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Medical Image Segmentation Using Level Set Method with a New
Hybrid Speed Function Based on Boundary and Region
Segmentation

Jonghyun PARK†a), Soonyoung PARK†, Members, and Wanhyun CHO††, Nonmember

SUMMARY This paper presents a new hybrid speed function needed to
perform image segmentation within the level-set framework. The proposed
speed function uses both the boundary and region information of objects
to achieve robust and accurate segmentation results. This speed function
provides a general form that incorporates the robust alignment term as a
part of the driving force for the proper edge direction of an active contour,
an active region term derived from the region partition scheme, and the
smoothing term for regularization. First, we use an external force for active
contours as the Gradient Vector Flow field. This is computed as the diffu-
sion of gradient vectors of a gray level edge map derived from an image.
Second, we partition the image domain by progressively fitting statistical
models to the intensity of each region. Here we adopt two Gaussian dis-
tributions to model the intensity distribution of the inside and outside of
the evolving curve partitioning the image domain. Third, we use the active
contour model that has the computation of geodesics or minimal distance
curves, which allows stable boundary detection when the model’s gradi-
ents suffer from large variations including gaps or noise. Finally, we test
the accuracy and robustness of the proposed method for various medical
images. Experimental results show that our method can properly segment
low contrast, complex images.
key words: image segmentation, geometric deformable model, level set
method, gradient vector flow

1. Introduction

Medical image processing has revolutionized the field of
medicine by providing novel methods to extract and visu-
alize medical data information acquired through various ac-
quisition modalities. Image segmentation is one of the most
important steps in the analysis of preprocessed patient im-
age data and can be helpful in diagnosis, treatment plan-
ning, and treatment delivery, among other applications [1]–
[3]. It is the process of labeling each pixel in a medical im-
age dataset to indicate its tissue type or anatomical structure.
The accurate estimation of tumor size is important for clini-
cal reasons, e.g., for treatment planning and therapy evalua-
tion. Although maximum tumor diameter is widely used as
an indication of tumor size, it may not reflect a proper as-
sessment of this tumor attribute because of the tumor image
nature and irregular shape of the tumor. One way to ob-
tain an estimate of tumor volume is via segmentation. Since
the former approach using tumor volume generally achieves
higher accuracy, it is the main focus of our research. There
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are several proposed approaches in the literature for image
segmentation and extraction of objects (tumor, vessel, bone,
etc.).

Segmentation techniques can be categorized into four
classes: the threshold-based, edge or boundary-based,
region-based and model-based techniques [1], [4]–[6]. The
threshold technique is the most intuitive. This technique is
based on local pixel intensity levels. The current image is
compared to the background image, and a threshold value
decides if the pixel differs enough to belong to the fore-
ground. Clearly, additional filtering and clustering have to
be considered because the background can also vary accord-
ing to possible noise. The edge-based technique is by far the
most common method of detecting boundaries and discon-
tinuities in an image. An edge is a set of connected pixels
with the same intensity level between two adjacent pixels
and can be distinguished by estimating the intensity gradi-
ent. The region-based technique partitions an image into
regions. First, the image is searched for boundaries and dis-
continuities in areas where there are large intensity changes
in the pixel values. A region is formed by a closed path.
Then some kind of region growing is applied by inducing
the merger of smaller regions with lager regions. This proce-
dure results in well-separated regions that are defined by the
intensity level difference. The model-based technique labels
pixels according to probability values, which are determined
based on the intensity distribution of an image. Given only
the intensity distribution of an image, statistical approaches
attempt to estimate the associated class label by making an
assumption about the distribution.

In this paper, we are mainly interested in the image seg-
mentation method using the active contour model. This is
usually based on minimizing functionals, which would re-
sult in small values for curves close to target boundaries.
To solve these functional minimization problems, a corre-
sponding partial differential equation is constructed as the
gradient decent flow resulting in curve evolution. More-
over, we convert this task within the level-set framework
and propose a new hybrid speed function using the level-set
method for image segmentation. Our hybrid speed function
uses both the boundary and region information of objects
to achieve robust and accurate segmentation results. The
hybrid speed function reflects a general form that incorpo-
rates the robust alignment term, the geodesic active contour
model for regularization and the region partition scheme.
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First, although the image gradient aligns appropriately to
detect the local edge direction of the precise boundary of
the target object, the speed function based image gradient
shows dependency on initialization and a poor convergence
to boundary concavities. In regard with these weak points,
we will use an external force for active contours as gradi-
ent vector flow (GVF). GVF is computed as the diffusion of
gradient vectors of a gray-level edge map derived from the
target image. Second, although active contour models based
on object boundary are used extensively in image segmen-
tation, they tend to be slower and prone to the leakage of
contours outside the object boundary in images with inten-
sity inhomogeneity. However, this limitation can be over-
come by a region-based segmentation method that separates
an object from the background in an image. This method
partitions the image domain by progressively fitting statisti-
cal models to the intensity in each region. This paper adopts
two Gaussian distributions to model the intensity distribu-
tion of the inside and outside of the evolving curve parti-
tioning the image domain. Third, we use an active contour
model that has the computation of geodesics or minimal dis-
tance curves, which allows stable boundary detection when
the model’s gradients suffer from large variations, including
gaps.

Finally, we conduct a test to determine the accuracy
and robustness of the proposed method for various synthetic
and medical images. The rest of this paper proceeds as fol-
lows: Sect. 2 provides a brief literature review. Section 3
presents the proposed method. Section 4 evaluates the vi-
ability of the method for low-contrast, complex-image seg-
mentation, provides the results, and concludes.

2. Review of the Deformable Model

2.1 Geometric Integral Measures for Active Contours

Let us consider a gray level image as a function I:Ω→�+,
where Ω ⊆ �2 is the image domain. We search for the con-
tour C: [0, L] → �2, given in a parametric form by the arc
length s as C(s) = {(x(s), y(s)) : 0 ≤ s ≤ L}. Given the
curve C, we denote the inside and outside of the curve as Ωc

and Ω\Ωc, respectively. The energy functional E(C) for a
contour C can be defined as two types of integral measures
that are related via the Green theorem [7], [8]. The first func-
tional integrates the function L(Cs,C) defined on the curve
and is considered as a boundary-based measure in the gen-
eral form of:

E1(C) =
∫ L

0
L(Cs,C)ds.

L(Cs,C) = {(x(Cs,C), y(Cs,C)} : 0≤Cs ≤ L, 0≤C ≤ L

(1)

The second functional integrates the values of the function
f (x, y) inside the curve and is usually referred to as a region
based measure:

E2(C) =
�
ΩC

f (x, y)dxdy. (2)

Formally, we search for the optimal planar curve C such that

C = arg min
C

E(C) or C = arg max
C

E(C). (3)

Here, by using the calculus of variations for the two func-
tionals, the curve that minimizes (or maximizes) these func-
tionals can be identified by a differential equation known as
the Euler-Lagrange Equation:

δE(C)
δC

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂L
∂x
− ∂
∂s
∂L
∂xs
= 0

∂L
∂y
− ∂
∂s
∂L
∂ys
= 0
. (4)

A dynamic process known as gradient descent, which takes
an arbitrary curve toward a minimum (or maximum) of
E(C), is given by the curve evolution equation

∂C
∂t
= −δE(C)

δC
. (5)

The virtual time parameter t is added to our curve to allow
its evolution into a family of planar curves C(s, t). The key
idea is to evolve the boundary C from some initialization in
direction of the negative energy gradient, which can be done
by implementing the gradient descent equation:

∂C
∂t
= −∂E(C)

∂C
= F · �N, (6)

which models an evolutionary path along the normal �N with
the speed function F.

2.2 Snakes

The traditional snake model [9] is a curve C(s), s ∈ [0, 1],
that moves through the spatial domain of an image to mini-
mize the energy functional

E(C) = Eint + Eext, (7)

where Eint and Eext denote the internal and external ener-
gies, respectively. The internal energy function determines
the regularity of a contour. A common choice for internal
energy is a quadratic function given by

Eint =

∫ 1

0
(α|C′(s)|2 + β|C′′(s)|2)ds, (8)

where α and β are weighting parameters that control the
snake’s tension and rigidity. The external energy term that
determines the criteria of contour evolution depending on
the image I(x, y) can be defined as

Eext =

∫ 1

0
g(|∇I(C(s))|)2ds. (9)

A common example of the edge attraction function is a re-
ciprocal of the image gradient given by

g(|∇I(C(s))|) = 1
1 + λ|∇Gσ ∗ I(x, y)| (10)
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where G denotes a Gaussian smoothing filter with the stan-
dard deviation σ, λ is the suitable constant chosen, and ∗
is the convolution operator. Solving the problem of snakes
involves the identification of a contour C that minimizes the
total energy term E(C). It must satisfy the Euler equation

αC′′(s) + βC′′′′(s) − ∇Eext = 0. (11)

A numerical solution to this equation can be found by using
a greedy algorithm with a given set of weights α and β.

2.3 Geodesic Active Contours

The geodesic active contour model [10], [11] can be consid-
ered a particular class of snake models, where the rigidity
coefficient is set to zero, i.e., β = 0. Then the energy func-
tional of this model is defined as

E(C) =
∫ 1

0
g(|∇I(C(s))|)|C′(s)|ds. (12)

Thus, when trying to detect an object, we are interested in
finding not only the path of minimal classical length but also
the one that minimizes a new length definition that takes
into account image characteristics. In order to minimize
this functional, we search for its gradient decent direction.
Thus, according to the steepest decent method, we follow
the curve evolution equation

∂C(t)
∂t
= ∇gκ �N − 〈∇g, �N〉�N, (13)

where κ is the Euclidean curvature, �N is the unit inward nor-
mal, and the right-hand side of the equation is given by the
Euler-Lagrange formula.

2.4 Chan-Vese Minimal Variance Model

In general, a common problem with boundary-based active
contour models is that if the target boundary is not well-
defined or contains weak parts, the active contour can eas-
ily leak through the target boundary and it converges to the
wrong solution. To overcome the leakage problem, Chan-
Vese suggested the use of the region information of the tar-
get object for segmentation [12], [13]. They proposed to
minimize the following energy function with respect to c1,
c2, and C:

E(c1, c2,C) =
�
ΩC

(I − c1)2dxdy

+

�
Ω\ΩC

(I − c2)2dxdy + ν|C|. (14)

The first two terms in the above functional measure the vari-
ations inside and outside the active contour, respectively,
whereas the third term measures the length of the contour.
The associated curve evolution equation is given by

∂C(t)
∂t
= (c2 − c1)

(
I − c1 + c2

2

)
�N, (15)

c1 =
1
|ΩC |

∫
ΩC

Idxdy, c2 =
1

|Ω\ΩC |
�
Ω\ΩC

Idxdy.

2.5 Geodesic Active Region Model

Although initially introduced for supervised texture seg-
mentation, the geodesic active region model has been ex-
tended to address unsupervised image segmentation [13],
[14]. It has also been successfully exploited to provide an
elegant solution to motion estimation and the tracking prob-
lem. Then the energy functional of this model is defined
as

E(C) = α

(�
ΩC

log(p1(I(w)))dw

+

�
Ω\ΩC

log(p2(I(w)))dw

)

+ (1 − α)
∫ 1

0
g(|∇I(C(s))|)|C′(s)|ds,

(16)

where p1(I(w)) and p2(I(w)) denote the probability density
functions of image intensities for the regions Ωc and Ω\Ωc.

The object functional is minimized by using a gradient
descent method. If we compute Euler-Lagrange equations
using the Stokes theorem, then we should deform the curve
C by using the following equation:

∂C(t)
∂t
= α

(
log(p1(I(w))) − log(p2(I(w)))

) �N
+ (1 − α)(g(I)κ �N − 〈∇g, �N〉�N).

(17)

The obtained partial differential equation (PDE) motion
equation has two types of forces (i.e., the region force and
the boundary force) acting on the propagating curve in the
direction of the normal.

3. A New Hybrid Level Set Method

3.1 Level Set Method

In general, one can distinguish between explicit (parametric)
and implicit representations of contours. In explicit repre-
sentations, a contour is defined as a mapping from an inter-
val to the image domain: C: [0, 1]→ Ω. The propagation of
an explicit contour is typically implemented by a set of or-
dinary differential equations acting on the control or marker
points [23], [24]. In implicit contour representations, con-
tours are represented as the level set of the scalar embedding
function φ:Ω → � defined in the image plane. A contour
is defined as the zero level set of φ such that

φ(ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ(ω) > 0 on ω ∈ ΩC

φ(ω) = 0 on ω ∈ C

φ(ω) < 0 on ω ∈ Ω/ΩC

. (18)

We illustrate the above assumptions and notations on the
level set function φ, defining the evolving curve C in Fig. 1.
For more details, we refer the reader to [15].

There are various methods to evolve implicitly repre-
sented contours. The most popular among these is the level
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Fig. 1 Curve C = {(x, y) : φ(x, y) = 0} propagating in normal direction.

set method, in which a contour is propagated by evolving
a time-dependent embedding function φ(ω, t) according to
an appropriate PDE [15]. For a contour that evolves along
the normal �N with a speed F, one can drive a correspond-
ing partial differential equation for the embedding function
φ as follows. Because the function φ takes zero value on the
contour of the curve at all times, the total time derivative of
φ at boundary point of the contour must vanish:

dφ(C(t), t)
dt

= ∇φ∂C
∂t
+
∂φ

∂t
= ∇φF · �N + ∂φ

∂t
= 0. (19)

Inserting the definition of the normal �N = ∇φ
|∇φ| , we get the

evolution equation for φ:

φt =
∂φ

∂t
= |∇φ| · F. (20)

By derivation, this equation only specifies the evolution of φ
and the values of the speed function F at the location of the
contour. Because the level set function φ increases from its
initial stage, the corresponding set of contours C propagate
toward outside. In addition, because the evolution of a con-
tour is equivalent to the evolution of the level set function,
a contour can be defined as the border between positive and
negative areas of the level set function. Thus, contours can
be identified by just checking the sign of φ. Furthermore, the
initial level set function φ0 may be provided by the signed
distance from the initial contour:

φ0(ω) = ±D(ω,Nω(C0)), (21)

where ±D(a, b) denotes a signed distance between a and b
and Nω(C0) denotes the nearest neighboring pixel on initial
contours C0. The initial level set function φ0 is zero at the
initial contour points of C0.

3.2 Speed Function Induced from the Robust Alignment
of Objects

First, we consider the active contour model with the speed
function derived from the boundary information of an ob-
ject. In many cases, gradient information is used as the
stopping criteria for active curve evolution as well as the
attracting force to the zero level set from a target boundary.
The reason is that the image gradient direction is a good es-
timator of the orientation of the edge contour. However, for
images with intensity inhomogeneity, gradients based these
properties can never fully stop the level set evolution even
for idea edges, making leakage often inevitable. Hence, we

explore a new edge indicator vector embedded with a speed
term.

An ideal selection is to choose an edge indicator vec-
tor as the gradient vector flow (GVF) field proposed in Xu
and Prince [16]. Then particular advantages of this field are
its insensitivity to initialization and its ability to move into
boundary concavities. To obtain the GVF field, we first de-
fine an edge map f (x, y) derived from the image I(x, y) hav-
ing a property such that it is larger near the image edges. We
next define the GVF field to be a vector field VGVF(x, y) that
minimizes the energy functional:

E(VGVF) =
∫
�2
μ|∇V(x, y)|2 + |∇ f |2|V(x, y) − ∇ f |2dxdy.

(22)

Using the calculus of variations, we find that the GVF field
must satisfy the Euler equation

μ∇2V − |∇ f |2(V − ∇ f ) = 0, (23)

where ∇2 is applied to each component of the vector field
V(x, y) separately.

Finally, if we replace the image gradient vector field
with the GVF field by using a robust alignment measure de-
fined as the absolute value of the inner product between the
vector field and the curve normal, we obtain the following
functional:

EA(C) =
∮

C
|〈VGVF , �N〉|ds. (24)

By the variational principle, the extremals of this functional
EA(C) can be identified by the Euler Lagrange equation,
which is given by the curve evolution equation:

∂C
∂t
= sign(〈VGVF, �N〉)div(VGVF)�N. (25)

Thus, the corresponding curve evolution equation of the
level-set formulation is given by

φt =
∂φ

∂t
= sign(〈VGVF,∇φ〉)div(VGVF)|∇φ|. (26)

Hence, we have the new speed function, which is defined as
F = sign(〈VGVF,∇φ〉)div(VGVF).

3.3 Speed Function Induced from the Active Region of
Objects

Second, let us consider the geometric active contour model,
which uses the region information of target objects for seg-
mentation. This model can not only solve some weak points
in the boundary based model, such as the dependency of
local information and initialization, but also optimally par-
tition a given image as some homogenous regions.

First, we assume that a regular curve C splits an image
domain Ω as disjoint regions Ω1 and Ω2. We also assume
that all partitions are equally possible

p(I | {Ω1,Ω2}) = p(I | Ω1)p(I | Ω2) (27)
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and that the pixels within each regions are independent

p(I | Ωi) =
∏
w∈Ωi

p(I(w)), i = 1, 2. (28)

Then the joint probability of intensity values I observed at a
given image partition Ω = {Ω1,Ω2} is given by

p(I | {Ω1,Ω2}) = p(I | Ω1)p(I | Ω2)

=
∏
w∈Ω1

p1(I(w))
∏
w∈Ω2

p2(I(w)). (29)

Here the optimal segmentation is found by minimizing the
following energy functional:

E(Ω1,Ω2) = −
(∫
Ω1

(log p1(I(w)))dw

+

∫
Ω2

(log p2(I(w)))dw

)
. (30)

Here, by using the Heaviside function H and the one-
dimensional Dirac measure δ concentrated at zero defined
respectively by

H(z) =

{
1 if z ≥ 0

0 if z < 0
(31)

and

δ(z) =
d
dz

H(z), (32)

we can express the above energy functional as the following
level-set form:

E(φ) = −
(∫
Ω

H(φ(w)) log p1(I(w))dw

+

∫
Ω

(1 − H(φ(w)) log p2(I(w))dw

)
.

(33)

Then the corresponding Euler-Lagrange evolution equation
for φ is given by

∂φ

∂t
= δ(φ(w))(log p1(I(w)) − log p2(I(w))). (34)

A standard rescaling can be made by replacing δ(φ) by |∇φ|
and this then gives the following equation:

φt = |∇φ(w)|(log p1(I(w)) − log p2(I(w))). (35)

Here we have assumed that the probability distribution of
intensity values is generally modeled by the Gaussian dis-
tribution. Thus, probability distributions of pixel values in
each region Ωi are given by

p1(I(w)) = ϕ(I(w); μ1, σ
2
1),

ϕ(I(w); μ1, σ
2
1) = (2πσ2

1)−1/2 exp

⎛⎜⎜⎜⎜⎝− 1

2σ2
1

(I − μ1)2

⎞⎟⎟⎟⎟⎠ (36)

and

p2(I(w)) = ϕ(I(w); μ2, σ
2
2),

ϕ(I(w); μ2, σ
2
2) = (2πσ2

2)−1/2 exp

⎛⎜⎜⎜⎜⎝− 1

2σ2
2

(I − μ2)2

⎞⎟⎟⎟⎟⎠ ,(37)

where μk and σ2
k are the mean and variance of each Gaussian

distribution, respectively. First, the parameters {μk, σ
2
k , k =

1, 2} in the Gaussian probability distribution of each re-
gion can be estimated by applying the Maximum likelihood
method as follows:

μ̂k =
1
|Ωk |

∑
w∈Ωk

I(w),

σ̂2
k =

1
|Ωk | − 1

∑
w∈Ωk

(I(w) − μ̂k)2, k = 1, 2.
(38)

3.4 New Hybrid Speed Function for Deformable Model

Numerous active contour models have been developed
as paradigms for boundary-based and region-based meth-
ods [17]–[19]. Here we have considered a novel segmenta-
tion method using level set evolution by introducing a new
speed term. This is given as a weighted sum of three types
of measures, i.e., a robust alignment term, an active region
term, and a smoothing term derived from different geomet-
ric functional, and is represented as follows:

F = α(sign(〈VGVF,∇φ〉)div(VGVF))

+ β(log p1(I(w)) − log p2(I(w)))

+ γ

(
g(I)div

( ∇φ
|∇φ|

)
−

〈
∇g,
∇φ
|∇φ|

〉) (39)

Thus, the corresponding level set equation of curve evolu-
tion is given by

φt = F|∇φ| or φ(t) = φ(t−1) + ΔtF|∇φ|. (40)

4. Experimental Results

This section presents segmentation results using level-set
approach with a new hybrid speed function based bound-
ary and region information on various synthetic, medical
and real images, with different types of contours, intensities,
texture and shapes.

4.1 Property Analysis of Parameter Values

We show that three parameters of the proposed algorithm
do not depend on the initial value based on various initial
values. Therefore, we test the proposed algorithm to the
synthetic image to analyze the segmentation performance
by adjusting the parameters. First, in Fig. 2, we show how
our model works on a blurred synthetic image, with vari-
ous shapes and an interior contour, which is automatically
detected. Due to the level set implementation, the model al-
lows automatically change of topology. In Fig. 3, we show
that our model can detect different objects of noisy synthetic
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Fig. 2 Detection of three blurred objects of distinct shapes (α = 0.2,
β = 0.6, γ = 0.2).

Fig. 3 Detection of three blurred objects with noise of distinct shapes
(α = 0.2, β = 0.3, γ = 0.5).

image with blurred boundaries. The curve is also automati-
cally attracted toward the objects. As expected, we can ob-
serve that the active region term and smoothing term have a
dominant role in the segmentation for the blurred and noisy
images. And the robust alignment term leads the active con-

Fig. 4 Results of segmentation by α, β and γ parameter values of the
proposed speed function. (a) texture image (α = 0.6, β = 0.1, γ = 0.3),
(b) noisy image image (α = 0.2, β = 0.3, γ = 0.5), and (c) blurred image
(α = 0.1, β = 0.6, γ = 0.3).

Table 1 ACC value using three parameters for texture image.

tour to the accurate edge locations in the object region.
To assess the segmentation performance by α (robust

alignment term), β (active region term), and γ (smoothing
term) parameter values of the hybrid speed function for var-
ious images, we apply the level set procedure for the tex-
ture, noise and blurred images, respectively, in Fig. 4 (a).
The second row is results of segmentation using α, β and
γ parameter values of the proposed speed function. The
three terms of the proposed speed function are required to be
weighted properly to guide the evolving curve under differ-
ent image conditions. We have used the measure proposed
by [26], to numerically evaluate the segmentation results ob-
tained using various of the parameters. The overall accuracy
(ACC) of the segmentation result can be estimated using the
following equation;

ACC =
TP + TN

TP + TN + FP + FN
(41)

where TP, TN, FP, FN are true positive, true negative, false
positive and false negative. Segmenting object pixel as a
background is considered a FP, and segmenting background
pixel as an object is considered a FN. TP and TN are the
cases where an object is segmented as an object and a back-
ground is segmented as a background, respectively. Table 1
shows the comparison of segmentation performance for pos-
sible values of the three parameters α, β and γ in the three
synthetic images, i.e., texture, blurred, and noisy image.

As expected we can observe that the robust alignment
term is tuned to play the dominant role in the segmentation
of the texture image as shown in Table 1. The alignment
term in the speed function has a greater influence than the
other terms on segmentation of the texture image. How-
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Table 2 ACC value using three parameters for noisy image.

Table 3 ACC value using three parameters for blurred image.

ever, the active region term has little contribution to exact
segmentation. Table 2 presents that the smoothing term is
the important factor while the robust alignment term and
the active region term both make little contribution to good
segmentation for noisy image. Finally, we can observe that
the active region term has the dominant contribution to the
blurred image as shown in Table 3, but neither the robust
alignment term nor the smoothing term contribute to good
segmentation.

4.2 Segmentation Results Based on the Proposed Method

In the second experiment, we also compared the perfor-
mance of traditional approaches and the proposed approach
for object segmentation in synthetic images with noise and
blurring. Here the blurred image is obtained by applying a
Gaussian blurring with radius 1.5 pixel on the original syn-
thetic image. We have generated the noisy image by adding
the Gaussian noise to the original image. The test synthetic
image contained objects of different shapes, locations, sizes,
and intensities. The traditional approaches are threshold-
based speed function [19], Bhattacharyya-based speed func-
tion [18], [22], edge-based speed function [11], Georgiou-
based speed function [20], mean-based speed function [12],
and mean variance-based speed function [21]. In the exper-
iment, we applied to the noisy and blurred versions of the
synthetic image and results after 900 iterations are shown in
Figs. 5 and 6. As it can be observed, the proposed approach
is efficient for segmenting the objects.

As final experiment, the performance of the above-
mentioned deformable models was tested and analyzed by
using several types with a tumor region in magnetic reso-
nance (MR) image of 256 × 256 size. A MR scanner using
a standard clinical imaging protocol was used to obtain the
sample T1-weighted (T1) and contrast-enhanced T1 images.
These MR images included concave tumors; there were also
convex tumors with weak edges. The MR brain images
without noise were used to identify the method that could
segment a tumor region reflecting diverse contrast within the

Fig. 5 The segmentation results of objects on blurred image: (a) the con-
tour position for the original image, (b) the result of the threshold-based
speed function, (c) the result of the Bhattacharyya-based speed function,
(d) the result of the edge-based speed function, (e) the result of Georgiou-
based speed function, (f) the result of the mean-based speed function,
(g) the result of the mean-variance-based speed function, (h) the result of
the proposed approach (α = 0.2, β = 0.5, γ = 0.3).

Fig. 6 The segmentation results of objects on noisy image: (a) the con-
tour position for the original image, (b) the result of the threshold-based
speed function, (c) the result of the Bhattacharyya-based speed function,
(d) the result of the edge-based speed function, (e) the result of Georgiou-
based speed function, (f) the result of the mean-based speed function,
(g) the result of the mean-variance-based speed function, (h) the result of
the proposed approach (α = 0.2, β = 0.2, γ = 0.6).

target boundary.
Initialization for segmentation is done in the tumor re-

gion. Figures 7 (a) and 8 (a) show initialized curves for
convex and concave tumor. The results are segmented a
tumor region after 500 iterations. Figure 7 shows the tu-
mor segmentation results of the hybrid speed function based
on boundary and region information. The test image in
Fig. 7 (a) shows the initial curve overlapped with the orig-
inal image. As shown in Figs. 7 (b), (c), (d), (e), (f) and (g),
the traditional approaches had almost the same result be-
cause there was no contour topology change. In particular,
as shown in Figs. 7 (c), (d) and (e), the tumor was under-
segmented in the boundary region. In comparison, as shown
in Fig. 7 (h), the proposed approach accurately segmented
images without resulting in isolated regions. Figure 8 shows
the final segmentation results on a brain tumor image with
an edema region. Figure 8 (a) shows the initial curve over-
lapped with the original image. As shown in Figs. 8 (b), (c),
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Fig. 7 Final segmentation results for an MR brain image indicating a
tumor: (a) the contour position for the original image, (b) the result of the
threshold-based speed function, (c) the result of the Bhattacharyya-based
speed function, (d) the result of the edge-based speed function, (e) the result
of Georgiou-based speed function, (f) the result of the mean-based speed
function, (g) the result of the mean-variance-based speed function, (h) the
result of the proposed approach (α = 0.3, β = 0.6, γ = 0.1).

Fig. 8 Final segmentation results for a brain tumor with edema re-
gion: (a) the contour position for the original image, (b) the result of the
threshold-based speed function, (c) the result of the Bhattacharyya-based
speed function, (d) the result of the edge-based speed function, (e) the result
of Georgiou-based speed function, (f) the result of the mean-based speed
function, (g) the result of the mean-variance-based speed function, (h) the
result of the proposed approach (α = 0.2, β = 0.7, γ = 0.1).

(d), (e), (f), and (g), the tumor and edema regions were not
segmented as two regions. Actually, the intensity in the tu-
mor region was separated as two components as shown in
Fig. 8 (h); the edema region was accurately segmented. As
shown in Fig. 8 (h), the proposed approach accurately seg-
mented the test images.

The proposed method accurately segmented the object
region. As these results suggest, the proposed method can
segment a variety of tumors as long as there is a sufficient in-
tensity difference between the tumor and non-tumor regions
in a given image.

Finally, we tested the effectiveness of the proposed
method by using a natural (horse) image as shown in Fig. 9.
The image was then segmented. Figure 9 shows the seg-
mentation results of the proposed method and others. The

Fig. 9 Result for the segmented horse region in a nature scene image:
(a) the original image and the initial curve, (b) the result of the threshold-
based speed function, (c) the result of the Bhattacharyya-based speed func-
tion, (d) the result of the edge-based speed function, (e) the result of
Georgiou-based speed function, (f) the result of the mean-based speed func-
tion, (g) the result of the mean-variance-based speed function, (h) the result
of the proposed approach (α = 0.35, β = 0.35, γ = 0.3).

boundary region between the object and the background was
not accurately segmented. The result of the segmentation
using the proposed approach is shown in Fig. 9 (h). Actu-
ally, we can observe that the segmentation result using nat-
ural scene is the same as shown in Figs. 9 (g) and (h).

5. Conclusions

This paper describes a novel hybrid speed function based on
boundary and region information. The paper contributes by
defining a new speed function based on the statistical infor-
mation of the boundary and region of objects in an image.
First, we use an external force for the active diffusion of gra-
dient vectors of a gray-level edge map derived from the tar-
get image. Then, to compute region information, we adopt
the Gaussian distributions to model the intensity distribution
of the inside and outside of the evolving curve partitioning
the image domain. We performed several experiments on a
wide variety of MR images with a tumor region and com-
pared the results of the proposed method with those of the
traditional speed functions. The experimental results indi-
cate that the proposed method can be effective in segmenting
MR tumor images with poor contrast.
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