound nouns such
as “tool user” and “system administrator”. In real use cases,
however, there are some domain specific variations repre-
senting systems and users as shown in Fig. 2 and we cannot
prepare dictionaries that can be widely used in advance. In
such situations, we have to add domain-specific terms rep-
resenting systems and users and enhance the dictionary for
each data set. Also, we have to assign semantic labels to
verbs, but the semantic label for the verb sometimes depends
on the actor. For example, as described in Fig. 2, the label
for “write” is “INPUT” or “OUTPUT” when the actor is
“USER” or “SYSTEM?”, respectively. Those semantic la-
bels are determined from the point of the user’s view. In
these situations, we have to enhance the dictionary but the
enhancement will be complicated because we have to con-
sider the contexts, which make the enhancement expensive.

To assign semantic labels to cases in the predicate argu-
ment structures, case frame dictionaries are generally used.
For each verb, the cases that the verb should cover and their
corresponding deep cases are defined in the case frame dic-
tionary’. For the deep cases, 8 cases such as “Agent” and
“Location” are defined and these are language-dependent.
In the case frame dictionary mentioned above, in 9144 out
of 10364 verbs, “Agent” is assigned to the case whose gram-
matical role is a subject. “Agent” corresponds to “Actor” in
the use case descriptions but we want to assign a more spe-
cific semantic label such as “SYSTEM” or “USER” when
constructing a model. In some digital lexical resources, se-
mantic features such as “human” or “organization” are as-
signed to the deep cases for each verb. For example, in the
basic verb dictionary in IPA lexicon, 19 semantic features
are defined [13]. In the use cases, however, the system’s be-
haviors tend to be described in an anthropomorphic way. For
examples, in use cases, “write”, “read”, “record”, “delete”
and “use” are used in the descriptions of the behaviors of
both SYSTEM and USER but “human” or “human or orga-
nization” is assigned to those verbs as the semantic feature
of the agent case in the IPA Lexicon. In the Process Hand-
book [14], the more detailed knowledge on typical business
activities is defined by focusing on what (Object Case) and
how (Implement Case). However in the statements 3 and 8
in Fig. 2, same type of concepts are described with the ob-
ject case and we cannot use this knowledge of the business
activities to determine the action and the actor type. There-
fore, we need to enhance these resources for the use case
domain if we want to assign semantic labels for actors and
actions. Generally, experts must enhance the linguistic re-
sources at great expense to maintain these resources for each
language. In the next subsection, we propose an approach
that does not depend on case frame resources.

"For example, a Japanese predicate argument structure the-
saurus is publicly available at
http://cl.it.okayama-u.ac.jp/rsc/data/index.html

1962

4.3 Model Construction from Predicate Argument Struc-
tures Using Use Case Oriented Semantic Constraints

As mentioned above, it is difficult to construct models from
use case descriptions by using case frame resources if the
rich information on the deep cases is available. In this work,
we propose a model construction approach using semantic
constraints based on the features of the use cases. In the
semantic constraints, conditions to determine the semantic
roles of actions or actors are defined. In the use cases, we
describe the interactions between the user and the system
from the user’s viewpoint. We can therefore consider that
use case descriptions satisfy these features:

e The semantic label of the actor is “USER” or “SYS-
TEM”.

e Verbs used in the use case descriptions can be covered
by the verb dictionary prepared in advance.

e Specific actions such as “INPUT” or “OUTPUT” are
described in most use cases.

First, by using the dictionary, we assign initial se-
mantic labels to the verbs. As the initial verb semantic
labels, we start with INPUT, OUTPUT, READ, WRITE,
GIVE, GET, CREATE, QUERY, UPDATE, DELETE, USE,
START, STOP, and BROWSE. Verbs that do not have cor-
responding entries in the dictionary are annotated as UN-
CLASSIFIED. Verb dictionaries are language dependent
but we can easily construct them from the corpus. For this
research we quickly constructed the dictionaries by using
existing documents. We collected frequent 200 verbs for
English and Japanese from requirements documents in var-
ious domains. For each verb semantic label, we assigned
verbs from the collected verb list. Figure 4 shows the sample
of the dictionary for English. Figure 5 shows the description
when the verb dictionary is used.

Now, we try to determine the semantic labels for sub-
jects and verbs. For the predicate argument structure where
the verb has an initial semantic label, we apply two types
of semantic constraints, “Verb-To-Subject” constraints and
“Subject-To-Verb” constraints. The Verb-To-Subject se-
mantic constraints determine the semantic label of the sub-
ject (actor) with its confidence score s. The Subject-To-
Verb semantic constraints determine the semantic label of
the verb from the specified semantic label of the actor and

<class name="INPUT”> +—— |nitial semantic label
<instance base="“input" pos=‘“verb" />

<instance base=‘“click" pos=“verb" /> }
<[class>

<class name=“OUTPUT">

<instance base="output" pos=‘“verb" />

<instance base="display" pos=“verb" />
<instance base=“show" pos=‘“verb" />
<Iclass>
<class name=“DELETE">
<instance base=“delete" pos=“verb" />
<instance base=“discard" pos=“verb" />
<instance base=*cancel" pos=‘“verb" />
<Iclass>
<class name="WRITE">
<instance base="write" pos=‘“verb" />
<instance base= “select" pos=‘“verb" />

Verbs that the semantic label is assigned

Fig.4 Example of entries in the verb dictionary.

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.7 JULY 2012

the initial verb semantic label.

From the features of the use case descriptions, we can
expect that most use case descriptions contain sentences rep-
resenting an “INPUT” or “OUTPUT” action. In such sen-
tences, the semantic label of the subjects are determined to
“USER” or “SYSTEM?” respectively. On the other hand, as
mentioned in Sect.4.2 some semantic labels for verbs de-
pend on the semantic labels of their subjects. From those
two types of constraints, therefore we apply the Verb-To-
Subject semantic constraints first. We defined 14 constraints
on the semantic label of the subject for the specific verb
types. Here are some examples:

e Initial verb semantic label = INPUT — Subject seman-
tic label = USER, s = 1.0

e Initial verb semantic label = OUTPUT — Subject se-
mantic label = SYSTEM, s = 1.0

e Initial verb semantic label = START — Subject seman-
tic label = SYSTEM, s = 0.5

e Initial verb semantic label = CREATE, READ, UP-
DATE, DELETE — Subject semantic label = USER,
s=0.1

In each constraint, the left side of the arrow represents the
condition and the right side of the arrow represents the as-
signed label to the subject and the confidence s. The con-
fidence takes the value from 0.0 to 1.0. For example, when
the initial verb semantic label is “INPUT”, the label for the
actor is determined as “USER” with its confidence score
s=1.0. The full set of the Verb-To-Subject semantic con-
straints is shown in Appendix (Table A-1). If a predicate
argument structure satisfies a constraint with s = 1.0, the
subject semantic label defined in the constraint is assigned
and the other constraints are not applied. In other cases,
for each noun that appeared in the subject case, we get the
confidence scores by applying constraints to predicate ar-
gument structures. After comparing the confidence scores
on both SYSTEM and USER, the subject semantic labels
are determined. Figure 6 shows the results by applying the
Verb-To-Subject constraints and how the semantic labels for
subjects are determined.

Next we apply the Subject-To-Verb semantic con-
straints. We defined 9 constraints on the semantic labels
of the verbs for the subject types. With these constraints,
some initial verb semantic labels are changed to their final
verb semantic labels. As the final verb semantic labels, we
defined 9 labels, INPUT, OUTPUT, QUERY, CREATE, UP-

1.0MUsr clicks the “START” button.
[INPUT]
2. HRSys creates the entry fields.
[CREATE]
3. OMUsr writes the id and the conditions in the text fields.
[WRITE]
4. HRSys runs the entry creation process.
[START]
5. HRSys writes the results to the file.
[WRITE]

Fig.5 Example of the description that verb dictionary look up is applied.

TAKEUCHI et al.: PREDICATE ARGUMENT STRUCTURE ANALYSIS FOR USE CASE DESCRIPTION MODELING

1. OMUsr clicks the “START"” button.
[USER] [INPUT]
s=1.0
2. HRSys creates the entry fields.
[USER] [CREATE]
s=0.1
3. OMUsr writes the conditions in the text fields.
[SYSTEM] [WRITE]
s=0.1
4. HRSys runs the entry creation process.
[SYSTEM] [START]
s=0.5
5. HRSys writes the results to the file.
[SYSTEM] [WRITE]
s=0.1

OMUsr = USER (s=1.0) or OMUsr = SYSTEM (s=0.1)
= OMUsr = USER

HRSys = USER (s=0.1) or HRSys = SYSTEM (s=0.6)
> HRSys = SYSTEM

Fig.6 Example of the description that the verb-to-subject constraints are
applied.

1. OMUsr clicks the “START” button.

[USER] [INPUT]
2. HRSys creates the entry fields.
[SYSTEM] [CREATE]
3. OMUsr writes the conditions in the text fields.
[USER] [INPUT]
4. HRSys runs the entry creation process.
[SYSTEM] [START]
5. HRSys writes the results to the file.
[SYSTEM] [OUTPUT]

Fig.7 Example of the description that the subject-to-verb constraints are
applied.

DATE, DELETE, START, STOP, BROWSE. Here are some
examples:

e Subject semantic label = SYSTEM (or UNCLASSI-
FIED) & Initial verb semantic label = WRITE — Final
verb semantic label = OUTPUT

e Subject semantic label = USER & Initial verb semantic
label = WRITE — Final verb semantic label = INPUT

e Subject semantic label = SYSTEM (or UNCLASSI-
FIED) & Initial verb semantic label = USE — Final
verb semantic label = QUERY

In each constraint, the left side of the arrow represents the
condition on the subject semantic label and the initial verb
semantic label and the right side of the arrow represents the
finally assigned label for the verb. For example, when the
subject semantic label is “SYSTEM” and the initial verb se-
mantic label is “WRITE”, the label for the verb is deter-
mined as “OUTPUT”. If no constraints are matched, the
initial verb semantic labels are mapped to the final verb se-
mantic labels unchanged. Figure 7 shows the results by ap-
plying the Subject-To-Verb constraints.

After applying those constraints, any semantic labels
including “UNCLASSIFIED” are assigned to the subject
and the verb in each predicate argument structure represent-
ing an action. As a result, we can construct a model for the
input use case description (Fig. 8).

Those constraints are language independent. We can
therefore apply those constraints in the predicate argu-
ment structure analysis for any language data. In this pro-
posed method, we have to implement some small language-
dependent modules and prepare the verb dictionaries. But
compared to enhancing the case grammars for each lan-

1963

Domain Model

E Actor (type)

! OMUsr (USER), HRSys (SYSTEM) |

Use Case Model
Actions

1. click (INPUT) Initiator: OM_USR, ARGUMENT="START” button

2. create (CREATE) Initiator: HR_SYS, ARGUMENT=entry fields

3. write (INPUT) Initiator: OM_USR, ARGUMENT=conditions ;
4. run (START) Initiator: HR_SYS, ARGUMENT=entry creation process |

5. write (OUTPUT) Initiator: HR_SYS, ARGUMENT=results

Fig.8 Example of the constructed model.

guage, these efforts are relatively inexpensive. As a result,
we can easily apply this method for the use case modeling
to other languages.

5. Application

In this section, we describe our application using the use
case description models.

5.1 Application Background

Enterprise Resource Planning (ERP), Customer Relation-
ship Management (CRM), and Supply Chain Management
(SCM) systems are packaged applications supporting stan-
dard business functions and processes. To deploy such sys-
tems, they need to be configured and sometimes customized
to meet the unique needs of the businesses. In such cases,
many use cases are prepared for a project and these use cases
can be reused within the same project and across projects.
To reuse the use cases effectively, a system for assisting
business consulting is proposed in [15]. In this system, ex-
isting use cases are categorized into the known business pro-
cess hierarchy’ and stored on a server. Consultants access
the business hierarchy from their client machines and can
list all of the requirements in a given project.

In such cases, before storing the use cases into the
repository, we have to review them and improve their qual-
ity so that every user can have the same understanding of
each use case. Therefore, detecting the problems in the de-
scription through the models and providing the recommen-
dations to users are useful. Also, if we can automatically
transform the user case descriptions into other artifacts such
as test cases, then we can easily update those artifacts when
requirements are changed.

In this section we consider a system for the model-
based use case quality analysis and test case template gen-
eration.

5.2 Model-based Use Case Quality Analysis
Here, we describe ours model-based use case quality analy-

sis system.
The constructed models can help identify these kinds

"For example, the American Productivity and Quality
Center (APQC) provides Process Classification Framework
(http://www.apqc.org/process-classification-framework).

1964

of errors:

e Actor is missing.
e Actor cannot be classified.
e Action cannot be classified.

These errors come from the guideline that says we should
describe the interactions between the user and the system
precisely [1], [11].

Also, these cases can be identified as warnings:

e There are multiple actions described in a use case state-
ment.
e The voice of the statement is passive.

Those items come from the guideline that we should de-
scribe the use cases as simply as possible [11]. In this qual-
ity analysis, parts of the unambiguity and correctness con-
sidered in [16] can be covered.

Figure 9 shows the results of the use case description
analysis system. In this system, the user writes the use case
description in the editor. When the description is saved, the
model is automatically constructed from the text. As a re-
sult, on the editor, the actors and action verbs are annotated
based on the model. Results of the model-based quality
analysis are shown as recommendations in the upper pane
in the editor. In Fig.9, an error and two warnings are iden-
tified by the system. When a user changes the descriptions
and saves the updates, the model construction and the model
analysis are updated.

5.3 Test Case Template Generation

As the other application, we show how the system gener-
ates the test case from the use case. In this research, we
consider that the test cases are scripts representing what one
should do for testing and what should be checked. In real
projects, the test cases for user testing are prepared from the
use cases. For user testing, the steps that the test engineers
should perform (execution steps) and the steps describing
the expected results (verification steps) have to be written

Use Case Model and Detail
Usecase Recommendations

» @ Gtep#1° Use case statement has no recognized actor
. Step #2: Use case statement has mare than one action. (humber of actions = 2)
. Step #2:Yoice of action is passive.: is displayved'
Use Case Details [#F o
tEat Comment
wE

Click the start button.

=]

The item list is displayed by PRO S¥5 and PRO USE
writes the item nawe in the field.

w

PEQ 5YS creates the table on the DE.

Fig.9 Example of use case quality analysis.

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.7 JULY 2012

for the test case. Here is how these steps are generated from
each statement in the use case in the application:

o If the initiating actor represents “USER”, then an exe-
cution step is generated.

o If the initiating actor represents “SYSTEM?”, then a
verification step is generated.

For an execution step, the actor description is removed from
the use case statement and the step description is generated
in the imperative form. For a verification step, the step de-
scription is generated in a form such as “Verify that [Action
description]”.

Figure 10 shows the result of the test case template gen-
eration system. Input is the use case description in Fig. 2 and
the test case is successfully generated. Each statement in the
use case description is properly categorized to the execution
or the verification step because the actor semantic labels are
properly assigned.

When actor is missing or actor cannot be classified, the
test case template generation system will not work properly.
For these cases, the generation system writes the original
sentence in the execution step column. In the model con-
struction, we can construct the action model for the system’s
operation to a database. The test engineers cannot verify
such a system’s action. In this case, the generation system
also writes the original sentence in the execution step col-
umn. Figure 11 shows an example when the test case was
not generated correctly.

In this application, we can expect that the modifiabil-
ity and the traceability [16] between use cases and test cases
are improved. In many projects, requirements are updated
based on the feedback from the implementation. If we man-
ually prepare test cases from use cases before their imple-
mentation, it is difficult to keep the consistencies between
use cases and manually created test cases. Therefore the test
phases are usually started when the implementation is com-
pleted and all requirements are fixed. Using this test case
generation application, we can start the preparation of the

PRO_USR clicks the start button.
PRO_SYS displays the item list.
PRO_USR writes the item name in the field.
PRO_SYS creates the table on the DB.
PRO_SYS displays the list of orders that are relating to the item name.
PRO_USR selects the order.
{ Use Case Sample_TC| PRO_ADM approves the order by the button.
Test Script Overview | view snap] PRO_SYS write the order name to the file.

Manual Steps

.

Step Destription
1 ki Access system as PRO_USR and elick the start button

Expected Results

2 Verify that PRO_SYS displays the item list

3 H Wiite the item narme in the fleld

1 Verify that PRO_SYS creates the table on the DB,

5 = Verify that PRO_SYS displays the list of arders that are
relating 1o the itern name,

6 = Selectthe arder,

7 &l Access system as PRO_ADM and approve the order by the button

8 Verify that PRO_S'S write the order name to the file

Fig.10 Example of the generated test case (Success).

TAKEUCHI et al.: PREDICATE ARGUMENT STRUCTURE ANALYSIS FOR USE CASE DESCRIPTION MODELING

AppUsr clicks the “START” button.
AppSys searches the entry in the database.
¢ Use Case Sample 2 AppUsr checks the results
Test Script Overview | View Snapshots
Actor is missing

Expected Results

Manual Steps

Step Description

2 u ApnSys searches the entry in the datahase.
3 1 Displaythe results

4 1 Checkthe results

Fig.11 Example of the generated test case (Failed).

test cases before the system implementation is completed
and can easily keep the consistencies when the use cases are
changed. As a result, we can reduce the duration needed for
testing.

6. Evaluation

First we evaluate how well the proposed method can extract
action models from use case descriptions. For this we con-
sider two types of evaluation. One of them is how well the
action verb can be identified. We evaluate this by using the
standard metrics of precision (P) and recall (R). The other
is how well the extracted action models capture the correct
information. We evaluate this by 7 defined in (1)

|Aul

T=1- ,
Al

ey)

where A, represents the set of actions and A, represents
the set of extracted actions that miss the information for
some model elements. T represents the ratio of informa-
tion not lost in the model extraction. In the evaluation ex-
periments, we used 80 use cases written in English and 12
use cases written in Japanese. Table 1 shows the evalua-
tion results for the model extraction. The results on P and
R show how accurately the predicate argument structures in
the main clauses were extracted and how many correct struc-
tures were extracted, respectively.

We found that some predicate argument structures were
incorrectly extracted in some Japanese and English use
cases. Figure 12 shows the description that our model con-
struction method does not work because all predicate argu-
ment structures are not extracted properly. In this example,
the linguistic analyzer cannot handle the second sentence
because “that” representing the relative clause is omitted
and this generates an incorrect predicate argument structure.

The results on T show how accurately the proposed
method was able to assign the semantic information to ac-
tors and action verbs. Compared to the English use case
data, the semantic information was not assigned as accu-
rately for the Japanese use case data. For examples, ac-
tion verbs missed information on the action type and in such
cases UNCLASSIFIED was assigned. This shows that some
of the verbs appearing in the Japanese data were not covered
by the pre defined verb dictionary.

1965
Table1 Evaluation results on the modeling.
| | P[] R] T]
English Data 0.967 | 0.972 | 0.930
Japanese Data | 0.815 | 0.946 | 0.765
Use Case Details B
Wrong actor 8k Comment

is identified.

Action is not

Applsr inputs the name.

identified. Wrong action
is identified.

AppSys creates the table in the datsbase and inserts the new eatry contains

r

the user name.

w

AppSys searches the orders assgined to the name, copies them to the new
entry and save the entry.

-

AppSys displays the results that contains the neme end the orders assigned
to it.

o

AppUsr checks the results and pushes the finish button.

Fig.12 Example of the use case that the model construction does not
work well.

Table 2 Result of the test case generation.
| | Number of Use Cases | Precision |
Data set A 28 | 28/28 (100%)
Data set B 44 | 38/44 (86.4%)
All Data 72 | 66/72(91.2%)

From the evaluation off the model construction, it is
found that we can correctly create the model from use case
descriptions with high probability. Next, we consider how
effectively we can utilize the constructed model in the soft-
ware development process. We evaluated the application us-
ing the use case description models described in Sect. 5. For
the evaluation of the proposed application, we collected 72
real use cases prepared for a packaged application system
for the human resources processes. These use cases can be
reused in other projects to construct similar systems. Here,
we evaluate how use cases can be reused through the pro-
posed application. The average number of statements (sen-
tences) in each use case description is 16.4. For the 72 use
case descriptions, we applied the requirement analysis de-
scribed in Sect.5.2. As a result, errors or warnings are not
detected in 28 use cases. For these 28 use cases (Data set A),
we directly used the test case generation process. For the re-
maining 44 use cases (Data set B), we modified the descrip-
tions in the editor (Fig.9) based on the feedback from the
application and applied the test case generation process. We
evaluated whether the execution steps and the verification
steps were correctly generated for the test case templates for
these two datasets. Table 2 shows the evaluation results.

From these results, we found that in the data set A the
test cases were generated successfully, but in the data set B
there were some problems that were not detected by the re-
quirement analysis system and test cases were not generated
properly from such use cases.

7. Discussion

Through the evaluation we found that the precision of the

1966

extraction of the predicate argument structures from our
Japanese data was lower than that from the English data.
One of the reason was that the relative clauses are not identi-
fied correctly in some cases because of excess and mislead-
ing text in the use case descriptions such as the colloquial
expressions (“~ L TV>5” (shite iru)). Currently, in many
projects, there are many engineers whose native language
is not Japanese. For these engineers it is sometimes diffi-
cult to understand Japanese descriptions containing flawed
expressions [17]. Such expressions can be removed in pre-
processing. This should improve the precision.

For our modeling method, we only need a verb dictio-
nary for each language and do not have to enhance semantic
constraints for assigning semantic labels. In this research,
we focused on the analysis of main flows in use cases. Usu-
ally, the flows for exceptions are described in other sections
in the use case documents and we can apply the same ap-
proach to the descriptions in such sections. However, if both
the main flow and the flow for the exception are written in
one description, we have to analyze conditional clauses such
as if-statement and when-statement for the model construc-
tion. This is language-dependent and we have to prepare a
specific analyzer for each language [18].

When applying our method to a domain project, we
need to add domain-specific verbs that are not registered in
the current dictionary to get semantic information for ac-
tions more precisely. This domain adaptation can be real-
ized by extracting frequent verbs from randomly sampled
documents in the target domain data. For the model con-
struction from use case descriptions written in English or
Japanese, we prepared dictionaries of the same size (200)
from the corpus to assign the initial semantic labels to the
action verbs. Through the evaluation of the correctness of
the extracted model, we found that the coverage of the verb
dictionary was not sufficient in Japanese compared to En-
glish. This indicates that the number of verbs for adequate
coverage of the use case descriptions is language-dependent
for some languages. To construct an optimized basic verb
dictionary that can be applied to any kind of data, we should
investigate more real use case data from various domains.
This is one of our future goals.

As target applications for our use case description mod-
els, we proposed a requirements analysis system and a test
case template generation system. By working with the real
use case data, we found that we could generate test cases
correctly from about 90% of the real use cases if we tuned
the descriptions based on the feedback from the require-
ments analysis system. Though there were still some use
cases with problems that were not detected by the system,
our results show that all of the use cases with errors could
be covered by the system. Therefore we believe that we can
identify almost all of the use cases that contain errors by us-
ing the proposed analysis system and we can refine the use
cases properly and make them reusable by reviewing all of
the descriptions when errors or warnings are detected.

We focused on the requirements analysis and the test
case template generation system based on our model. Be-

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.7 JULY 2012

yond these applications, we hope to use our models for
analyzing use case dependencies. In application develop-
ment projects, it is necessary to check the dependencies and
consistencies between use cases. In such a case, for exam-
ple, when there is an action in which the system deletes the
business item in a use case, we may need to collect all of
the use cases in which the business item was created. In
some projects, hundreds of use cases are prepared and there
are some variations describing the delete and create actions.
Therefore it is difficult to collect all the use cases describing
a specific action manually. By using our model construction
approach, we can easily recognize the use cases mentioning
a specific action. Considering other applications and evalu-
ating their effectiveness is also future work.

8. Conclusion

In this research, we focused on the requirement documents
such as use cases and consider how to create models from
the use case descriptions in a free text format. In the model
construction, we showed that we cannot apply the existing
case frame dictionaries for the predicate argument structure
analysis to assign semantic labels to initiating actors and ac-
tion verbs. We therefore proposed a method to introduce
a few semantic constraints based on the features of the use
cases and apply them to the predicate argument structure
analysis. We showed that with the proposed method, we can
assign semantic labels without using case frame dictionaries
and can design a less language-dependent model construc-
tion architecture. From our evaluations, we found that we
can construct model with high precision from English and
Japanese use case data. By using the constructed model, we
also showed how the system works for the quality analy-
sis of use cases and how it automates test case generation.
Through the real use cases in the system development us-
ing the packaged application, we evaluate how we can reuse
the existing use cases and generate test case steps automati-
cally with the proposed system. Also, we found that we can
generate test cases successfully from about 90% of the real
use cases by manually improving the descriptions based on
feedback from the quality analysis system.

To create the model more precisely, it is found that we
need to investigate the real use case data from various do-
mains and find the approach to prepare the verb dictionary
that can be used widely. From the application evaluation,
we can reuse the use case effectively. Our results indicate
that we can use the model for other purposes such as an-
alyzing use case dependencies. We need to consider other
applications and evaluate the effectiveness in the real use in
the future.

References

[1] D.M. Berry and E. Kamsties, “Ambiguity in requirements specifica-
tion,” Perspectives on Software Requirements, pp.7-44, 2004.

[2] H. Yang, A.Roeck, V. Gervasi, A. Willis, and B. Nuseibeh, “Extend-
ing nucuous ambiguity analysis for anaphora in natural language re-
quirements,” Proc. 18th IEEE International Requirements Engineer-

TAKEUCHI et al.: PREDICATE ARGUMENT STRUCTURE ANALYSIS FOR USE CASE DESCRIPTION MODELING

[3]

[4]

(3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Appendix:

Here, we show the full set of semantic constraints.

ing Conference, pp.25-34, 2010.

P. Sawyer, P. Rayson, and K. Cosh, “Shallow knowledge as an aid to
deep understanding in early phase requirements engineering,” IEEE
Trans. Softw. Eng., vol.31, no.11, pp.969-981, 2005.

R. Gacitua, P. Sawyer, and V. Gervasi, “On the effectiveness of
abstraction identification in requirements engineering,” Proc. 18th
IEEE International Requirements Engineering Conference, pp.5—-14,
2010.

H. Kaiya and M. Saeki, “Ontology based requirement analysis:
Lightweight sementic processing approach,” Proc. Fifth IEEE In-
ternational Conference on Quality Software (QSIC), pp.223-230,
2005.

L. Kof, Text Analysis for Requirement Engineering, VDM Verlag,
2007.

R. Hasegawa, M. Kitamura, H. Kaiya, and M. Saeki, “Extracting
conceptual graphs from japanese documents for software require-
ments modeling,” Proc. 6-th Asia-Pacific Conference on Conceptual
Modeling (APCCM), pp.87-96, 2009.

A. Ohnishi, “A generation method of exceptional scenarios from a
normal scenario,” ICICE Trans. Inf. Software, no.4, pp.881-887,
2008.

A. Sinha, A. Paradkar, P. Kumanan, and B. Boguraev, “A linguis-
tic analysis engine for natural language use case description and its
application to dependability analysis in industrial use cases,” Proc.
IEEE/ACM DSN, pp.327-336, 2009.

I. Jacobson, “Object-oriented software engineering - A use case
driven approach,” TOOLS, vol.10, p.333, 1993.

A. Cockburn, Writing Effective Use Cases, Addison-Wesley,
Boston, MA, USA, 2000.

D. Ferrucci and A. Lally, “UIMA: An architectural approach to un-
structured information processing in the corporate research environ-
ment,” Natural Language Engineering, vol.10, no.3-4, pp.327-348,
2004.

Structure and Format for Digital Dictionaries for Japanese Language
Analysis, IPSJ-TS 0003, 2004 (in Japanese).

T.W. Malone, K. Crowston, and G.A. Herman, Organizing Business
Knowledge: The MIT Process Handbook, MIT Press, Cambridge,
MA, USA, 2003.

P. Mazzoleni, S. Goh, R. Goodwin, M. Bhandar, S.K. Chen, J. Lee,
V.S. Sinha, S. Mani, D. Mukherjee, B. Srivastava, P. Dhoolia, E.
Fein, and N. Razinkov, “Consultant assistant: A tool for collabo-
rative requirements gathering and business process documentation,”
Proc. ACM SIGPLAN, pp.807-808, 2009.

IEEE, “Recommended practice for software requirements specifica-
tions,” ANSI/IEEE Standard 830-1998, 1998.

H. Takeuchi, S. Ogino, T. Nakada, Y. Sakamoto, and N. Fukuoka,
“Quality analysis of development-related documents using text ana-
lytics technologies,” IPSJ] Embedded Software Symposium, pp.93—
100, 2009 (in Japanese).

H. Takeuchi, T. Nakamura, and T. Yamaguchi, “Use case analysis
using text analytics,” IEICE Technical Report, KBSE2010-32, 2010
(in Japanese).

Semantic Constraints

Ta-

ble A- 1 shows the Verb-To-Subject semantic constraints. In
this table, for each constraint, the “Initial verb semantic la-
bel” column represents the condition and “Subject sematic
label” represents the induced semantic label, with the confi-
dence value s in the third column.

Table A-2 shows the Subject-To-Verb semantic con-

straints. In this table, for each constraint, the “Subject se-
mantic”’ column and the “Initial verb semantic label” col-

1967
Table A-1 Verb-to-subject semantic constraints.
| Initial verb semantic label | Subject semantic label [s (confidence) |
INPUT USER 1.0
OUTPUT SYSTEM 1.0
START SYSTEM 0.5
STOP SYSTEM 0.5
USE USER 0.5
BROWSE USER 0.5
CREATE USER 0.1
READ USER 0.1
UPDATE USER 0.1
DELETE USER 0.1
READ SYSTEM 0.1
WRITE SYSTEM 0.1
GIVE SYSTEM 0.1
GET SYSTEM 0.1
Table A-2 Subject-to-verb semantic constraints.
Subject semantic label Initial verb Finel verb
semantic label | semantic label
USER WRITE INPUT
USER GIVE INPUT
USER READ OUTPUT
USER GET OUTPUT
SYSTEM(or UNCLASSIFIED) | WRITE OUTPUT
SYSTEM(or UNCLASSIFIED) | GIVE OUTPUT
SYSTEM(or UNCLASSIFIED) | READ INPUT
SYSTEM(or UNCLASSIFIED) | GET INPUT
SYSTEM(or UNCLASSIFIED) | USE QUERY

umn represent the condition and “Final verb sematic label”
represents the induced verb semantic label.

Hironori Takeuchi is a researcher at IBM
Research-Tokyo in Japan. He received the B.E.
and M.E. degrees from University of Tokyo in
1998 and 2000, respectively. His research inter-
ests include text mining, information retrieval,
and text analytics in software engineering. He
is a member of Information Processing Society
(IPS) Japan and Japanese Society for Artificial
Intelligence (JSAI).

Taiga Nakamura is a researcher at IBM
Research-Tokyo in Japan. His research and in-
dustrial activities include software defect pat-
terns, metrics, test automation, software quality
engineering and empirical methods in software
engineering. He received the B.E. and M.E. de-
grees in aerospace engineering from University
of Tokyo, and received the Ph.D. degree in com-
puter science from University of Maryland, Col-
lege Park. He is a member of the Association
for Computing Machinery, the Institute of Elec-

trical and Electronics Engineers, and the Information Processing Society of

Japan.

1968

Takahira Yamaguchi is a professor at the
Faculty of Science and Technology at Keio Uni-
versity. He received his B.E., M.E., and Ph.D.
degrees in telecommunication engineering from
Osaka University in 1979, 1981, and 1984, re-
spectively. His research interests include Ontol-
ogy Engineering, KBSE, Advanced Knowledge
Systems, and Machine Learning. He is a mem-
ber of IPSJ, JSAI JSFTS, JCSS, ISSJ, AAAI,
IEEE-CS, and ACM.

IEICE TRANS. INF. & SYST., VOL.E95-D, NO.7 JULY 2012

