
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012
205

PAPER

Feature Location in Source Code by Trace-Based Impact Analysis
and Information Retrieval

Zhengong CAI†, Student Member, Xiaohu YANG†a), Xinyu WANG†, and Aleksander J. KAVS††, Nonmembers

SUMMARY Feature location is to identify source code that implements
a given feature. It is essential for software maintenance and evolution. A
large amount of research, including static analysis, dynamic analysis and
the hybrid approaches, has been done on the feature location problems.
The existing approaches either need plenty of scenarios or rely on domain
experts heavily. This paper proposes a new approach to locate functional
feature in source code by combining the change impact analysis and infor-
mation retrieval. In this approach, the source code is instrumented and ex-
ecuted using a single scenario to obtain the execution trace. The execution
trace is extended according to the control flow to cover all the potentially
relevant classes. The classes are ranked by trace-based impact analysis
and information retrieval. The ranking analysis takes advantages of the se-
mantics and structural characteristics of source code. The identified results
are of higher precision than the individual approaches. Finally, two open
source cases have been studied and the efficiency of the proposed approach
is verified.
key words: feature location, impact analysis, class ranking, information
retrieval, trace extension

1. Introduction

Feature location in source code is essential for software
maintenance and evolution. It is nearly impossible to fix
a bug or enhance a given requirement before locating the
source code of interest. However, the complete comprehen-
sion of a system without documents is so time consuming
that the software maintainers can not always understand the
whole system, especially for the large-scale system, before
alternating the source code. Thus, the as-needed compre-
hension - locating feature in the source code - is preferable
for program comprehension and system maintenance [22].

The feature may be a functional or non-functional re-
quirement of a system. In fact, it is not easy to locate non-
functional feature in source code. Most of the existing re-
search has focused on the functional feature location. A
large amount of feature location approaches have been pro-
posed to find the source code of most interest in the last
decade [16]. The approaches can be categorized into static
analysis, dynamic tracing and the hybrid ones. The static
ones include information retrieval and dependency analysis,
but both of them may involve irrelevant code since they do
not execute the source code during the location process. The

Manuscript received March 9, 2011.
Manuscript revised August 21, 2011.
†The authors are with the Computer College, Zhejiang Univer-

sity, Hangzhou, Zhejiang, 310027, China.
††The author is with the State Street Corporation, Boston MA

02110–0351, U.S.A.
a) E-mail: yangxh@zju.edu.cn

DOI: 10.1587/transinf.E95.D.205

dynamic trace is an interactive approach and is considered to
obtain the most precise results. However, the dynamic anal-
ysis needs plenty of test cases for correct results. Combining
the static and dynamic analysis could avoid the defeats of a
single approach to achieve better results [20].

This paper proposes a new combined approach for the
feature location in source code by the trace-based impact
analysis and information retrieval. The approach is divided
into two phases. First, the source code is traced by dy-
namic analysis and static inference. In this phase, both the
source code and the feature are preprocessed. The source
code is instrumented and traced by executing the selected
test cases. The execution trace is extended by analyzing its
control flow, i.e. the branches related to the execution trace.
Then, the classes in the extended execution trace are ranked
by the trace-based impact analysis and information retrieval.
The corpus is built from the traced source code and the de-
scription of the feature is used as a query for semantic anal-
ysis by filtering the stop words. The information retrieval
measures the semantic similarity between the traced source
code and the feature description. The trace-based impact
analysis evaluates the static dependency between the trace
and the other classes.

This approach provides a combined ranking strategy
for the irrelevant classes filtering which is a common prob-
lem in the location approaches. It takes advantages of
static dependency analysis, information retrieval and dy-
namic trace. Some combined location approaches have been
proposed but their ranking metrics are still weak to find
closely related code or filter the irrelevant classes [11]. Our
approach has three advantages:

• It is applicable for analyzing unfamiliar code since only
one primary scenario is needed. The potentially rele-
vant classes are considered by extending the execution
trace. However, the traditional dynamic analysis needs
plenty of scenarios with or without the feature to locate
the relevant source code.
• The classes in the extended trace are ranked by in-

formation retrieval and impact analysis. The intrinsic
challenges of them like synonymous can be controlled.
The ranking aids on filtering irrelevant classes brought
by static inference.
• The trace is introduced into impact analysis for refine-

ment. The refined impact analysis would improve class
dependency metrics.

Finally, two open source cases are analyzed to evaluate

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

206
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

our approach. Some features of the two systems are selected
for evaluation. The analysis results are discussed and com-
pared with those of the individual approaches. Our proposed
approach is approved to be of more efficiency with high pre-
cision from the experiment results. Also, some parameters
in our approaches are discussed. The remaining of this pa-
per is organized as follows. Section 2 gives the prior work
related to our research. Section 3 introduces our proposed
approach and its critical phases. In Sect. 4, two open source
cases are analyzed to evaluate the approach and the exper-
iment results are discussed. Section 5 concludes our work
and discusses the future work.

2. Related Work

A large amount of research has been done on locating fea-
tures in the source code. These researches can be catego-
rized into three groups: static techniques, dynamic analysis
and the hybrid ones. All the three types of approaches are
discussed as follows.

The static techniques for feature location include the
pattern matching [1], IR-based [2], [17] and dependency
graph [5]. Pattern matching [1] like grep is a query-based
approach to find source code with specific terms. This ap-
proach requires the analyst’s prior knowledge on the system
and the problem domain. For unfamiliar system, it’s nearly
impossible for the analysts to design good queries. Usually,
many queries are needed before correctly locating the tar-
get source code. The IR-based approach [2] is similar as the
grep-based approach. In this approach, latent semantic in-
dexing (LSI) is adopted to measure the similarities between
the queries and the source code. Different from the grep-
based approach, a list of ranked source code is returned in
descending order, which would provide useful knowledge
for further comprehension. The only way to find the code of
interest is looking through the returned results. Both grep-
based and IR-based approaches are based on the hypothe-
sis that the identifiers and comments in the source code are
meaningful [3], [23]. In addition, the structure of the code is
not considered in this approach. Some strategies were intro-
duced for improving the LSI-based approach by considering
the characteristics of the source code [4]. The dependency
analysis is one of the structural analysis techniques. The
analyst needs to navigate the Abstract System Dependency
Graphs (ASDG) [5] to find relevant implementations. Any
mistake would lead to backtrack of the dependency analy-
sis. Although the approach does not need the related domain
knowledge, an entrance or key point for the feature is re-
quired. The entrance identification also needs the prior com-
prehension of the source code. The combination of these
static techniques is also studied in the last years. Zhao et
al [8] provides a feature location approach by combining the
information retrieval and branch-reserving call graph. This
approach first identifies the initial connections between fea-
tures and the computational units by information retrieval.
Then a BRCG - branch-reserving call graph - is applied to
further recover the specific computational units for the fea-

ture. The approach claims no interactive is needed. How-
ever, all the static analysis approaches rely heavily on ana-
lysts’ knowledge and ignore actual execution traces, which
may take some irrelevant source code.

Software reconnaissance [6] is a dynamic feature loca-
tion approach. Both the cases with and without this fea-
ture are executed to locate feature-relevant classes. Only
the source code existing in the execution traces is consid-
ered as relevant to the feature. The approach has been ex-
tended by introducing rankings to measure how closely the
source code relevant to the feature. Dynamic feature loca-
tion also has some disadvantages [7] like requiring plenty of
test cases. In [10], the scenarios are executed incrementally
to construct a scenario-feature and scenario-code mapping
matrix. For each item in this matrix, 1 for the code is in-
voked to implement the scenario, whereas 0 for not. The
matrix is converted into a sparse formal concept lattice, in
which scenario is selected as attribute and code as object.
The code is classified into specific, co-specific, shared, rel-
evant and irrelevant. In this way, the results are compre-
hensible for analysts. It is claimed that the approach can
be applicable for unfamiliar source code. However, the re-
sults by dynamic analysis are heavily affected by the quality
of test cases. Prior knowledge is also needed for analysts to
design good test cases. To locate a feature, over one scenario
should be executed to verify whether a function is specific
to the feature or shared with other features.

To avoid the defeats of both static and dynamic ap-
proaches, some researchers tried to combine them [9], [11].
In [11], the ranking based on both dynamic probabilistic and
information retrieval is calculated to measure the contribu-
tion of a computational unit to the specific feature. More
than one feature should usually be considered when locating
one feature. However, the dynamic analysis in this approach
also needs plenty of test cases, especially for calculating the
probabilistic value. In [9], the dynamic analysis is executed
to obtain a set of computational units by tracing. The im-
pact of the computational unit is analyzed to measure the
contribution of the computational unit to the feature. One
new approach [21] is proposed using the execution trace of
only one single scenario. This approach executes one single
scenario, and then the computational units in the trace are
ranked using information retrieval method. The ranking of
all the executed computational units is based on the textual
similarity to the query. However, the feature trace using a
single scenario may miss some relevant source code. The
static inference is also used to extend the feature trace [20],
but no practical idea to filtering the irrelevant code brought
by static inference.

Additionally, some other approaches were also pro-
posed for specific system models, like for mainframe [14],
distributed system [12], SOA [13], etc. However, they are
limited by specific applications. Therefore, we propose a
new approach by a hybrid ranking strategy for the feature
trace, in order to avoid plenty of test cases and heavily re-
liance on prior knowledge.

CAI et al.: FEATURE LOCATION IN SOURCE CODE BY TRACE-BASED IMPACT ANALYSIS AND INFORMATION RETRIEVAL
207

3. Combined Feature Location Approach

This paper proposes a new combined approach for locating
features in source code. It takes advantage of dynamic trac-
ing, static inference and text similarity, as in Fig. 1. The
approach is not only to find the classes implementing the
feature, but also evaluate the connectivity strength of a class
to the feature. First, the instrumented system is executed to
locate which classes implement the feature. The dynamic
execution trace is extended by control flow analysis to cover
more classes that are potentially relevant to the feature but
missed in dynamic tracing. Then, each class in the trace
is ranked by hybrid ranking analysis which combines trace-
based impact analysis and semantic analysis. The classes
in the obtained trace are converted into a set of documents
for further semantic searching, each class as a document af-
ter pruning the operators and key words related to specific
programming language. The class ranking is not only to
measure the connectivity strength of each class to the given
feature, but also to filter the irrelevant classes that brought
by the extension of static inference.

3.1 Feature Trace and Extension

The relationships between a class and the given feature can
be categorized into three types: specific, relevant and irrel-
evant. The feature trace in this approach is to find all the
classes that implement this feature, including the specific
and relevant ones. A class c implements the feature f can be
represented as M(c, f). Specific means a class is executed
only for that feature, represented as S (f). It is a strong rele-
vant relationship.

S (f) = {c|M(c, f) ∧ (∀ f ′ � f ,¬M(c, f ′))} (1)

If the class also serves other features, it is relevant to
but not specific for that feature, represented as R(f).

R(f) = {c|M(c, f) ∧ (∃ f ′ � f ,M(c, f ′))} (2)

If one class contributes nothing to that feature, it is
called irrelevant to the feature, represented as I(f).

I(f) = {c|¬M(c, f)} (3)

In the formulas, C(f) = S (f) ∪ R(f) represents all the
classes that implement the feature f, including both specific
and relevant relationships. Thus, C(f) is also the class set
that will be located by feature trace.

In our approach, we propose an extended tracing algo-
rithm to cover all the potentially relevant classes by analyz-
ing the control flow in the execution trace. First, a single
scenario is executed to scale the execution trace correspond-
ing to the software feature under study. The source code is
instrumented to record the classes and their methods that are
executed. The trace result is a set of classes - exactly, a se-
quential set of the executed methods, including the branch
statements. Then, the execution trace is extended to cover

more potential classes by analyzing the control flow. The
classes in the execution trace are indeed related to the stud-
ied feature. However, some classes may be missed if the
source code is traced by only a single scenario, especially
for a complex feature. On the other hand, it is too difficult
for the analysts without prior knowledge to design such a
perfect scenario that can cover all the potential classes for
the feature. Thus, the static workflow analysis is introduced
to extend the single execution trace to find more potential
feature-relevant classes. The extension focuses on the con-
trol flow, i.e. branch statement, as in the algorithm 1.

Algorithm 1: Execution Trace Extension
Input: entrance - the entrance statement of an execution trace
trace - trace results
sc - system source code
Output: c - extended class set
1: c=c ∪ {classo f theentrance};
2: currentStatement = entrance;
3: while currentStatement do
4: if currentStatement is branch then
5: getthebranchesBexcepttheexecutedone;
6: for all branch entrance be ∈ B do
7: c=c ∪ ExecutionTraceExtension(be, trace, sc) ;
8: end for
9: end if

10: if currentStatement is function then
11: traverse the function invocation recursively;
12: add the owners of all the invoked methods and those

impacting them into c;
13: end if
14: currentStatement = currentStatement.successor;
15: end while
16: return c;

In line 9, the function statement is traversed to obtain
the invoked methods using the static dependency analysis.
The invoked methods are added as the extension trace. Also,
the methods that the invoked methods depend on are con-
sidered as trace extension. The analyzed dependencies in-
clude inheritance, composition and use. The owner classes
of these invoked methods or the methods that the invoked
methods depend on are added to the class set c. In fact, the
invoked method may be abstract or overridden. All the con-
crete implementations of the abstract methods or the classes
overriding the invoked methods would also be added into
the class set c by static dependency analysis, if their actual
execution can not be located by manual analysis.

All classes in the extended execution trace are consid-
ered as the traced results. However, the extension by static
inference may bring some irrelevant code. The ranking anal-
ysis of the traced results is used to filter the irrelevant source
code by traced-based impact analysis and semantic analysis.
Also, the ranking is for measuring the connectivity strength
of the classes to the feature. The engineers only need to
focus on the classes with high ranking values when under-
standing or maintaining a feature. For example, when mod-
ifying a feature, the specific classes can be changed without

208
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

Fig. 1 The feature location process using the combined approach.

considering the impact on other features, while other fea-
tures should be evaluated if a relevant classes needs to be
modified.

3.2 Hybrid Ranking Analysis

The classes in the extended trace contain the specific, rele-
vant and even several irrelevant classes of the feature. The
contribution of each class to feature implementation should
be measured in a unified way to locate the closely relevant
classes. A metric combining both structural and semantic
analysis is proposed to rank the classes. In the following
subsections, we first introduce the trace-based impact anal-
ysis and semantic analysis separately, and then give the hy-
brid ranking approach.

3.2.1 Trace-Based Impact Analysis

Change impact analysis is one of the well-known ways to
analyze the coupling between one class and the other classes
in the system. Two classes are coupled if one class is af-
fected when the other class changes. As discussed in the
related work, some researchers have introduced change im-
pact analysis to solve the feature location problem. The im-
pact analysis of one class on the others is used to locate fea-
tures in source code [15]. In this paper, a low impact value
means the class is closely relevant to the feature. However,
it is meaningless if its impacted classes belong to the execu-
tion trace of that feature. In other words, even if one class
affects many classes, the relevance can also be high if most
of the impacted classes are also in the feature trace. Thus,
a trace-based impact analysis is proposed to measure how
closely a class belongs to the execution trace. In the trace-
based impact analysis, the impact of a class in the trace is
analyzed by the directed class dependency graph, where the
dependency between the class and the feature trace is in-

Fig. 2 A directed class dependency graph example.

cluded as well as the dependency between the class and the
other classes not in the feature trace.

In the directed class dependency graph, each class is
treated as a single node, and the directed edge means one
class depends on the other (pointed to). The direction from
A to B means the implementation of class A depends on
class B, i.e. the change of B affects A. The direction of three
types of dependency is: inheritance is from child to parent,
composition is from whole to part, and invocation is from
caller to the called. The directed class dependency graph
of the whole target system is constructed by static analysis.
The classes in the feature trace are marked in shadow, as
in Fig. 2. It gives a directed class dependency graph with
feature trace.

Different from the traditional impact analysis [15], the
trace-based impact analysis provides a positive value to
measure the impact of a class on the trace. The higher the
value, the more impact of the class is to the feature trace. In
this way, the trace-based impact analysis can be easily com-

CAI et al.: FEATURE LOCATION IN SOURCE CODE BY TRACE-BASED IMPACT ANALYSIS AND INFORMATION RETRIEVAL
209

bined with other ranking results like those by information
retrieval. The impact strength of a class c to the given trace
is measured as follows.

RD(c) =

⎧⎪⎪⎨⎪⎪⎩
e
|EC(c)|
|CS | −1 |AC(c)|=0

|ACi(c)|
|AC(c)| ∗ e

|EC(c)|
|CS | −1 otherwise

(4)

CS : the total class set of the system.
AC(c): the set of the classes directly or indirectly af-

fected when class c is modified.
EC(c): the set of classes that directly or indirectly af-

fects the class c.
ACi(c): the set of the classes directly or indirectly af-

fected in the execution trace i when class c is modified.
In Eq. (4), |ACi(c)|

|AC(c)| measures the strength that the class c
affects on the trace compared with all the classes it affects.
The more classes affected by c in the trace, and the less
classes that c affects in total, the larger the impact strength
is. The value is 0 if it has no affects on the classes in the
trace but affects other classes. The class is also treated as ir-
relevant to the feature (i.e. in I(f) of feature f). On the other
hand, the value 1 means all the affected classes in the trace,
i.e. the class is in S(f). e

|EC(c)|
|CS | −1 is a revision parameter based

on the efferent class number. The more classes that affect
this class, the more probably it is important in the feature
trace. The upper limit value 1 can be achieved only when
all the classes in the system affect class c. Thus, the impact
value belongs to [0,1], i.e. RD(c) ∈ [0, 1].

Take the directed class dependency graph in Fig. 2 as
an example, the shadowed nodes 1-6, 8 and 9 are treated
in the execution trace, whereas the classes 7 and 10 are not.
Not all of the classes traced are specific for that feature since
some of them may also contribute to the classes not in the
trace, e.g. class 3, 5, 6 and 9. Thus, the impact of each class
to a given feature should be calculated by considering its
supporting on other features using Eq. (4). Table 1 shows
the ranking values by trace-based impact analysis. From the
results, we find that both class 6 and 8 are affected by two
other classes and they affect three classes separately. All
the classes affected by class 8 are in the extended execution
traces, but some of those by class 6 are not. Thus, their
connectivity to the given feature is different and can be rep-
resented by the ranking value.

3.2.2 Semantic Analysis by VSM

The structural dependency between classes relies on the sys-

Table 1 Trace-based impact analysis results of Fig. 2.

j AC(j) ACi(j) |EC(j)| RD(j)

1 0 0 7 0.741
2 1 1 4 0.549
4 2 2 3 0.497
8 3 3 2 0.449
9 8 6 1 0.306
6 3 2 2 0.300
5 9 6 0 0.286
3 2 1 3 0.248

tem architecture design or programming styles of the devel-
opers. In Table 1, the impact strength of class 5 is higher
than that of class 3. In fact, class 3 may implement some
business function of the feature since other three classes
support it. However, class 5 may be a utility class since
it has a high fan-in but no fan-out. The difference can
not be identified only using the trace-based impact analy-
sis. The semantic similarity can be applied as a complement.
With good programming style, the identifiers and comments
in the source code contain some potential knowledge for
the implemented feature. Comprehending these identifiers
could facilitate the process to find the target classes. Se-
mantic analysis has become one of the popular ways to find
the relationships between source code and domain knowl-
edge [2], [17].

The identifiers in the well-programming source code
represent the business knowledge that it implements. The
text similarity between source code and feature reflects the
links from feature to its implementation. Vector Space
Model (VSM) is an information retrieval way to measure the
text similarity between source code identifiers and feature
description [2]. In our approach, each class in the execution
trace is converted into a document. The document set is rep-
resented as D = {d1,d2, . . . ,dn} , where di = {t1i, t2i, . . . , tni}
.The identifiers are selected as the terms of the source code.
They can be classified into four groups: class identifiers,
method/field identifiers, parameter identifiers and comment
identifiers. A weight is assigned for each type of identi-
fiers, inspired from the previous research like [23]. Then,
a set of terms are extracted from the given feature descrip-
tion, represented as T = {t1, t2, . . . , tm} . These terms are
used as queries to find similar source documents from the
feature trace. The semantic similarity between the query -
i.e. feature description - and a document is defined using the
cosine value of the vectors according to the query and the
source code.

RS (d j) = S im(T,d j) =

∑N
i=1 wi j ∗ wit√∑N

i=1 w
2
i j ∗
√∑N

i=1 w
2
it

(5)

where,
N = |T ∪ d j|: the total number of items.
wit: the term frequency in the query T.
wi j = t fi ∗ wT : t fi is the term frequency in d j and wT ∈

[0, 1] is the weight of the identifier type. The weights are:
class¿method/field¿parameter¿comments.

The text similarity between the document and query is
used as the connectivity of the class to the given feature. Its
value belongs to [0,1]. 0 means the class is irrelevant to the
feature, while 1 means identical to the feature description.
The semantic analysis is used not only to measure the class
ranking, but also to filter the semantic irrelevant classes in-
troduced by trace extension.

3.2.3 Class Ranking by Hybrid Analysis

Analyzing the classes by trace-based impact analysis is hy-

210
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

pothetically treated all the traced classes as relevant to the
feature. The semantic analysis indeed considers the text
similarity between source document and feature description.
However, the semantic analysis has some intrinsic disadvan-
tages for source code analysis [3]. As discussed above, both
the trace-based impact analysis and semantic analysis pro-
vide positive measurement of the class ranking from differ-
ent views. Trace-based impact analysis measures the impact
strength between one class and other classes. The higher
impact of one class on the others in the trace, the more it
contributes to the given feature. On the other hand, the se-
mantic analysis measures the text similarity between the fea-
ture description and class documents. This is not considered
in structure-based analysis but is also very helpful. Thus, in
our approach, the two static analysis approaches for class
ranking are combined. The classes with high ranking val-
ues are considered as relevant to the given feature. RD(c)
and RS (c) measure the relevance between class c and the
given feature from structural and semantic views separately.
The two metrics are combined by a parameter ∂ to integrate
structural and semantic analysis, as in Eq. (6).

R(c) = ∂ ∗ RD(c) + (1 − ∂) ∗ RS (c) (6)

∂ ∈ [0, 1] is used to balance the contribution of the
trace-based impact analysis and the semantic analysis. ∂ = 0
means only the semantic metric is considered, if the fea-
ture is well documented, whereas ∂ = 1 means only the
trace-based impact analysis is considered if lack of feature
description. For other ∂ values, both of the ranking analysis
metrics are adopted. R(c) measures the hybrid ranking value
of class c to the given feature.

The hybrid ranking in algorithm 2 is an interactive pro-
cess described in the following algorithm. In the algorithm,
the initial query and parameter are set for ranking analysis
of each class in the trace. The statements 5 and 6 are for
filtering the irrelevant classes that are brought by trace ex-
tension. If the classes extended by static inference have no
semantic similarity with the feature, it can be treated as ir-
relevant. From statement 13, the classes with top-k ranking
values are selected and evaluated. If the evaluation result is
not satisfied (the top-k classes are accepted by engineers),
the ∂ is updated using an incremental step and the hybrid
ranking is re-executed. The value k can be determined by
analyzing the largest ranking value gap of the neighboring
classes in the ranking list. The classes above this gap are
treated as top-k classes. It makes sense since other parts of
the feature could be located by analyzing the top-k classes.

The k classes with high ranking values are selected
as feature-relevant classes by locating largest ranking value
gap. The iterative process provides a set of top-k classes,
which aids the engineers to identify best results by compar-
ison. It would eliminate the requirements of extra knowl-
edge for top-k selection. The appropriate results can be ob-
tained by recursive adjustment of ∂ and δ∂ . It would greatly
decrease the iteration number. E.g. δ∂ = 0.1 for ∂, then
δ∂ = 0.01 for a smaller scale 0.1.

Algorithm 2: Hybrid Ranking
Input: trace - extended trace class set;
q - query;
∂ - the parameter for combination;

∂ - an adjustment value for ∂;
Output: Vr - ranking values of the trace;
1: while ∂ ≤ 1 do
2: Vr = null;
3: for all c in the trace do
4: vs(c) =semantic ranking value by Eq. (5);
5: if v(c) == 0 and c is obtained by static extension then
6: v(c) = 0;
7: else
8: vd(c) =impact ranking value by Eq. (4);
9: v(c) = ∂ ∗ vd(c) + (1 − ∂) ∗ vs(c);

10: end if
11: insert (c, v(c)) into Vr;
12: end for
13: select top-k class set V with largest gap with others;
14: if V not satisfied then
15: ∂ = ∂ +
∂;
16: end if
17: end while
18: return Vr;

4. Experiments and Analysis

Our proposed feature location approach is evaluated by an-
alyzing two open source cases: serp - a library for bytecode
code analysis, and jhotdraw (version 7.5.1) - a GUI-based
tool for graphic draw. One critical feature is selected for
serp and five features are for jhotdraw. The precision is dis-
cussed by analyzing the ”correct” classes in located results.
Also, the selection of parameter for combining the two anal-
ysis approaches is discussed for better combination. Finally,
the threats affecting this experiment are discussed.

4.1 Experiment Process

Not all the phases of the experiment process are imple-
mented from scratch. Some open source tools or techniques
are used to assist our experiment. The open source eclipse-
based toolkit BIPTK (Bytecode Instrumentation Profiling
and Toolkit for Java) is used to instrument the bytecode [18].
The execution trace is obtained by running the instrumented
target system and is extended according to our extension al-
gorithm. Then the classes in the extended trace are ranked
according to the hybrid impact and semantic analysis, as in
Fig. 3, where the rectangles represent the analysis actions
and the ellipses represent the intermediate results.

In these experiments, the weight wT in Eq. (5) is set to
0.9, 0.8, 0.7 and 0.6 for the identifiers of class, method/field,
parameter and comments. The parameters ∂ and
∂ are set
to 1 and 0.1 in all these experiments.

4.2 Cases and Results

The first objective case serp is an open source library for

CAI et al.: FEATURE LOCATION IN SOURCE CODE BY TRACE-BASED IMPACT ANALYSIS AND INFORMATION RETRIEVAL
211

Fig. 3 The experiment process and its critical techniques.

analyzing the java bytecode. This is also the library that is
used in the experiment for directed class dependency analy-
sis. The library has 99 classes and provides some supporting
functions for java byte code analysis. One supporting func-
tion is selected as the functional features for further feature
location. The authors are familiar with the application of
this case, so the results validation is more trustable by using
source description as query.

The function loading byte code classes is one of
the critical features of the library. To locate the related
code that implementing this feature, two types of inputs
are considered: test cases and query text. For the test
case, we select a set of .class files for loading. For
the query text, the description of the function is selected
(http://serp.sourceforge.net/site/apidocs/serp/bytecode/Project
.html#loadClass(serp.bytecode.BCClass)) - ”Load the byte-
code from the given class file. If this project already contains
the class in the given file, it will be returned. Otherwise a
new BCClass will be created from the given bytecode”. To
balance the effect of the trace-based impact analysis and se-
mantic analysis, we set the parameter ∂ to 0.5. The ranking
values in descending order are given in Table 2. The ranked
classes are in the second column. High ranking values were
assigned to the classes implementing the critical functions,
which can be validated by the source code analysis manu-
ally.

From the ranking results, we select the top 4 classes
which have the largest gap with others. In the four classes,
Project is the entry for bytecode class loading and the other
three for loading and management of loaded classes. They
are the critical parts for class loading and other related
classes can be reached by dependency analysis. This is con-
firmed by one co-author who is familiar with the package.

Besides analyzing the open source library serp, an-
other open source program - jhotdraw [19]- is also dis-
cussed. For this case, we selected some low-granularity
features, such as the GUI operations. The classes imple-
menting these operations are located by our approach. The

Table 2 Ranking results of serp.

No. Class Name R(c)

1 serp.bytecode.Project 0.6314
2 serp.bytecode.NameCache 0.5425
3 serp.bytecode.BCClassLoader 0.4750
4 serp.bytecode.BCClass 0.4057
5 serp.byptecode.ConstantInstruction 0.2607
6 serp.byptecode.LocalVariableInstruction 0.2504
7 serp.bytecode.SourceFile 0.2433
8 serp.byptecode.Entry 0.1889
9 serp.bytecode.Exception 0.1518
10 serp.bytecode.ObjectState 0.1504
11 serp.bytecode.BCMember 0.0941

dynamic action description for dynamic tracing and pack-
age comments/description as query of information retrieval
are listed in Table 3. For query generation, the package with
similar terms is selected and the package description is con-
verted to a query manually. The ∂ for best results will be
discussed in the next section. To improve the efficiency, the
trace is started when executing the operation to filter system
initialization. The benefit of this partial trace is that the trac-
ing result set for system initialization is very large. Filtering
these would greatly improve the efficiency.

The ranking results for the five features in Table 3 are
given in Table 4. The class number in the execution trace is
given in the column |Traced Classes|. The number of classes
extended is in the column |Extended Classes|, not including
the traced classes. The class number by using VSM in the
trace including extended ones is given in |Classes by VSM|.
|In Trace| and |In Extension| are for classes with similarity
higher than 0 in execution trace and its extension. The rank-
ing result with highest precision (discussed in Sect. 4.3) is
in |Ranked Results|. In the ranked results, the correct ones
are given in |Correct Results|. Similarly, |In Trace| and |In
Extesion| are for the results in execution trace and its exten-
sion.

In our experiment, for filtering the irrelevant classes in-
troduced by extension, we ignore the classes in the extended
trace but not in the execution trace if their semantic ranking
value is 0. This action could decrease the effort of manually
evaluation of the results. Additionally, the ranking analysis
based on trace could greatly eliminate the irrelevant classes
that may be involved by just VSM. The top-k classes are
selected by analyzing the greatest gap between two neigh-
boring classes in the ranking list. The classes above the gap
are treated as top-k classes.

From Table 4, we can find that some correct re-
sults were located in trace extension but not traced. Take
the feature 4 as an example, the top 7 classes were se-
lected only using dynamic tracing (i.e. without exten-
sion). After extension, other three classes were located.
They are ”org.jhotdraw.draw.tool.TextAreaCreationTool”,
”org.jhotdraw. gui.plaf.palette.PaletteLookAndFeel”, and
”org.jhotdraw.gui. JFontChooser”. All of them are rele-
vant to the text format, but missed without trace extension.
The results of both with and without extension are obtained

212
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

Table 3 The trace actions and query source of the features for Jhotdraw.

No. Dynamic Trace Action Description Query Source

1
Open the draw application GUI, click the rectangle
button and draw a rectangle using the Bezier path

http://www.randelshofer.ch/oop/jhotdraw/javadoc751
/org/jhotdraw/draw/Drawing.html

2
Open the pert application, draw two tasks from the GUI
and connect them by a dependency. The task has a name
field, a duration field and a start time field.

http://www.randelshofer.ch/oop/jhotdraw/javadoc751
/org/jhotdraw/samples/pert/PertApplicationModel.html

3

Open the sample draw application and select to show the
text attributes. Double click the item in the list to view all
the font types. The types are listed in a family box with
classifying, and also its sub catalogues
are given.

http://www.randelshofer.ch/oop/jhotdraw/javadoc751
/org/jhotdraw/gui/fontchooser/package-summary.html

4
From an open draw application GUI, select the text button,
draw a text area and insert a text in a draw application GUI.
Then format the text to bold and red.

http://www.randelshofer.ch/oop/jhotdraw/javadoc751
/org/jhotdraw/draw/text/package-summary.html

5
From the open svg applet GUI, select the text button and
insert a text box in the svg applet and format the text
to bold, 48pt and Italic

http://www.randelshofer.ch/oop/jhotdraw/javadoc751
/org/jhotdraw/samples/svg/SVGApplet.html

Table 4 The intermediate results and ranking results for jhotdraw.

|Classes by VSM| |Ranked Results| |Correct Results|

Feature No. |Traced Classes| |Classes Extended| |In Trace| |In Extension| |In Trace| |In Extension| |In Trace| |In Extension|
1 86 34 68 28 5 1 5 1
2 106 42 43 16 4 2 4 1
3 115 54 76 49 11 4 11 4
4 94 30 61 30 7 3 6 3
5 107 52 87 47 6 2 5 2

at the best parameter.

4.3 Analysis and Discussion

The class ranking by trace-based impact analysis and se-
mantic analysis is more flexible and can lead to better results
than the traditional approaches. The parameter is discussed
using the second case - the jhotdraw and its five features in
Table 3. The location precision for these features is given
in Fig. 4. For each feature, the highest precision value is
obtained with ∂ ∈ [0.3, 0.8]. By analyzing the features and
located classes, it prefers a lower ∂ value - i.e. semantic anal-
ysis - to obtain the best results for the feature / source code
with sufficient documents. On the other hand, for the legacy
system without available document, the ∂ value should be
larger. The precision of the location results is defined as:

precisoin =
|correctclassesbyourapproach|
|identi f iedclassesbyourapproach| (7)

The identified classes are the top-k classes selected by
locating the greatest ranking value gap. The identified class
number of the five features at highest precision has been
given in Table 4 (i.e. |Ranking Results|). For other param-
eter ∂, the identified result number (including correct and
incorrect classes) may be different, as in Fig. 5. Whether a
class in top-k set is correctly identified was determined by
manual evaluation of engineers.

Besides the combining parameter, the advantages of

Fig. 4 The precision comparison as delta (∂) changes.

Fig. 5 The correct and incorrect classes in ranked results of Feature 4.

hybrid ranking are also discussed by comparing it with
single semantic analysis. Single impact analysis is not
discussed here because it can not filter irrelevant classes

CAI et al.: FEATURE LOCATION IN SOURCE CODE BY TRACE-BASED IMPACT ANALYSIS AND INFORMATION RETRIEVAL
213

brought by trace extension. The ranking analysis is based
on the extended execution trace instead of the whole system.
Additionally, the selection of top-k classes were all based
on locating the largest ranking value gap. As described
in Sect. 3, our approach considers the characteristics of the
source code. The identifiers for the classes and methods may
represent more business terms than those in the comments.
Thus, we discuss the improvement of the location precision
by differentiating the identifiers, as in Fig. 6. The result pre-
cision of the five features in Table 3 for the jhotdraw has
been analyzed. The precision by the refined information re-
trieval could improve about 10%. The location precision by
our approach has about 5 20% improvement compared with
that of the refined information retrieval.

In Fig. 6,
before - feature location by traditional semantic analy-

sis, implemented by setting all the identifier weights wit =

1.0 in VSM and setting ∂ = 0.
refined - semantic analysis considering the characteris-

tics of source code, implemented by setting ∂ = 0.
our approach - the hybrid approach in this paper.

4.4 Threats to Validity

There already exist many techniques to locate feature in
source code. Each feature location method has its charac-
teristics and succeeds on the systems with special charac-
teristics but none can fit all the systems. Thus, the hybrid
approach for feature location is to overcome the defeats of
the single location method. There are three inevitable issues
that may affect the results of the experiment results. The
issues may take some limitations to the experiment results.
Thus, in this experiment, we tried to minimize the effect of
the issues.

The first issue is the manual selection of the test cases.
The ranking analysis is based on the tracing results. Any
defeat in this step would affect the experiment results badly.
Thus, the users familiar with the cases are invited to review
our selected scenario.

The second issue is the query generation. The feature
description from system document is used as the query to
find classes with semantic similarity. Although this process

Fig. 6 The precision of different ranking techniques.

needs little interaction, the description may not be complete
and some terms in the description may be different from
those in the source code. Thus, in the experiment, we pre-
processed the synonyms manually.

The third issue is that the correct results for compari-
son are analyzed manually by the co-authors and other lab
members. Thus, we use the analysis results confirmed by all
the involved members as the correct results to minimize the
potential experimental risks.

There are also some other issues, e.g. the boundary of
the feature in as-needed trace. We selected the features that
are triggered by external input in the experiment.

5. Conclusion

Feature location is an important step for program compre-
hension and software maintenance. To solve the feature lo-
cation problem, we propose a new combined approach con-
sidering the trace-based impact analysis and semantic anal-
ysis. The trace-based impact analysis is a refined impact
analysis metrics by considering the execution trace, and the
semantic analysis considers the characteristics of the source
code. Combining the two static analysis approaches could
overcome the defeats from either of them. Two open source
cases are analyzed and the results have been evaluated to ap-
prove its efficiency and precision. The contributions of our
approach include:

• The location process only needs a single scenario se-
lected by analysts. The potentially relevant code can
be covered by introducing the trace extension based on
workflow. Thus, it’s applicable for unfamiliar code.
• The trace-based impact analysis and information re-

trieval are combined to avoid the defeats of either struc-
tural analysis or semantic analysis.
• Impact analysis is improved by introducing the trace.

Feature location is an ongoing research topic. A set of
ranked classes are given by our approach but it still can not
clearly distinguish the specific classes and common relevant
classes. In the future, we will consider other techniques like
formal concept analysis to aid our ranking metrics. In addi-
tion, more cases will be studied to discuss the parameters in
our approach and the location of the compound feature will
be studied.

References

[1] A. Marcus, V. Rajlich, J. Buchta, M. Petrnko, and A. Sergeyev,
“Static techniques for concept location in object-oriented code,”
Proc. 13th IEEE International Workshop on Program Comprehen-
sion, pp.33–42, 2005. [doi: 10.1109/WPC.2005.33]

[2] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, “An information
retrieval approach to concept location in source code,” Proc. 11th
Working Conference on Reverse Engineering, pp.214–223, 2004.
[doi: 10.1109/WCRE.2004.10]

[3] D.P. Liu and S.C. Xu, “Challenges of using LSI for concept
location,” ACM SouthEast Conference, pp.449–454, 2007. [doi:
10.1145/1233341.1233422]

214
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.1 JANUARY 2012

[4] G.Z. Lai, X.B. Wang, and C. Liu, “Analysis and improvement on re-
trieval methods for traceability links between source code and doc-
umentation,” ACTA Electronica Sinica, vol.37, no.4A, pp.22–30,
2009. (in Chinese)

[5] K. Chen and V. Rajlich, “Case study of feature location using depen-
dency graph,” Proc. 8th International Workshop on Program Com-
prehension, pp.241–249, 2000. [doi: 10.1109/WPC.2000.852498]

[6] N. Wilde and M.C. Scully, “Software reconnaissance: Map-
ping program features to code,” J. Software Maintenance:
Research and Practice, vol.7, no.1, pp.49–62, 1995. [doi:
10.1002/smr.4360070105]

[7] A.D. Eisenberg and K.D. Volder, “Dynamic feature traces:
Finding features in unfamiliar code,” Proc. 21st International
Conference on Software Maintenance, pp.337–346, 2005. [doi:
10.1109/ICSM.2005.42]

[8] W. Zhao and L. Zhang, “SNIAFL: Towards a static non-interactive
approach to feature location,” ACM Trans. Softw. Eng. Methodol.,
vol.15, no.2. pp.195–226, 2006. [doi: 10.1145/1131421.1131424]

[9] A. Rohatgi, A.H. Lhadj, and J. Rilling, “An approach for mapping
features to code based on static and dynamic analysis,” Proc. 16th
International Conference on Program Comprehension, pp.236–241,
2008. [doi: 10.1109/ICPC.2008.35]

[10] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in
source code,” IEEE Trans. Softw. Eng., vol.29, no.3, pp.210–224,
2003. [doi: 10.1109/TSE.2003.1183929]

[11] D. Poshyvanyk, A. Marcus, and V. Rajlich, “Feature location us-
ing probabilistic ranking of methods based on execution scenarios
and information retrieval,” IEEE Trans. Softw. Eng., vol.33, no.6,
pp.420–432, 2007. [doi: 10.1109/TSE.2007.1016]

[12] D. Edwards, S. Simmons, and N. Wilde, “An approach to feature
location in distributed systems,” J. Systems and Software, vol.79,
pp.57–68, 2006. [doi: 10.1016/j.jss.2004.12.018]

[13] O. Panchenko, “Concept location and program comprehen-
sion in service-oriented software,” Proc. 23rd International Con-
ference on Software Maintenance, pp.513–514, 2007. [doi:
10.1109/ICSM.2007.4362676]

[14] J.V. Geet and S. Demeyer, “Feature location in COBOL main-
frame systems: An experience report,” Proc. 25th International
Conference on Software Maintenance, pp.361–370, 2009. [doi:
10.1109/ICSM.2009.5306312]

[15] A. Rohatgi, A.H. Lhadj, and J. Rilling, “Approach for solving the
feature location problem by measuring the component modifica-
tion impact,” IET Software, vol.3, no.4, pp.292–311, 2009. [doi:
10.1049/iet-sen.2008.0078]

[16] K. Chen and V. Rajlich, “Case study of feature location us-
ing dependency graph, after 10 years,” Proc. 18th IEEE Interna-
tional Conference on Program Comprehension, pp.1–3, 2010. [doi:
10.1109/ICPC.2010.40]

[17] D. Poshyvanyk and A. Marcus, “Combining formal concept analy-
sis with information retrieval for concept location in source code,”
Proc. 15th IEEE International Conference on Program Comprehen-
sion, pp.37–48, 2007. [doi: 10.1109/ICPC.2007.13]

[18] IBM Corporation , http://www.alphaworks.ibm.com/tech/biptk?open
&S TACT=105AGX59&S CMP=GR&ca=dgr-lnxd02awbiptk, ac-
cess at Oct. 2010.

[19] Jhotdraw, http://sourceforge.net/projects/jhotdraw/, access at Oct.
2010.

[20] M. Revelle, B. Dit, and D. Poshyvanyk, “Using data fusion and web
mining to support feature location in software,” Proc. 18th Inter-
national Conference on Program Comprehension, pp.14–23, 2010.
[doi 10.1109/ICPC.2010.10]

[21] D.P. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Fea-
ture location via information retrieval based filtering of a sin-
gle scenario execution trace,” Proc. 22nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2007. [doi:
10.1145/1321631.1321667]

[22] M. Revelle, “Supporting feature-level software maintenance,” Proc.

16th IEEE Working Conference on Reverse Engineering, pp.287–
290, 2009. [doi: DOI 10.1109/WCRE.2009.43]

[23] R. Sindhgatta, “Using an information retrieval system to retrieve
source code samples,” Proc. 28th ACM International Conference on
Software Engineering, pp.905–908, 2006. [10.1145/1134285.1134448]

Zhengong Cai received the B.S. de-
gree in computer science from Zhejiang Uni-
versity in 2006. He is currently a PHD stu-
dent in the College of Computer Science, Zhe-
jiang University. His research interests include
software reengineering, domain modeling and
component-based software engineering.

Xiaohu Yang received a PhD degree in com-
puter science from Zhejiang University in 1993.
Since 1994, he has been a faculty member and
associate professor in the College of Computer
Science, Zhejiang University. His research in-
terests include software engineering, legacy sys-
tem reengineering, and software technology fi-
nancial services. He is a member of the IEEE
and the IEEE Computer Society.

Xinyu Wang (BSc, PhD) is currently a
faculty member and lecturer in the College of
Computer Science, Zhejiang University. His
research interests include software engineering,
distributed software architecture and distributed
computing. He is a member of IEEE Computer
Society.

Aleksander J. Kavs received his BSc de-
gree in occupational safety from the University
of Nis, Yugoslavia in 1971. After doing op-
erational work in the field and teaching at the
School of Safety Engineering at the University
of Ljubljana, Yugoslavia, he moved to the US
in 1981 and since then he works in the software
development. His research interests include de-
signing and programming database management
systems, computer languages and workflow and
messaging systems to financial applications and

document imaging. Currently he heads several development groups at State
Street Hangzhou.

