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SUMMARY Ultra-wideband (UWB) technology has attracted much at-
tention recently due to its high data rate and low emission power. Its media
access control (MAC) protocol, WiMedia MAC, promises a lot of facil-
ities for high-speed and high-quality wireless communication. However,
these benefits in turn involve a large amount of computational load, which
challenges the traditional uniprocessor architecture based implementation
method to provide the required performance. However, the constrained cost
and power budget, on the other hand, makes using commercial multipro-
cessor solutions unrealistic. In this paper, a low-cost and energy-efficient
multiprocessor system-on-chip (MPSoC), which tackles at once the aspects
of system design, software migration and hardware architecture, is pre-
sented for the implementation of UWB MAC layer. Experimental results
show that the proposed MPSoC, based on four simple RISC processors and
shared-memory infrastructure, achieves up to 45% performance improve-
ment and 65% power saving, but takes 15% less area than the uniprocessor
implementation.
key words: multiprocessor system-on-chip (MPSoC), ultra-wideband
(UWB), medium access control (MAC), shared-memory

1. Introduction

The ever-growing demand for anytime and anywhere wire-
less connectivity has driven the emergence of Wireless Per-
sonal Area Networks (WPANs) due to their flexibility and
increasing capability. Among various WPAN technologies,
WiMedia ultra-wideband (UWB) is considered as the best
for high-speed wireless applications, due to its high data
rate, large bandwidth and low emission power [1], [2]. Be-
sides the favorable physical layer characteristics, WiMedia
UWB also has some attractive features in its Media Ac-
cess Control (MAC) layer. It allows both reservation and
contention-based medium access with Quality-of-Service
guarantee. Moreover, no existing infrastructure is required
in the WiMedia UWB network. All these features make
UWB a primary candidate for WPAN applications, such as
multimedia [3], [4], health care services and so on [5].

However, the facilities that WiMedia MAC promises
do not come for free. From the perspective of implemen-
tation, both the zero-infrastructure network and the high
data rate require a significant amount of computational ef-
fort and extremely short processing delay. It is therefore
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a challenge to design an efficient architecture for WiMedia
MAC in embedded systems because of the stringent require-
ments of cost, power and flexibility. Previous works from
both academia and industry have proposed implementations
for WiMedia MAC [6]–[9]. In [6]–[8], implementations of
WiMedia MAC using conventional single-core architecture
are proposed. However, since we also developed similar
uniprocessor architecture before this work to speed time-to-
market, the power consumption of this solution is too high
for portable devices. In [9], an FPGA based implementa-
tion is proposed. The primary drawback of this solution
is that it cannot provide the required flexibility to upgrade
or adapt the system to different scenarios, and thus, pro-
grammable architectures are more desirable. Unlike these
previous works, this paper explores MPSoC architectures
for WiMedia MAC and evaluates their impact on perfor-
mance, area and energy efficiency with respect to unipro-
cessor architecture. To the best of our knowledge, no such
work has been done for WiMedia MAC so far.

It is well-known that parallel processing on mul-
tiprocessor is an attractive technology to achieve high-
performance. However, most of the existing commercial
multicore platforms [10], [11] target high-end general pur-
pose applications and usually require much higher cost than
a conventional single-core processor, such as the classic
ARM9 processor [12]. Thus, for our application-specific
and cost-constrained system, these commercial solutions
are obviously too expensive. Therefore, this work motives
to develop a low-cost and energy-efficient multiprocessor
system-on-chip (MPSoC) for WiMedia MAC. Besides the
required high-performance, the target MPSoC should also
feature competitive area and power even with respect to the
uniprocessor SoC. The proposed MPSoC consists of four
processor nodes, which are organized by a shared-memory
infrastructure. Instead of a general-purpose processor, it em-
ploys a simple RISC processing element (PE) for each node
to save area. In order to migrate from single-core to multi-
core scenario, we maintain the legacy multitask software
of our previous uniprocessor system and let each individ-
ual task execute on a dedicated node in the multiprocessor
system. Moreover, dedicated hardware engines are devel-
oped to support inter-processor synchronization and com-
munication. Then, by executing a unique thread on each
node, the processors can get rid of the multitasking over-
head, and hence, achieve performance improvement.

Implementation and evaluation of the proposed MP-
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SoC have been carried out at system level by using com-
mercial electronic system-level (ESL) tools [13], [14]. Fi-
nally, area and power estimation is carried out by using post-
synthesis results. Experimental results show that the pro-
posed MPSoC achieves up to 45% performance improve-
ment and up to 65% power saving, but costs 15% less area
when compared to our previous uniprocessor design.

The rest of the paper is organized as follows. In Sect. 2,
we introduce some related works and summarize our contri-
butions, which is followed by an introduction of our MP-
SoC design methodology in Sect. 3. In Sect. 4, we explain
the MPSoC hardware architecture. In Sect. 5, the implemen-
tation of UWB MAC and the experimental results are pre-
sented. Finally, conclusions are drawn in Sect. 6.

2. Related Work and Our Contributions

The emergence of WiMedia MAC has attracted a lot of
attention recently and quite a few research works on its
implementation have been carried out. In [6], the au-
thors proposed a hardware/software (HW/SW) co-design
approach for WiMedia MAC to shorten the time-to-market
and achieve flexibility for future upgrade. They discussed
some of the system architectural design considerations, es-
pecially the HW/SW partition. However, from the perspec-
tive of architecture, they still use the conventional embedded
design approach, which is based on a single general purpose
processor. Moreover, they didn’t evaluate the performance
in terms of power consumption and area. In [7], an LSI im-
plementation of WiMedia MAC is proposed, which is still
based on the similar uniprocessor architecture. In [8], the
authors focus on the throughput issues of WiMedia MAC
and propose an optimized architecture. However, their ex-
ploration is still limited within the general purpose processor
based uniprocessor architecture. Before this work, we also
developed a similar SoC by employing such uniprocessor
architecture. Because of the rich support of programming
models, such as RTOS, and debugger tools, this approach
may speed time-to-market. However, this design approach
in turn leads to a significant amount of performance over-
head, which further results in high power dissipation.

In [9], a full hardware implementation based on FPGA
is proposed for WiMedia MAC. The primary drawback of
this solution is that it cannot provide the required flexibility
to upgrade or adapt the system to different scenarios, and
thus, programmable architectures are more desirable.

Unlike these prior works on UWB MAC, this work
aims to achieve aggressive performance and ultra low power
consumption by exploring MPSoC architectures.

Additionally, with the emergence of MPSoC, using
HW support for the operating system and its communica-
tion primitives is always a hot topic. Due to the inher-
ent characteristics of multiprocessors, some RTOS features,
such as synchronization, must rely on hardware support for
some sort of atomic read-modified-write operation [15]. On
the other hand, implementing some RTOS features requir-
ing greater CPU workload in hardware can decrease the

system overhead [16]. In [17], a hardware module, the
synchronization-operation buffer, is proposed to queue and
manage the inter-processor synchronization, e.g., locks and
barriers. In [18], A. C. Nacul et al. propose a HW-RTOS for
speeding up the scheduling and data handling of the RTOS.
Moreover, operating systems completely implemented in
the hardware have also been proposed in [19] and [20].

Unlike previous works on HW RTOS, this work fo-
cuses on a fixed application, UWB MAC, and intends to
improve its performance by removing the RTOS overhead.
By distributing the SW tasks to dedicated processors, task
scheduling and switching is no longer needed. Furthermore,
hardware modules are proposed to support inter-processor
communication and synchronization.

The contributions of this paper are summarized as fol-
lows.

• We demonstrate that, in uniprocessor architecture,
there is significant overhead when using RTOS. In
order to deal with this problem, an MPSoC design
methodology is proposed for WiMedia MAC. And a
complete comparison between the proposed MPSoC
and the uniprocessor design is carried out from the as-
pects of performance, area and power consumption. To
the best of our knowledge, no such work has been done
for WiMedia MAC so far.
• In our proposed MPSoC, each individual task executes

on a dedicated processing node. Hardware engines
are developed to support inter-processor synchroniza-
tion and communication. Thus, processors can get rid
of RTOS, which leads to significant performance im-
provements (up to 45%) with respect to the uniproces-
sor design
• Because of the distributed workload in MPSoC, we ex-

plore the usage of simple RISC PE, instead of general
purpose processor. This saves the design cost and also
makes the potential for using ASIP possible. Moreover,
removing RTOS reduces the required size of instruc-
tion and data memory, which further results in area sav-
ing. Due to the above contributions, our proposed MP-
SoC achieves 15% area saving over the uniprocessor
design.
• Our proposed MPSoC also achieves significant power

saving (up to 65%) with respect to the uniprocessor
design, which is due to the following reasons: (i) the
overhead reduction makes the MPSoC consume much
less energy for program execution; (ii) using MPSoC
natively splits the single big memory, which is usu-
ally used in the uniprocessor context for instructions
and data, into multiple small memories, which features
much less energy per access than the bigger one.

3. MPSoC Design Methodology

In this section, we first introduce the WiMedia MAC proto-
col and the system architecture. Then, the basic idea of our
MPSoC design methodology is presented.
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Fig. 1 Superframe format of WiMedia MAC.

Fig. 2 WiMedia MAC communication flow.

3.1 WiMedia MAC Protocol

In communication systems, MAC layer is mainly used to
provide addressing and channel access control mechanisms
for terminals within the network. As in other MAC pro-
tocols, the medium time of WiMedia MAC is divided into
superframes, which describe periodic intervals used to coor-
dinate operation between devices. As shown in Fig. 1, one
superframe consists of 256 medium access slots (MASs),
where each MAS duration is 256 µs. Each superframe starts
with a beacon period (BP) which is followed by a data trans-
fer period (DTP).

Since there is no central coordinator in the network,
all the management and control information is exchanged in
the form of beacon frames that are transmitted during the
BP. As shown in Fig. 2, once a device is turned on, it scans
for beacons from other devices. If no beacon is received
during the initial scanning, such as device A, it creates its
own BP and becomes active. If one or more beacons are
received correctly during the initial scanning, such as device
B, it synchronizes with the existing network and picks up
unoccupied beacon slots to transmit its own beacon frames.
Once a device joins a network, it always sends the beacon
frame and collects the beacons from its neighbors in the BP.

After the network becomes stable, data communica-
tion could be carried out through either Distributed Reser-
vation Protocol (DRP) or Prioritized Channel Access (PCA)
protocol. The DRP allows a reserved period of time for
transmission during which the reservation owner has exclu-
sive access to the medium. As shown in Fig. 2, the nego-

Fig. 3 System architecture of WiMedia MAC.

tiation process starts with the transmitter sending a reser-
vation request in its beacon frame. The request includes
the set of MASs that the transmitter intends to reserve for
transmission. Upon reception of the request, the receiver
analyzes the channel time utilization of its beacon group
and responds, using its beacon frame, indicating whether
the reservation request is accepted. Once a reservation is
successfully negotiated, the reservation is announced in the
beacons. Other devices become aware of the reservation by
reception of the beacons, and therefore defer access to the
medium during the reserved MASs. During the unreserved
MASs, frames with different priorities can be transmitted
through the contention based PCA protocol. Only the one
with the highest priority, which is labeled by the higher lay-
ers, can be allowed to access the medium.

3.2 System Architecture

We implement the MAC protocol using a hybrid hardware
and software (HW/SW) architecture, which is shown in
Fig. 3. For flexibility and easy upgrade possible, the MAC
functionality is tried to be achieved in SW as far as pos-
sible. Only time critical functions, such as data encryp-
tion/decryption, payload transfer and PHY layer handshake,
are done in HW. A set of configuration registers are pro-
vided for the SW to control and manage the HW. On the
other hand, the HW triggers the SW processing via inter-
rupt, when any event happens.

According to the MAC protocol, there are three com-
munication scenarios: beacon processing, data frame recep-
tion and data frame transmission. Correspondingly, we im-
plement three tasks to deal with these scenarios, including
reception (RX) task (receive traffic from wireless medium
and notify upper layer), transmission (TX) task (handle the
data transfer from upper layer to the wireless medium) and
beacon task (receive and transmit beacon frames). More-
over, a fourth task which acts as a upper layer application
is designed to control the communication. All these compo-
nents share the same data resource. Thus, in order to avoid
multi-task access, these shared data needs to be protected.
Additionally, each task has its own queue to receive the mes-
sages from other tasks.
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Fig. 4 HW/SW interaction for reception and transmission.

Fig. 5 Migration from single-core to multi-core.

Figure 4 further shows the HW/SW interaction for data
frame (or beacon frame) reception and transmission. In case
of RX path, the HW first stores the received data in its local
FIFO, and then, moves the payload to some memory space
which is pre-defined by SW. After getting one complete
frame, the HW will generate interrupt to trigger the SW pro-
cessing. Then, the SW might update the HW through con-
figuration registers and start working on the received data.

In case of TX path, the SW first configures the HW
with the pointer of payload, and then, triggers it to start
transmitting. Upon startup, the HW copies the data from
system memory to its local FIFO, and also, handshakes with
the PHY layer to arrange the transmission. After completion
of the transmission, HW will also interrupt the SW with the
specific event.

3.3 Software Migration

In the uniprocessor scenario, the above mentioned soft-
ware architecture can be conveniently realized by using
RTOS, which is also the most conventional development
approach. As shown Fig. 5 (a), most RTOSes offer the ca-
pability of intertask message and synchronization. With
the RTOS-offered APIs, message and synchronization op-

erations can be implemented by calling the related service
routines. Moreover, interrupt handler can be realized by
using the RTOS-offered interrupt service routine. With the
scheduling of RTOS kernel, the multiple contexts can switch
orderly to handle the corresponding event. Then, both appli-
cation tasks and RTOS execute on a general purpose proces-
sor.

However, the drawback of using RTOS is the over-
head associated with task scheduling and context switch-
ing. In order to handle real-time multitasking, RTOS has
to invoke kernel scheduler in each interrupt, synchroniza-
tion and mailbox operation [21]. And if any task needs to be
suspended or resumed, context must be stored and restored
respectively. These operations in turn require a large amount
of workload and thus lead to a significant overhead [22]. Ac-
cording to our evaluation (reported in Sect. 5), RTOS over-
head costs up to 49% workload in the uniprocessor design.
These overheads not only shorten the available time for data
processing but also pose a great burden to the processor.
Hence, in order to achieve real-time processing, the single
processor has to execute at a high frequency, which results
in high power dissipation.

Therefore, in order to overcome this bottleneck and
achieve high-performance, the idea here is to develop MP-
SoC for MAC SW. In order to minimize the SW de-
sign effort and achieve early-stage HW/SW co-simulation,
we reuse the legacy multitask software and directly mi-
grate the separated tasks to MPSoC, which is shown in
Fig. 5 (b). Each MAC task is assigned to a dedicated pro-
cessor in the MPSoC system. Since each processor ex-
ecutes a unique thread, multi-task RTOS becomes redun-
dant, and hence, can be removed to relieve the processors’
workload. Instead of RTOS, we develop dedicated hardware
engines to support the inter-processor synchronization and
message-passing. For task scheduling, a first-come-first-
served scheduling mechanism is established and interrupt
signals are utilized for notification. Then, these hardware
features are abstracted as a set of APIs and exposed to pro-
grammers.

4. Hardware Architecture

In this section, we first present some considerations for our
MPSoC architecture, which will be followed by the over-
all architecture. Then, the structure of employed hardware
engines for inter-processor synchronization and communi-
cation are described respectively.

4.1 MPSoC Architecture

The proposed MPSoC, which is based on shared-memory
infrastructure, is shown in Fig. 6. It consists of four pro-
cessors which are connected via a shared bus. Distributed
instruction and data memories are attached with each nodes
to relieve the shared bus from traffic contention. Because
of the usage of on-chip memory, cache is not used to avoid
the overhead of cache coherency support. A shared mem-
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Fig. 6 Proposed MPSoC architecture.

ory and a payload memory are attached with the shared
bus for parameter and payload storage, respectively. The
shared-memory architecture, on the one hand, reduces the
latency for frequently parameter and payload access, and on
the other hand, saves the on-chip memory space for storing.
The MAC HW is also connected with this shared bus and
treated as a slave to the processors. In order to have more
bandwidth for the data transfer, the MAC HW also occupies
a dedicated bus for payload RAM access. Moreover, a set
of necessary peripherals are provided to support the appli-
cation.

In order to synchronize the multiple processors and
guarantee the data coherence of the shared memory, we
use the mutex and semaphore mechanism [15] for inter-
processor synchronization. According to the data depen-
dencies, the shared memory is divided into several sec-
tions, each of which is assigned a dedicated mutex to pre-
vent it from multi-accessing. Considering the flexibility
and cost-efficiency, we prefer hardware-based implementa-
tion [17] and thus develop a synchronization engine to cen-
trally manage the mutex and semaphore resource. More-
over, a hardware-based mailbox is also developed to support
inter-processor message-passing. In the following two sub-
sections, the implementation of the synchronization engine
and the mailbox controller will be discussed in detail.

4.2 Synchronization Engine

The synchronization engine, as shown in Fig. 7 (a), is de-
signed to support the mutex and semaphore operations [15]
in our MPSoC. Taking mutex for example, there are n reg-
isters (n is the maximum number of supported mutex) and
each of them is used to store the value of a specified mutex
(FREE or BUSY). Correspondingly, each mutex has a wait-
ing queue for holding the IDs of waiting processors. This
waiting queue is implemented by FIFO which makes the
management of processor order easier. The depth of FIFO
N depends on the total number of processors in the system.

Figure 7 (b) shows the state machine of hardware mu-
tex. It has two states, one is called FREE and the other is
named BUSY. Transition 1 means the mutex is acquired at

Fig. 7 Architecture of synchronization engine.

its FREE state, and thus, its value should be updated from
FREE to BUSY. This is the so called test-and-set operation
and should be atomic. Since the hardware is connected with
a bus, this inherent property guarantees that only one read
access is allowed at a time. Thus, even if two acquisitions
(or even more) happen at the same time, only one winner can
get the mutex first, and meanwhile, the hardware logic will
set the mutex to BUSY within the same clock cycle. Then,
the loser, who acquires the mutex in the following cycle, will
always be returned by the updated value. In other words, the
atomic test-and-set operation is separated into two parts, test
(or read) done by the processor and set (or write) done by
the hardware. They are ensured to finish within the same
atomic cycle. If any processor tries to acquire the mutex
in the BUSY state, as shown in transition 2, it should keep
waiting until the mutex is released by the owner processor.
In this case, hardware logic will save the pending proces-
sor’s ID and notify it through an interrupt when the mutex
is available for its turn. Thus, during the waiting period, the
processor only executes nop instruction instead of polling,
which doesn’t cause any traffic at all. Transition 3 indicates
that the processor who occupies the mutex should release it
by setting it back to FREE. Meanwhile, if any processor is
waiting for the released mutex, as shown in Fig. 7 (a), its ID
will be fetched from the head of the waiting queue and an
interrupt will be generated accordingly to notify it.

4.3 Mailbox Controller

Mailbox controller, which is shown in Fig. 8, is designed to
offer message sending and receiving services for processors.
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Fig. 8 Architecture of mailbox controller.

There are two FIFOs which are used for initiator waiting
queue and message queue respectively. The former is used
to hold the IDs of waiting initiators who intend to send mes-
sages and the latter is used to store the content of messages.
Moreover, a target waiting flag is employed to indicate if the
target processor, to whom the mailbox belongs, is waiting
for a message or not.

In order to send a message, the initiator first checks the
availability of the target message queue. If there is enough
space, it directly puts the message at the tail of the message
queue, which is represented by transition 1. Whereas, if the
message queue is full, the initiator has to keep waiting and
its ID is pushed into the initiator waiting queue, which is il-
lustrated by transition 2. Until any message is consumed by
the target processor and available space appears in the mes-
sage queue, an interrupt is generated to notify the waiting
initiator processor in order. This process is shown in transi-
tion 3. Then, the initiator, who has just been woken up by
the interrupt, starts to re-send its pending message, which is
the same as transition 1.

On the other hand, the target processor that intends to
receive a message first checks the availability of its message
queue. If any message is available, it directly fetches mes-
sages at the head of the message queue, which is shown in
transition 4. On the contrary, if the message queue is empty,
it is suspended until the availability of a message is signaled
by an interrupt, which is described in transition 5, and then
retries its pending receive operation as in transition 4.

5. Implementation and Results

In this section, we first explain the simulation setup of the
proposed MPSoC. Then, comparisons between our previ-
ous uniprocessor SoC and the proposed MPSoC are carried
out respectively from the aspects of performance, area and
power consumption.

5.1 Processing Element

In the proposed MPSoC, we adopt our in-house TCT pro-
cessor for each processing node. As shown in Fig. 9, the

Fig. 9 Block diagram of TCT processor.

Fig. 10 WiMedia MAC MPSoC test platform.

TCT processor is a 32-bit RISC core with a 4-stage pipeline.
It was first proposed in our previous work [23]. How-
ever, according to the architecture of this work, we im-
prove this processor by adding the AHB interface and re-
moving the un-used communication module. The proces-
sor is modeled by language for instruction-set architectures
(LISA) [24], which can be compiled by Synopsys Processor
Designer [14] to generate cycle-accurate SystemC model,
instruction set simulator (ISS) and register transfer level
(RTL) code.

5.2 Simulation Setup

The proposed MPSoC is modeled at system level using com-
mercial ESL tool [13], which provides support for platform
creation, simulation and evaluation. In order to verify and
evaluate the system, two WiMedia MAC MPSoCs, one as
receiver and the other as transmitter, are connected via a vir-
tual physical channel, which is shown in Fig. 10. The virtual
channel is modeled by SystemC and used for simulating the
behavior of the UWB physical layer and channel.

Table 1 shows the detailed architecture configurations.
We explore two multi-core architectures, one is the multi-
ARM, which consists of four ARM946E-S, and the other
is multi-TCT, which employs our TCT processor. As ex-
plained in Sect. 4.1, both multi-ARM and multi-TCT archi-
tectures use tightly-coupled memories (TCMs) for local data
and instructions. Since they execute the same SW, these two
architectures require similar size of memory for data and in-
struction, which are, respectively, 32 KB and 204 KB in all.
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Table 1 Architecture configurations for exploration.

Parameter
Single-ARM Multi-core

TCM Cache Multi-ARM Multi-TCT
Num. of PE ARM×1 ARM×1 ARM×4 TCT×4
Cache Size(KB) None 8/8 None None
Data Mem.(KB) 78 None 20/4/4/4∗ 20/4/4/4∗
Inst. Mem.(KB) 230 None 72/82/42/8∗ 72/82/42/8∗
Main Mem. 256 KB 564 KB 256 KB 256 KB
Total Mem. 564 KB 564 KB 492 KB 492 KB

HW Support None None
Synch., Synch.,
Mailbox Mailbox

Inter-connection AMBA AMBA AMBA AMBA
∗Note: memory size of each processor

Fig. 11 Memory architecture of single-ARM platform.

Moveover, the size of main memory, for MAC parameter
and payload, are 256 KB. Thus, the total memory used in
multi-core platform is 492 KB. Due to the limited storage
requirement, all the memories are on-chip. Thus, cache is
not used to avoid the overhead of cache coherency support.
Additionally, the synchronization and mailbox engines are
modeled by both transaction-level SystemC and RTL code.

For comparison, we also model the single-core sys-
tem using only one ARM946E-S processor. As shown in
Table 1, we evaluate two conventional single-core archi-
tectures, whose memory hierarchies are further shown in
Fig. 11. In Fig. 11 (a), TCMs are used for local data and
instructions to boost overall performance. In the other ar-
chitecture shown in Fig. 11 (b), all data and instructions are
stored in the main memory, which is accessed through the
AHB bus. Then, caches are employed to reduce the ac-
cess delay. TOPPERS/JSP Kernel [26], a popular RTOS that
conforms to the µITRON4.0 specification [21], is adopted in
single-core architectures for multitasking. Due to the usage
of RTOS, more memory space is required. As shown in Ta-
ble 1, the total on-chip storage of single-core platform is
564 KB, which is bigger than that of multi-core platform.

5.3 Performance Evaluation

This subsection evaluates the performance of the proposed
MPSoC and the uniprocessor architectures. The measured
communication scenario consists of two devices, one sends
at a fixed data rate and the other receives in a periodic man-
ner. The medium channel is accessed through the DRP pro-
tocol [2] with a frame payload of 1024 bytes. According

Table 2 MAC throughput of a two-device network using DRP protocol.

MAS/SF 254 254 254 254 254 254 254 254
Frame/MAS 1 2 3 4 5 6 7 8
Payload(byte) 1024 1024 1024 1024 1024 1024 1024 1024
Throughput

31.8 63.5 95.3 127 158.8 190.5 222.3 254
(Mbps)

to [2] and [27], a two-device network has a maximum of
254 MASs available for data transmission, where each MAS
can further contain a maximum of 8 frames whose payload
is 1024 bytes (using burst mode at PHY rate of 480 Mbps).
Table 2 shows the relationship between the MAC throughput
and the number of frames per MAS. With different inter-
frame intervals, the MAC throughput can vary from 0 to
254 Mbps.

For workload profiling, we adopt the approach men-
tioned in [25], which utilizes a hardware counter (modeled
by SystemC) driven by the same clock source of the proces-
sors. In order to get the execution cycle of a specific func-
tion, cycle stamps can be obtained by reading the counter at
the function entrance and return point respectively.

Table 3 reports the execution cycle of some fundamen-
tal MAC operations. We measured four architectures, in-
cluding single-ARM with TCM, single-ARM with cache,
multi-ARM and multi-TCT. The workload of each architec-
ture is divided into two components, one is the MAC SW,
which is necessary for MAC functionality, and the other
is the overhead related to multitasking and interrupt pro-
cessing. Then, the total workload is the sum of MAC SW
and overhead. The execution cycles of cached single-ARM,
multi-ARM and multi-TCT are normalized with respect to
the execution cycles of single-ARM with TCM.

Thus, combining the data in Table 2 and the workload
reported in Table 3, we further calculate the workload of
a system maintaining a two-device network under various
data throughput using the formulas below:

WTotal = Wbcn +Wdata T X/RX , (1)

where WTotal is the total workload of a device, Wbcn is the
workload for handling beacon frames and Wdata T X/RX is
workload for transmitting (or receiving) data frames. Since
the measured network consists of two devices, each device
only needs to receive one beacon from its neighbor. Thus,
Wbcn can be expressed as:

Wbcn = Wbcn T X +Wbcn RX +Wbcn processing, (2)

where Wbcn T X , Wbcn RX and Wbcn processing are reported in
Table 3. Wdata T X/RX , on the other hand, depends on the
MAC throughput and can be defined as:

Wdata T X/RX = Wf rame × NMAS × Nf rame per MAS , (3)

where Wf rame is the execution cycle for TX (or RX) one
data frame, NMAS is the number of MAS used for data TX
(or RX) and Nf rame per MAS is the number of frames within
each MAS. Figure 12 shows the workload breakdown of the
RX device, which is calculated by using Eq. (1)-(3) at three
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Table 3 Execution cycle for WiMedia MAC operations.

Operation
ARM TCM(#cycle) ARM Cache (#cycle) Multi-ARM (#cycle) Multi-TCT (#cycle)

MAC SW Overhead MAC SW Overhead MAC SW Overhead MAC SW Overhead

Beacon frame TX
787 3,931 987 4,207 1,374 754 1,365 764

4,718 (100%) 5,194 (110.1%) 2,128 (45.1%) 2,129 (45.1%)

Beacon frame RX
4,095 4,531 5,302 5,097 4,672 784 4,287 7,94

8,626 (100%) 10,399 (120.6%) 5,456 (63.3%) 5,081 (58.9%)

Beacon Processing
24,816 26,390 22,678 30,498 27,115 3,526 34,149 3,401

51,206 (100%) 53,176 (103.8%) 30,641 (59.8%) 37,550 (73.3%)

TX one data frame
7,398 5,965 7,530 7,913 6,812 898 6,711 878

13,363 (100%) 15,443 (115.6%) 7,710 (57.7%) 7,589 (56.8%)

RX one data frame
8,739 9,272 10,061 11,317 9,027 1,060 8,847 970

18,011 (100%) 21,378 (118.7%) 10,087 (56.0%) 9,817 (54.5%)

Fig. 12 Workload breakdown of RX device at throughput 31.8 Mbps,
63.5 Mbps and 95.3 Mbps.

given throughput of 31.8 Mbps, 63.5 Mbps and 95.3 Mbps.
As shown in Table 3, the overhead, taking RX data

frame for example, is reduced from 9272 cycles in the
single-ARM with TCM to 1060 cycles in the multi-ARM
platform (about 88% reduction). The overhead savings of
the other operations are also more than 80%. On the other
hand, as mentioned in Sect. 3.1, the software for MAC func-
tionality is maintained during the migration from single-
core to multi-core. Thus, the workload of this component
should be essentially the same for single-ARM with TCM
and multi-ARM. As shown in Table 3, the results confirm
this expectation that these two architectures cost similar exe-
cution cycles for MAC SW. Finally, as shown in Fig. 12, due
to the significant reduction of overhead, multi-ARM plat-
form achieves about 44% workload saving over the single-
ARM with TCM. While, in the cached single-ARM archi-
tecture, the performance degrades about 17%, which is due
to the possibility of cache miss.

Comparing multi-ARM and multi-TCT, since they ex-
ecute the same software, their workload, regardless of
whether it is from the MAC SW or overhead, should be
the same. However, due to the different instruction set and
compiler (the TCT processor is based on our in-house de-
fined instruction set and compiler [23]), the execution cy-
cles of them are different. The results show that the use
of simple processors does not lead to dramatic performance
degradation; on the contrary, its performance is even better
than that of the general purpose processor in some cases. Fi-
nally, multi-TCT platform obtains about 45% workload sav-

Fig. 13 Software overhead breakdown of four MAC operations.

ing over the single-ARM with TCM, which is similar with
multi-ARM.

5.4 Overhead Evaluation

In the previous subsection, we demonstrate that the perfor-
mance improvement of MPSoC mainly comes from the re-
duction of overhead. As shown in Fig. 12, the RTOS over-
head in single-ARM TCM architecture accounts for approx-
imately 51% of the total workload. However, in the multi-
core architectures, the proportion of the workload spent on
the overhead diminishes to approximately 11%. This result
also confirms the argumentation of another research [22]
that using RTOS might result in significant overhead with
respect to the useful application.

To examine the overhead reduction in detail, we further
break down the software overhead, as shown in Fig. 13, into
four categories: Task Switching specifies the execution cy-
cles spent on task scheduling and context switching; Mail-
box and Synch. are, respectively, the workload spent for
mailbox and synchronization operations; and Interrupt de-
notes the remaining cycles spent on the interrupt handler.
As the graph shows, the proposed MPSoCs feature a much
smaller overhead than the single-ARM platforms. In more
depth, the obtained overhead saving mainly stems from two
sources of reduction: (i) overhead savings caused by multi-
processor implementation; (ii) acceleration obtained by us-
ing hardware engines. As regards the former, using RTOS
in the uniprocessor architecture costs a lot of cycles for
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Table 4 Area comparison of single-core and multi-core.

Parameter
Single-ARM Multi-core

TCM Cache Multi-ARM Multi-TCT
Technology 90 nm 90 nm 90 nm 90 nm
PE Area1 0.303 0.650 0.303×4 0.084×4
HW Area1 0 0 0.089 0.089
Area w/o Mem.1 0.303 0.650 1.301 0.425
Memory Area1 3.291 3.256 2.614 2.614
Total Area1 3.594 3.906 3.915 3.040
1Note: unit of area is mm2

Table 5 Power estimation parameters of processors and hardware.

Parameter
Single-ARM Multi-core

Non-
cache

Cache ARM TCT Synch. Mailbox

Freq.(MHz) 200 200 100 100 100 100
Technology 90 nm 90 nm 90 nm 90 nm 90 nm 90 nm
Supply Voltage 1.0 V 1.0 V 1.0 V 1.0 V 1.0 V 1.0 V
Static∗ 0.51 1.10 0.51 0.15 0.10 0.05
Dynamic∗ 15.20 21.20 7.60 3.32 2.04 1.11
Total Power∗ 15.71 22.30 8.11 3.48 2.14 1.16
∗Note: unit of power is mW

task scheduling and context switching. Taking single-ARM
TCM architecture for example, the Task Switching portion
accounts for a 61% overhead in the Beacon TX task, 53%
in the Beacon RX task, 40% in the Data TX task and 26%
in the Data RX task. However, in our MPSoCs, each task is
statically assigned a dedicated processor, and thus dynamic
task scheduling and context switching no longer exist, re-
sulting in the saving of the Task Switching portion. As re-
gards the latter, the synchronization and mailbox operations
in RTOS are implemented in pure software, which is time-
consuming. For instance, in single-ARM TCM architecture,
the Mailbox and Synch. portions together account for a 25%
overhead in the Beacon TX task, 35% in the Beacon RX
task, 50% in the Data TX task and 68% in the Data RX task.
However, in our MPSoCs, the synchronization and commu-
nication operations are supported by hardware, reducing the
workload of this portion by more than 88%. Finally, due to
this two-level acceleration, the multitasking overhead in the
proposed MPSoC is reduced significantly.

5.5 Area and Energy Evaluation

This subsection evaluates the area and energy efficiency of
the proposed MPSoC. Table 4 and Table 5 list the detailed
area and power related parameters used for comparison. The
area and power information of the TCT PE, synchronization
engine and mailbox controller is obtained by using RTL syn-
thesis and post-synthesis simulation [28] with TSMC 90 nm
CMOS technology. For ARM946E-S, its area and power
model is derived from officially published data [12]. The
area and power model of memory, as summarized in Ta-
ble 6, is obtained through CACTI v6.5 tool [29] for 90 nm
technology.

As shown in Table 4, we account for the area of pro-
cessors, hardware engines and memories (for local data and

Table 6 Power model of data and instruction memories.

Architecture Size
Area

(mm2)
Read/Write
Energy(nJ)

Static
Power(µW)

Single Data 78 KB 0.85 0.057/0.041 10.733
(TCM) Inst. 230 KB 2.44 0.109/0.067 31.490
Single

(Cache)
Data&
Inst.

308 KB 3.26 0.111/0.076 42.162

Multi-core

Data

4 KB 0.05 0.017/0.010 0.589
4 KB 0.05 0.017/0.010 0.589
4 KB 0.05 0.017/0.010 0.589
20 KB 0.23 0.038/0.021 2.898

Inst.

8 KB 0.09 0.019/0.011 1.159
42 KB 0.46 0.043/0.025 6.063
82 KB 0.89 0.056/0.041 11.280
72 KB 0.79 0.055/0.040 9.911

instructions). First, comparing the area without memory,
multi-ARM times the area of single-ARM due to the dupli-
cation of PE and the adoption of hardware engines. How-
ever, due to the utilization of simple PEs, multi-TCT costs
much less area than single-ARM with cache, but it is still
larger than single ARM with TCM. Then, comparing the to-
tal area with memory, multi-TCT achieves about 15% area
saving with respect to single-ARM with TCM, which is due
to the less on-chip memory requirement.

Power estimation of the single-core and multi-core
platforms are also carried out at system level. We account
for the power consumption from PE execution (EPE), hard-
ware engines (EHW ) and PE’s local memories (EMem).

ETotal = EPE + EHW + EMem, (4)

The energy of PE execution (EPE) is estimated by:

EPE = WPE × Pd PE ÷ fPE , (5)

where WPE is the PE execution cycle derived from Eq. (1),
Pd PE and fPE are, respectively, the dynamic power and fre-
quency of PE. It is noteworthy that, due to the large amount
of workload saving, PEs in multi-core platforms can execute
at a lower frequency (100 MHz) than single-core platform
(200 MHz). Moreover, the power consumption of hardware
engines (EHW ) is also taken into account by:

EHW = WHW × Pd HW ÷ fHW , (6)

where WHW is their active cycles, Pd HW and fHW are, re-
spectively, their dynamic power and frequency. Finally, the
energy for memory access (EMem) is assumed to be:

EMem = NMem × EMem/access, (7)

where NMem is the memory access count obtained from the
simulator [13] and EMem/access is the energy per access [29].
Additionally, we assume that the static power of these com-
ponents are consumed all the time.

Figure 14 shows the power consumption of a MAC
system for maintaining a two-device network under vari-
ous data throughput. At each given throughput, the power
consumption of the single-ARM with TCM, single-ARM
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Fig. 14 Power consumption under various data throughput.

Fig. 15 Power breakdown at throughput 31.8 Mbps and 63.5 Mbps.

with cache, multi-ARM and multi-TCT platforms are re-
ported respectively. The graph shows that, multi-core plat-
forms, including both multi-ARM and multi-TCT, reduce
significant amount of power consumption when compar-
ing with the single-ARM counterparts. Comparing with
single-ARM with TCM, multi-ARM and multi-TCT obtain
about 75% and 85% power saving, respectively. Comparing
with single-ARM with cache, multi-ARM and multi-TCT
achieve about 45% and 65% power saving, respectively.

Figure 15 further shows the power distribution at three
given throughput of 31.8 Mbps, 63.5 Mbps and 95.3 Mbps.
The total power of the four architectures is broken down into
static power and dynamic power. The dynamic power fur-
ther contains the power consumption due to the memory ac-
cessing and PE execution, which is more finely divided into
MAC SW component - power consumption due to execution
of MAC software, and overhead component - power con-
sumption due to multitasking and interrupt processing. In
single-ARM with TCM, two large memories, as mentioned
in Sect. 5.2, are used for local data and instruction. How-
ever, in multi-core platforms, the local memory is split into
multiple smaller memories distributed to each node, which
features much lower energy per access than the larger mem-
ories [29]. On the other hand, the saving of overhead further
reduces the amount of memory access. Therefore, the en-

ergy for memory accessing is significantly reduced in multi-
core platform. Moreover, comparing the power consump-
tion from PE execution, multi-core platforms also achieve
lower power dissipation, which is due to the reduction of
RTOS overhead. In the single-ARM with cache, the us-
age of cache saves a significant energy for memory access.
However, due to the more execution cycles and the power
from cache, this architecture consumes much more energy
for PE execution. Thus, its total power is still much higher
than multi-core platforms. Finally, comparing multi-ARM
with multi-TCT, multi-TCT achieves further more energy
saving, which is due to the lower power of the TCT PE when
compared to the general purpose ARM.

6. Conclusion

In this paper we presented a low-cost and energy-efficient
MPSoC solution for a resource-constrained embedded ap-
plication, UWB MAC. The proposed MPSoC helps the tar-
get application to overcome the performance bottleneck of
using the traditional uniprocessor architecture. By distribut-
ing the complex multi-task application to multiple proces-
sors and executing a unique task on each processor, RTOS
can be removed to relieve the processors from multitask-
ing overhead, and thus, achieve performance improvement.
Then, due to reduced workload and hardware support for
synchronization and communication, simple RISC proces-
sor can be used, instead of general purpose one, to save
cost and energy. Finally, we show the effectiveness of the
proposed MPSoC solution by comparing a four-core design
with the uniprocessor design. Results show the proposed
MPSoC achieves up to 45% performance improvement and
65% power saving, but costs 15% less area when compared
with the single-core architecture which is based on a high-
end general-purpose processor.

Moreover, it is noteworthy that the proposed design
methodology, including software migration and MPSoC ar-
chitecture, is independent from the processor. Therefore,
we believe it should be not only effective for the WiMedia
MAC, but also helpful for other embedded applications to
achieve performance improvement and power saving.

As future work, fine-grained power management strate-
gies will be explored to further reduce power dissipation.
Moreover, application-specific instructions will also be de-
signed and extended into our base RISC processor to further
improve the performance and power efficiency.
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